Химические реакции протекающие со звуком примеры. Звуковые колебания в интенсификации химико-технологических процессов. Разложение перекиси водорода, катализируемой йодидом калия

Невероятные факты

Молекулярный материал в нашей повседневной жизни настолько предсказуем, что мы часто забываем, какие удивительные вещи могут твориться с основными элементами .

Даже внутри нашего тела происходит множество удивительных химических реакций.

Вот несколько увлекательных и впечатляющих химических и физических реакций в форме гифок, которые напомнят вам курс химии.


Химические реакции

1. "Фараонова змея" - распад тиоцианата ртути

Горение тиоцианата ртути приводит к его разложению на три других химических вещества. Эти три химических вещества в свою очередь разлагаются на еще три вещества, что приводит к развертыванию огромной "змеи".

2. Горящая спичка

Спичечная головка содержит красный фосфор, серу и бертолетову соль. Тепло, генерируемое фосфором, разлагает бертолетову соль и в процессе высвобождает кислород. Кислород в сочетании с серой производит кратковременное пламя, которое мы используем, чтобы зажечь, например, свечу.

3. Огонь + водород

Газообразный водород легче воздуха и его можно разжечь пламенем или искрой, что приведет к впечатляющему взрыву. Вот почему сейчас чаще используется гелий, а не водород для наполнения аэростатов.

4. Ртуть + алюминий

Ртуть проникает сквозь защитный слой окиси (ржавчину) алюминия, заставляя его ржаветь намного быстрее.

Примеры химических реакций

5. Змеиный яд + кровь

Одна капля яда гадюки, попавшая в чашку Петри с кровью, заставляет ее свернуться в толстый комок твердого вещества. Именно это происходит в нашем теле, когда нас кусает ядовитая змея.

6. Железо + раствор медного купороса

Железо заменяет медь в растворе, превращая медный купорос в железный купорос. Чистая медь собирается на железе.

7. Воспламенение емкости с газом

8. Хлорная таблетка + медицинский спирт в закрытой бутылке

Реакция приводит к увеличению давления и заканчивается разрывом контейнера.

9. Полимеризация п-нитроанилина

На гифке к половине чайной ложки п-нитроанилина или 4-нитроанилина добавляют несколько капель концентрированной серной кислоты.

10. Кровь в перекиси водорода

Фермент в крови, называемый каталаза, превращает перекись водорода в воду и газообразный кислород, создавая пену кислородных пузырей.

Химические опыты

11. Галлий в горячей воде

Галлий, который в основном используется в электронике, имеет температуру плавления составляющую 29,4 градуса по Цельсию, а значит будет плавиться в руках.

12. Медленный переход бета-олова в альфа-модификацию

При холодной температуре бета-аллотроп олова (серебристый, металлический) самопроизвольно переходит в альфа-аллотроп (серый, порошкообразный).

13. Полиакрилат натрия + вода

Полиакрилат натрия - тот же материла, который используется в детских подгузниках, действует как губка, впитывая влагу. При смешивании с водой, соединение превращается в твердый гель, а вода уже не является жидкостью и не может выливаться.

14. Газ Радон 220 впрыснут в туманную камеру

Следы в форме буквы V появляются благодаря двум альфа частицам (ядер гелия-4), которые выделяются, когда радон распадается на полоний, а затем свинец.

Домашние химические опыты

15. Шарики из гидрогеля и разноцветная вода

В данном случае действует диффузия. Гидрогель представляет собой гранулы полимера, которые очень хорошо впитывают воду.

16. Ацетон + пенопласт

Пенопласт состоит из пенополистирола, который, будучи растворенным в ацетоне, выпускает воздух в пену, что создает вид, будто вы растворяете большое количество материала в малом количестве жидкости.

17. Сухой лед + средство для мытья посуды

Сухой лед, помещенный в воду, создает облако, а средство для мытья посуды в воде удерживает углекислый газ и водяной пар в форме пузыря.

18. Капля моющего средства, добавленная к молоку с пищевым красителем

Молоко - это в основном вода, но оно также содержит витамины, минералы, белки и крошечные капли жира, находящиеся во взвешенном состоянии в растворе.

Средство для мытья посуды ослабляет химические связи, которые удерживают белки и жиры в растворе. Молекулы жира сбиваются с толку по мере того, как молекулы мыла начинают метаться, чтобы соединиться с молекулами жира, пока раствор равномерно не перемешается.

19. "Слоновья зубная паста"

Дрожжи и теплую воду наливают в контейнер с моющим средством, перекисью водорода и пищевым красителем. Дрожжи служат катализатором выделения кислорода из перекиси водорода, создавая множество пузырей. В результате образуется экзотермическая реакция, с образованием пены и выделением тепла.

Химические опыты (видео)

20. Перегорание лампочки

Вольфрамовая нить ломается, вызывая короткое замыкание электрической цепи, которое заставляет нить светиться.

21. Ферромагнитная жидкость в стеклянной банке

Ферромагнитная жидкость – это жидкость, которая сильно намагничивается в присутствии магнитного поля. Она используется в жестких дисках и в машиностроении.

Еще ферромагнитной жидкости.

22. Йод + алюминий

Окисление тонкодисперсного алюминия происходит в воде, формируя темно-фиолетовые пары.

23. Рубидий + вода

Рубидий очень быстро реагирует с водой, формируя гидроокись рубидия и газообразный водород. Реакция настолько быстрая, что если бы ее проводить в стеклянном сосуде, он может разбиться.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
    • 1. Понятие о звуке. Звуковые волны
      • 1.1 Область изучения звуковых воздействий на химические процессы
      • 1.2 Методы звукохимии
    • 2. Использование инфразвука в качестве способа интенсификации процессов химической технологии
    • 3. Использование ультразвука в качестве способа интенсификации химических процессов
    • Заключение
    • Введение
    • Двадцать первый век - век био- и нанотехнологий, всеобщей информатизации, электроники, инфразвука и ультразвука. Ультразвук и инфразвук представляют собой волнообразно распространяющееся колебательное движение частиц среды и характеризуются рядом отличительных особенностей по сравнению с колебаниями слышимого диапазона. В ультразвуковом диапазоне частот сравнительно легко получить направленное излучение; ультразвуковые колебания хорошо поддаются фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний в определенных зонах воздействия. При распространении в газах, жидкостях и твердых телах звуковые колебания порождают уникальные явления, многие из которых нашли практическое применение в различных областях науки и техники, появились десятки высокоэффективных, ресурсосберегающих звуковых технологий. В последние годы использование звуковых колебаний начинает играть все большую роль в промышленности и научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе.
    • В настоящее время формируется новое направление химии - звуковая химия, позволяющая ускорить многие химико-технологические процессы и получить новые вещества, наряду с теоретическими и экспериментальными исследованиями в области звукохимических реакций выполнено много практических работ. Развитие и применение звуковых технологий открывает в настоящее время новые перспективы в создании новых веществ и материалов, в придании известным материалам и средам новых свойств и поэтому требует понимания явлений и процессов, происходящих под действием ультразвука и инфразвука, возможностей новых технологий и перспектив их применения.
    • 1. Понятие о звуке. Звуковые волны

Звук -- физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных и человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычный человек способен слышать звуковые колебания в диапазоне частот от 16--20 Гц до 15--20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, -- ультразвуком, от 1 ГГц -- гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука -- не только от частоты, но и от величины звукового давления .

Звуковые волны в воздухе -- чередующиеся области сжатия и разрежения. Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение -- звуковым давлением .

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Рисунок 1 - Движение частиц при распространении волны а) движение частиц среды при распространении продольной волны; б) движение частиц среды при распространении поперечной волны.

Рисунок 2 - Характеристики колебательного процесса

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн .

1.1 Область изучения звуковых воздействий на химические процессы

Раздел химии, который изучает взаимодействие мощных акустических волн и возникающие при этом химические и физико-химические эффекты, называется звукохимией (сонохимией). Звукохимия исследует кинетику и механизм звукохимических реакций, происходящих в объёме звукового поля. К области звукохимии так же относятся некоторые физико-химические процессы в звуковом поле: сонолюминесценция, диспергирование вещества при действии звука, эмульгирование и другие коллоидно-химические процессы. Сонолюминесце мнция -- явление возникновения вспышки света при схлопывании кавитационных пузырьков, рождённых в жидкости мощной ультразвуковой волной. Типичный опыт по наблюдению сонолюминесценции выглядит следующим образом: в ёмкость с водой помещают резонатор и создают в ней стоячую сферическую ультразвуковую волну. При достаточной мощности ультразвука в самом центре резервуара появляется яркий точечный источник голубоватого света -- звук превращается в свет . Основное внимание сонохимия уделяет исследованию химических реакций, возникающих под действием акустических колебаний -- звукохимическим реакциям.

Как правило, звукохимические процессы исследуют в ультразвуковом диапазоне (от 20 кГц до нескольких МГц). Звуковые колебания в килогерцовом диапазоне и инфразвуковой диапазон изучаются значительно реже.

Звукохимия исследует процессы кавитации. Кавитамция (от лат. cavita -- пустота) -- процесс парообразования и последующей конденсации пузырьков пара в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром самой жидкости, в которой возникает. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк схлопывается, излучая при этом ударную волну.

1.2 Методы звукохимии

Для изучения звукохимических реакций применяют следующие методы: обратный пьезоэлектрический эффект и эффект магнитострикции для генерирования высокочастотных звуковых колебаний в жидкости, аналитическая химия для исследования продуктов звукохимических реакций, обратный пьезоэлектрический эффект -- возникновение механических деформаций под действием электрического поля (используется в акустических излучателях, в системах механических перемещений - активаторах).

Магнитостримкция -- явление, заключающееся в том, что при изменении состояния намагниченности тела его объём и линейные размеры изменяются (используют для генерации ультразвука и гиперзвука).

Инфразвумк -- звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16--20"000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц.

Инфразвук обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды: имеет гораздо большие амплитуды колебаний; гораздо дальше распространяется в воздухе, поскольку его поглощение в атмосфере незначительно; проявляет явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки; вызывает вибрацию крупных объектов вследствие резонанса .

волна ультразвук химический кавитация

2. Использование инфразвука в качестве способа интенсификации химико-технологических процессов

Физическое воздействие на химические реакции в данном случае осуществляется в инфразвуковых аппаратах, - устройствах, в которых для интенсификации технологических процессов в жидких средах используются низкочастотные акустические колебания (собственно инфразвуковые частотой до 20 Гц, звуковые частотой до 100 Гц). Колебания создаются непосредственно в обрабатываемой среде с помощью гибких излучателей различной конфигурации и формы или жестких металлических поршней, соединенных со стенками технологических емкостей через упругие элементы (напр., резиновые). Это дает возможность разгрузить от колебаний источника стенки инфразвукового аппарата, значительно уменьшает их вибрацию и уровень шума в производственных помещениях. В инфразвуковых аппаратах возбуждаются колебания с большими амплитудами (от единиц до десятков мм).

Однако малое поглощение инфразвука рабочей средой и возможность ее согласования с излучателем колебаний (подбор соответствующих параметров источника) и размерами аппаратов (для обработки заданных объемов жидкости) позволяют распространить возникающие при воздействии инфразвука нелинейные волновые эффекты на большие технологические объемы. Благодаря этому инфразвуковые аппараты принципиально отличаются от ультразвуковых, в которых жидкости обрабатываются в небольшом объеме.

В инфразвуковых аппаратах реализуются следующие физические эффекты (один или несколько одновременно): кавитация, высокоамплитудное знакопеременное и радиационное (звукового излучения) давления, знакопеременные потоки жидкости, акустические течения (звуковой ветер), дегазация жидкости и образование в ней множества газовых пузырьков и их равновесных слоев, сдвиг фаз колебаний между взвешенными частицами и жидкостью. Эти эффекты значительно ускоряют окислительно-восстановительные, электрохимические и другие реакции, интенсифицируют в 2-4 раза промышленные процессы перемешивания, фильтрования, растворения и диспергирования твердых материалов в жидкостях, разделения, классификации и обезвоживания суспензий, а также очистку деталей и механизмов и т.д.

Применение инфразвука позволяет в несколько раз снизить удельные энерго- и металлоемкость и габаритные размеры аппаратов, а также обрабатывать жидкости непосредственно в потоке при транспортировании их по трубопроводам, что исключает установку смесителей и других устройств .

Рисунок 3 - Инфразвуковой аппарат для перемешивания суспензий: 1 - мембранный излучатель колебаний; 2 - модулятор сжатого воздуха; 3 - загрузочное устройство; 4 - компрессор

Одна из наиболее распространенных областей применения инфразвука - перемешивание суспензий посредством, например, трубных инфразвуковых аппаратов. Такая машина состоит из одного или нескольких последовательно соединенных гидропневматических излучателей и загрузочного устройства.

3. Использование ультразвука в интенсификации химических процессов

Ультразву мк -- звуковые волны, имеющие частоту выше воспринимаемым человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц. Высокочастотные колебания, используемые в промышленности обычно создают с помощью пьезокерамических преобразователей. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, используются механические источники ультразвука .

Воздействие ультразвука на химические и физико-химические процессы, протекающие в жидкости, включает: инициирование некоторых химических реакций, изменение скорости, а иногда и направления реакций, возникновение свечения жидкости (сонолюминесценция), создание в жидкости ударных волн, эмульгирование несмешивающихся жидкостей и коалесценцию (слияние частиц внутри подвижной среды или на поверхности тела) эмульсий, диспергирование (тонкое измельчение твёрдых тел или жидкостей) твердых тел и коагуляцию (объединение мелких диспергированных частиц в бомльшие по размеру агрегаты) твердых частиц в жидкости, дегазацию жидкости и т.д. Для осуществления технологических процессов используют ультразвуковые аппараты .

Влияние ультразвука на различные процессы связано с кавитацией (образованием в жидкости при прохождении акустической волны полостей (кавитационных пузырьков), заполненных газом, паром или их смесью) .

Химические реакции, возникающие в жидкости под действием ультразвука (звукохимические реакции), можно условно подразделить на: а) окислительно-восстановительные, реакции, протекающие в водных растворах между растворенными веществами и продуктами разложения молекул воды внутри кавитационного пузырька (H, ОН,), например:

б) Реакции между растворенными газами и веществами с высоким давлением пара, находящимися внутри кавитационного пузырька:

в) Цепные реакции, инициируемые не радикальными продуктами разложения воды, а каким-либо другим веществом, диссоциирующимся в кавитационном пузырьке, например, изомеризация малеиновой к-ты в фумаровую под действием Br, образующегося в результате звукохимической диссоциации.

г) Реакции с участием макромолекул. Для этих реакций важна не только кавитация и связанные с нею ударные волны и кумулятивные струи, но и механические силы, расщепляющие молекулы. Образующиеся при этом макрорадикалы в присутствии мономера способны инициировать полимеризацию.

д) Инициирование взрыва в жидких и твердых взрывчатых веществах.

е) Реакции в жидких неводных системах, например, пиролиз и окисление углеводородов, окисление альдегидов и спиртов, алкилирование ароматических соединений и др. .

Основная энергетическая характеристика звукохимических реакций - энергетический выход, который выражается числом молекул продукта, образовавшихся при затрате 100 эВ поглощенной энергии. Энергетический выход продуктов окислительно-восстановительных реакций обычно не превышает нескольких единиц, а для цепных реакций достигает нескольких тысяч.

Под действием ультразвука во многих реакциях возможно увеличение скорости в несколько раз (например, в реакциях гидрирования, изомеризации, окисления и др.), иногда одновременно возрастает и выход.

Воздействие ультразвука важно учитывать при разработке и проведении различных технологических процессов (напр., при воздействии на воду, в которой растворен воздух, образуются оксиды азота и), для понимания процессов, сопровождающих поглощение звука в средах .

Заключение

В настоящее время звуковые колебания широко применяются в промышленности, являясь перспективным технологическим фактором, позволяющим при необходимости резко интенсифицировать производственные процессы.

Использование мощного ультразвука в технологических процессах получения и обработки материалов и веществ позволяет:

Снизить себестоимость процесса или продукта,

Получать новые продукты или повысить качество существующих,

Интенсифицировать традиционные технологические процессы или стимулировать реализацию новых,

Способствовать улучшению экологической ситуации за счёт снижения агрессивности технологических жидкостей.

Необходимо, однако, отметить, что ультразвук оказывает крайне неблагоприятное воздействие на живые организмы. Для того, чтобы уменьшить такие воздействия, ультразвуковые установки рекомендуется размещать в специальных помещениях, используя для проведения технологических процессов на них системы дистанционного управления. Большой эффект дает автоматизация этих установок .

Более экономичный способ защиты от воздействия ультразвука заключается в использовании звукоизолирующих кожухов, ко­торыми закрываются ультразвуковые установки, или экранов, располагающихся на пути распространения ультразвука. Эти экраны изготавливают из листовой стали или дюралюминия, пластмассы либо из специальной резины.

Список использованных источников

1. Маргулис M.А. Основы звукохимии (химические реакции в акустических полях); учеб. пособие для хим. и хим.-технолог. Специальностей вузов / М.А. Маргулис. M.: Высшая школа, 1984. 272 с

2. Susliсk K.S. Ultrasound. Its chemical, physical and biological effects. Ed.: VCH, N. Y., 336 р.

3. Кардашев Г.А. Физические методы интенсификации процессов химической технологии. М.: Химия, 1990, 208 с.

5. Люминисценция

6. Ультразвук

Размещено на Allbest.ru

Подобные документы

    Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция , добавлен 18.02.2009

    Теория химических процессов органического синтеза. Решение: при алкилировании бензола пропиленом в присутствии любых катализаторов происходит последовательное замещение атомов водорода с образованием смеси продуктов разной степени алкилирования.

    курсовая работа , добавлен 04.01.2009

    Органический синтез как раздел химии, предмет и методы его изучения. Сущность процессов алкилирования и ацилирования, характерные реакции и принципы протекания. Описание реакций конденсации. Характеристика, значение реакций нитрования, галогенирования.

    лекция , добавлен 28.12.2009

    Этапы изучения процессов горения и взрывов. Основные виды взрывов, их классификация по типу химических реакций и плотности вещества. Реакции разложения, окислительно-восстановительные, полимеризации, изомеризации и конденсации, смесей в основе взрывов.

    реферат , добавлен 06.06.2011

    Промышленная водоподготовка. Комплекс операций, обеспечивающих очистку воды. Гомогенные и гетерогенные некаталитические процессы в жидкой и газовой фазах, их закономерности и способы интенсификации. Сравнение различных типов химических реакторов.

    лекция , добавлен 29.03.2009

    Методы получения красителей. Получение сульфанилата натрия синтезом. Характеристика исходного сырья и получаемого продукта. Расчет химико–технологических процессов и оборудования. Математическое описание химического способа получения сульфанилата натрия.

    дипломная работа , добавлен 21.10.2013

    Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация , добавлен 30.04.2012

    Понятие и условия прохождения химических реакций. Характеристика реакций соединения, разложения, замещения, обмена и их применение в промышленности. Окислительно-восстановительные реакции в основе металлургии, суть валентности, виды переэтерификации.

    реферат , добавлен 27.01.2012

    Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа , добавлен 18.01.2014

    Механизмы воздействия ультразвука на химческие реакции. Учет его при разработке и проведении технологических процессов. Технологии, реализуемые с помощью ультразвука. Прецизионная очистка и обезжиривание. Дегазация расплавов и сварка полимеров и металлов.

Газообразный метан легче воздуха, поэтому образованная им пена легко поднимается под потолок. Ну, а яркое горение основного компонента природного газа удивлять никого не должно - то же самое можно сказать про любой лёгкий углеводород.

Источник: Наука в гифках

2. Реакция окисления люминола и гексацианоферрата(III) калия

Перед вами пример хемилюминесценции: в ходе превращения люминола наблюдается хорошо различимое человеческим глазом свечение. Красная кровяная соль выступает здесь в качестве катализатора - ту же роль, между прочим, может играть и гемоглобин, в результате чего описываемая реакция широко применяется в криминологии для обнаружения следов крови.

Источник: Научное шоу профессора Николя

3. Воздушный шарик, наполненный ртутью(реакция при ударе об пол)

Ртуть - единственный металл, остающийся жидким в нормальных условиях, что позволяет залить его в воздушный шарик. Однако ртуть настолько тяжела, что даже падение шарика с небольшой высоты разорвёт его в клочья.

Источник: Давно не дети

4. Разложение перекиси водорода, катализируемой йодидом калия

В отсутствие примесей водный раствор пероксида водорода вполне стабилен, но стоит внести в него йодид калия, как моментально начнётся разложение этих молекул. Оно сопровождается выделением молекулярного кислорода, прекрасно способствующего образованию различных пен.

Источник: Fishki.net

5. Железо + сульфат меди

Одна из первых реакций, изучаемых в российском курсе химии: в результате замещения более активный металл(железо) растворяется и переходит в раствор, в то время как менее активный металл(медь) осаждается в виде цветных хлопьев. Как несложно догадаться, анимация сильно ускорена во времени.

Источник: Trinixy

6. Перекись водорода и йодистый калий

Ещё один пример реакции разложения пероксида водорода(он же перекись) в присутствие катализатора. Обратите внимание на стоящую на столе бутылку моющего средства: именно она помогает появиться падающей на стол мыльной сосиске.

Источник: Trinixy

7. Горение лития

Литий - один из щелочных металлов, по праву считающихся наиболее активными среди всех прочих металлов. Он горит не столь интенсивно, как его собратья натрий и калий, но нетрудно убедиться, что этот процесс всё равно весьма быстрый.

Источник: Trinixy

8. Обезвоживание сахара в серной кислоте

Очень простая и очень эффектная реакция: серная кислота отнимает воду у молекул сахарозы, превращая их в атомарный углерод(попросту в уголь). Выделяющаяся при этом газообразная вода вспенивает уголь, благодаря чему мы видим угрожающий чёрный столб.

Источник: Fishki.net

9. Кварцевое стекло

В отличие от стандартного оконного стекла, кварц более устойчив к высоким температурам: он не будет« течь» на обычной газовой горелке. Именно поэтому кварцевые трубки спаивают на кислородных горелках, обеспечивающих более высокую температуру пламени.

Источник: Global Research

10. Флуоресцеин

В водном растворе под действием ультрафиолетового излучения зелёный краситель флуоресцеин испускает свет в видимом диапазоне - это явление называется флуоресценцией.

Источник: Thoisoi

11. Молния в цилиндре

Реакция между сульфидом углерода и оксидом азота(I) не только сопровождается ярчайшей белой вспышкой, напоминающей шаровую молнию, но и характеризуется смешным звуком, благодаря которому она и получила своё популярное название - «лающая собака».что иногда это вещество пытаются выдать за драгоценный металл.

Конечный итог реакций взрывного превращения выражают обычно уравнением, связывающим химическую формулу исходного ВВ или состав его (в случае взрывчатой смеси) с составом конечных продуктов взрыва.

Знание уравнения химического превращения при взрыве существенно в двух отношениях. С одной стороны, по этому уравнению можно рассчитать теплоту и объем газообразных продуктов взрыва, а следовательно, и температуру, давление и другие его параметры. С другой стороны, состав продуктов взрыва получает особое значение, если речь идет о ВВ, предназначенных для взрывных работ в подземных выработках (отсюда – расчет рудничной вентиляции, чтобы количество окиси углерода и окислов азота не превосходило определенного объема).

Однако при взрыве не всегда устанавливается химическое равновесие. В тех многочисленных случаях, когда расчет не позволяет надежно установить итоговое равновесие взрывного превращения, – обращаются к эксперименту. Но экспериментальное определение состава продуктов в момент взрыва также встречает серьезные трудности, так как в продуктах взрыва при высокой температуре могут содержаться атомы и свободные радикалы (активные частицы), обнаружить которые после охлаждения не удается.

Органические ВВ, как правило, состоят из углерода, водорода, кислорода и азота. Следовательно, в продуктах взрыва могут содержаться следующие газообразные и твердые вещества: СО 2 , Н 2 О, N 2 , CO, O 2 , H 2 , CH 4 и другие углеводороды: NH 3 , C 2 N 2 , HCN, NO, N 2 O, C. Если в состав ВВ входят сера или хлор, то в продуктах взрыва могут содержаться соответственно SO 2 , H 2 S, HCl и Cl 2 . В случае содержания в составе ВВ металлов, например, алюминия или некоторых солей (например, нитрата аммония NH 4 NO 3 , нитрата бария Ba(NO 3) 2 ; хлора-тов – хлората бария Ba(ClO 3) 2 , хлората калия КСlO 3 ; перхлоратов – аммония NHClO 4 и др.) в составе продуктов взрыва встречаются оксиды, например Al 2 O 3 , карбонаты, например, карбонат бария ВаСО 3 , карбонат калия К 2 СО 3 , бикарбонаты (КНСО 3), цианиды (KCN), сульфаты (BaSO 4 , K 2 SO 4), сульфиды (NS, K 2 S), сульфиты (K 2 S 2 O 3), хлориды (AlCl 3 , BaCl 2 , KCl) и другие соединения.

Наличие и количество тех или иных продуктов взрыва в первую очередь зависит от кислородного баланса состава ВВ.

Кислородный баланс характеризует соотношение между содержанием во взрывчатом веществе горючих элементов и кислорода .

Вычисляют кислородный баланс обычно как разность между весовым количеством кислорода, содержащегося во ВВ, и количеством кислорода, потребным для полного окисления горючих элементов, входящих в его состав. Расчет ведут на 100 г ВВ, в соответствии, с чем кислородный баланс выражают в процентах. Обеспеченность состава кислородом характеризуется кислородным балансом (КБ) или кислородным коэффициентом a к, которые в относительных величинах выражают избыток или недостаток кислорода для полного окисления горючих элементов до высших оксидов, например, СО 2 и Н 2 О.



Если ВВ содержит как раз столько кислорода, сколько нужно для полного окисления входящих в его состав горючих элементов, то кислородный баланс его равен нулю. Если избыток – КБ положителен, при недостатке кислорода – КБ отрицателен. Сбалансированность ВВ по кислороду соответствует КБ – 0; a к = 1.

Если ВВ содержит углерод, водород, азот и кислород и описывается уравнением С а H b N c O d , то величины кислородного баланса и кислородного коэффициента могут определяться по формулам

(2)

где а, b, c и d – число атомов соответственно С, H, N и О в химической формуле ВВ; 12, 1, 14, 16 – округленные до целого числа атомные массы соответственно углерода, водорода, азота и кислорода; знаменатель дроби в уравнении (1) определяет молекулярную массу ВВ: М = 12а + в + 14с + 16d.

С точки зрения безопасности производства и эксплуатации (хранения, транспортирования, применения) ВВ большинство их рецептур имеют отрицательный кислородный баланс.

По кислородному балансу все ВВ подразделяются на следующие три группы:

I. ВВ с положительным кислородным балансом: углерод окисляется до СО 2 , водород до Н 2 О, азот и избыток кислорода выделяются в элементарном виде.

II. ВВ с отрицательным кислородным балансом, когда кислорода недостаточно для полного окисления компонентов до высших оксидов и углерод частично окисляется до СО (но все ВВ превращаются в газы).

III. ВВ с отрицательным кислородным балансом, но кислорода недостаточно для превращения всех горючих компонентов в газы (в продуктах взрыва имеется элементарный углерод).

4.4.1. Расчет состава продуктов взрывчатого разложения ВВ

с положительным кислородным балансом (I группа ВВ)

При составлении уравнений реакций взрыва ВВ с положительным кислородным балансом руководствуются следующими положениями: углерод окисляется до углекислоты СО 2 , водород до воды Н 2 О, азот и избыток кислорода выделяются в элементарном виде (N 2 , O 2).

Например.

1. Составить уравнение реакции (определить состав продуктов взрыва) взрывчатого разложения индивидуального ВВ.

Нитроглицерин: С 3 Н 5 (ONO 2) 3 , М = 227.

Определяем величину кислородного баланса для нитроглицерина:

КБ > 0, запишем уравнение реакции:

С 3 Н 5 (ONO 2) 3 = 3СО 2 + 2,5Н 2 О + 0,25О 2 + 1,5N 2.

Кроме основной реакции протекают реакции диссоциации:

2СО 2 2СО + О 2 ;

О 2 + N 2 2NO;

2H 2 O 2H 2 + O 2 ;

H 2 O + CO CO 2 + H 2 .

Но так как КБ = 3,5 (намного больше нуля) – рекакции смещены в сторону образования СО 2 , Н 2 О, N 2 , следовательно доля газов СО, Н 2 и NО в продуктах взрывчатого разложения незначительна и ими можно пренебречь.

2. Составить уравнение реакции взрывчатого разложения смесевого ВВ: аммонала, состоящего из 80% аммиачной селитры NH 4 NO 3 (M = 80), 15% тротила C 7 H 5 N 3 O 6 (М = 227) и 5% алюминия Al(а.м. М = 27).

Расчет кислородного баланса и коэффициента α к смесевых ВВ ведут следующим образом: вычисляют количество каждого из химических элементов, содержащихся в 1 кг смеси и выражают его в молях. Затем составляют условную химическую формулу для 1 кг, смесевого ВВ, аналогичную по виду химической формуле для индивидуального ВВ и далее ведут расчет аналогично выше приведенному примеру.

Если в смесевом ВВ содержится алюминий, то уравнения для определения величин КБ и α к имеют следующий вид:

,

,

где е – число атомов алюминия в условной формуле.

Решение.

1. Рассчитываем элементарный состав 1 кг аммонала и записываем его условную химическую формулу

%.

2. Записываем уравнение реакции разложения аммонала:

С 4,6 Н 43,3 N 20 O 34 Al 1,85 = 4,6CO 2 + 21,65H 2 O + 0,925Al 2 O 3 + 10N 2 + 0,2O 2 .

4.4.2. Расчет состава продуктов взрывчатого разложения ВВ

с отрицательным кислородным балансом (II группа ВВ)

Как было отмечено ранее при составлении уравнений реакций взрывчатого разложения ВВ второй группы необходимо учитывать следующие особенности: водород окисляется до Н 2 О, углерод окисляется до СО, оставшийся кислород окисляет часть СО до СО 2 и азот выделяется в виде N 2 .

Пример: Составить уравнение реакции взрывчатого разложения пентаэритриттетранитрата (тэна) С(СН 2 ОNO 2) 4 Мтэна = 316. Кислородный баланс рав-ный –10,1%.

Из химической формулы тэна видно, что кислорода до полного окисления водорода и углерода недостаточно (для 8 водородов необходимо 4 ат. кислорода, чтобы превратить в Н 2 О = 4Н 2 О) (для 5 ат. углерода необходимо 10 ат. кислорода, чтобы превратить в СО 2 = 5СО 2) итого требуется 4 + 10 = 14 ат. кислорода, а их всего 12 атомов.

1. Составляем уравнение реакции разложения тэна:

С(СН 2 ОNO 2) 4 = 5CO + 4H 2 O + 1,5O 2 + 2N 2 = 4H 2 O + 2CO + 3CO 2 + 2N 2 .

Для определения величины коэффициентов СО и СО 2:

5СО + 1,5О 2 = хСО + уСО 2 ,

х + у = n – сумма атомов углерода,

х + 2у = m – сумма атомов кислорода,

Х + у = 5 х = 5 – у

х + 2у = 8 или х = 8 – 2у

или 5 – у = 8 – 2у; у = 8 – 5 = 3; х = 5 – 3 = 2.

Т.о. коэффициент при СО х = 2; при СО 2 у = 3, т.е.

5СО + 1,5 О 2 = 2СО + 3СО 2 .

Вторичные реакции (диссоциации):

Водяного пара: Н 2 О + СО СО 2 + Н 2 ;

2Н 2 О 2Н 2 + О 2 ;

Диссоциация: 2СО 2 2СО + О 2 ;

2. Для оценки погрешности рассчитаем состав продуктов реакции взрывчатого разложения с учетом наиболее существенной из вторичных реакций – реакции водяного пара (Н 2 О + СО СО 2 + Н 2).

Уравнение реакции взрывчатого разложения тэна представим в виде:

С(СН 2 ОNO 2) 4 = uH 2 O + xCO + yCO 2 + zH 2 + 2N 2 .

Температура взрывчатого разлива тэна примерно 4000 0 К.

Соответственно константа равновесия водяного пара :

.

Записываем и решаем систему уравнений:

,

х + у = 5 (см. выше) – число атомов углерода;

2z + 2у = 8 – число атомов водорода;

х + 2у + u = 12 – число атомов кислорода.

Преобразование системы уравнений сводится к получению квадратного уравнения:

7,15у 2 – 12,45у – 35 = 0.

(Уравнение типа ау 2 + ву + с = 0).

Решение его имеет вид:

,

,

у = 3,248, тогда х = 1,752; z = 0,242; u = 3,758.

Таким образом, уравнение реакции принимает вид:

C(CH 2 ONO 2) 4 = 1,752CO + 3,248CO 2 + 3,758H 2 O + 0,242H 2 + 2N 2 .

Из полученного уравнения видно, что погрешность в определении состава и количества продуктов взрывчатого разложения приближенным способом незначительна.

4.4.3. Составление уравнений реакций взрывчатого разложения ВВ

с отрицательным КБ (III группа)

При написании уравнений реакции взрывчатого разложения для третьей группы ВВ необходимо придерживаться следующей последовательности:

1. определить по химической формуле ВВ его КБ;

2. водород окислить до Н 2 О;

3. углерод окислить остатками кислорода до СО;

4. написать остальные продукты реакции, в частности С, N и т.д.;

5. проверить коэффициенты.

Пример: Составить уравнение реакции взрывчатого разложения тринитротолуола (тротила, тола) C 6 H 2 (NO 2) 3 CH 3 .

Молярная масса М = 227; КБ = –74,0%.

Решение: Из химической формулы видим, что кислорода недостаточно для окисления углерода и водорода: для полного окисления водорода необходимо 2,5 атома кислорода, неполного окисления углерода – 7 атомов (всего 9,5 по сравнению с имеющимися 6-тью атомами). В этом случае уравнение реакции разложения тротила имеет вид:

C 6 H 2 (NO 2) 3 CН 3 = 2,5Н 2 O + 3,5СО + 3,5 С + 1,5N 2 .

Вторичные реакции:

Н 2 О + СО СО 2 + Н 2 ;