Исследование ближнего космоса. Освоение космоса — Важнейшие этапы. Реферат на тему: Исследование космоса

Научные исследования, проводимые в космосе, охватывают различные разделы четырех наук: астрономии, физики, геофизики и биологии. Правда, такое разграничение носит нередко условный характер. Изучение, например, космических лучей вдали от Земли является скорее астрономической, чем физической задачей. Но и по традиции и в силу применяемой методики исследование космических лучей относят обычно к физике. То же, впрочем, можно сказать об исследовании радиационных поясов Земли, которое мы посчитали геофизической проблемой. Кстати, большинство задач, изучаемых на спутниках и ракетах, относят иногда к новой науке - экспериментальной астрономии.

Это название, однако, не является общепринятым и, может быть, не привьется. В будущем терминология, вероятно, как-то будет уточнена, но можно думать, что и принятая здесь классификация не приведет к недоразумениям.

ПОЧЕМУ НУЖНЫ ИМЕННО СПУТНИКИ ИЛИ КОСМИЧЕСКИЕ РАКЕТЫ!

Ответ на этот вопрос очевиден, когда речь идет об изучении Луны и планет, межзвездной среды, земной ионосферы и экзосферы. В других случаях спутники нужны для того, чтобы выйти за пределы атмосферы, ионосферы или действия земного магнитного поля.

В самом деле, наша Земля окружена как бы тремя поясами брони. Первый пояс - атмосфера - представляет собой слой воздуха весом в 1000 г на каждый квадратный сантиметр земной поверхности. Масса воздуха сосредоточена в основном в слое толщиной в 10-20 км. По весу этот слой равен весу слоя воды толщиной в 10 м. Иначе говоря, с точки зрения поглощения различных внеземных излучений мы как бы находимся под 10-метровым слоем воды. Даже плохой ныряльщик представляет себе, что такой слой отнюдь не является тонким. Атмосфера сильно поглощает ультрафиолетовые лучи (длина волны короче 3 500-4 000 ангстрем) и инфракрасное излучение (длина волны больше 10 000 ангстрем).

Этот слой не пропускает также рентгеновские лучи, гамма-лучи космического происхождения, а также первичные космические лучи (быстрые заряженные частицы - протоны, ядра и электроны), приходящие из космоса.

Для видимых лучей атмосфера в безоблачное время прозрачна, но и в этом случае она мешает наблюдениям, вызывая мерцание звезд и другие явления, обусловленные движением воздуха, пылью и т. п. Именно поэтому большие телескопы устанавливают на горах в особо благоприятных районах, но и в этих условиях они работают в полную силу лишь небольшую часть времени.

Чтобы избавиться от поглощения в атмосфере, обычно достаточно поднять аппаратуру на 20-40 км, что можно осуществить еще с помощью шаров (баллонов). Не всегда, однако, достаточно подняться до такой высоты. К тому же шары способны продержаться в атмосфере лишь несколько часов и собирают информацию только в районе запуска. Спутник же может летать практически неограниченное время и (в случае близких спутников) за 1,5 часа облетает весь земной шар.

Второй пояс брони - земная ионосфера - начинается с высоты в несколько десятков и простирается до сотен километров над поверхностью Земли. В этой области газ сильно ионизирован и концентрация электронов - их число в кубическом сантиметре - довольно значительна. Выше 1 000 км газа весьма мало, но все же примерно до 20 000 км концентрация газа составляет несколько сот частиц на кубический сантиметр.

Эта область иногда называется экзосферой, или геокороной. От ионосферы она отличается только тем, что здесь частицы практически не сталкиваются между собой; концентрация газа в этой области примерно постоянна. Еще дальше от Земли (как в ее окрестности, так и при переходе к межпланетному пространству) сведений о плотности газа почти нет. В настоящее время считается, что здесь концентрация газа меньше 100 частиц на кубический сантиметр.

Ионосфера обычно не пропускает радиоволн длиннее 30 м (более длинные волны - до 200-300 м - могут проходить через ионосферу ночью; в некоторых случаях проходят также очень длинные волны). Кроме того, даже если радиоволна космического происхождения достигает Земли, ионосфера в той или иной мере искажает ее, причем эти искажения заметны даже для метровых волн. Ионосфера не пропускает также мягких (длинноволновых) рентгеновских и далеких ультрафиолетовых лучей (волны с длиной от десятков примерно до 1 000 ангстрем).

Третий броневой пояс Земли - это ее магнитное поле. Оно простирается на 20-25 земных радиусов, то есть примерно на 100 000 км (всю эту область иногда называют магнитосферой Земли). На больших расстояниях земное поле того же порядка (или меньше), что и магнитное поле в межпланетном пространстве и поэтому не играет особой роли. Земное магнитное поле не подпускает к Земле, если не говорить о полярных районах, заряженных частиц с не слишком высокой энергией. Например, на экваторе в вертикальном направлении Земли могут достичь идущие из космоса протоны (ядра атомов ) только с энергией, большей 15 миллиардов электроновольт. Такой энергией обладает протон, ускоренный в электрическом поле с разностью потенциалов, равной 15 миллиардам вольт.

Отсюда ясно, что в зависимости от характера задачи нужно поднимать аппаратуру выше нескольких десятков километров (атмосфера), выше сотен километров (ионосфера) или даже удаляться от Земли на многие десятки тысяч километров (магнитное поле).

ИОНОСФЕРА И МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Только ракеты и спутники позволяют непосредственно изучать ионосферу и земное магнитное поле на больших высотах.

Один из применяемых методов наблюдения состоит в следующем. На борту спутника имеется передатчик, который излучает волны с частотой 20 и 90 мегагерц (длина волны в вакууме соответственно 15 м 333 см). При этом существенно, что разность фаз обоих этих колебаний (волн) в самом передатчике строго фиксирована. Когда обе волны проходят через ионосферу, их фазы изменяются, причем различным образом. На высокочастотное колебание (90 мегагерц) ионосфера почти не оказывает влияния, и волна распространяется почти так же, как в вакууме. На низкочастотное колебание (20 мегагерц), напротив, прохождение сквозь ионосферу накладывает свой отпечаток. Поэтому в приемном устройстве разность фаз между колебаниями в обеих волнах уже отлична от разности фаз в передатчике. Изменение разности фаз прямо связано с полным числом электронов, находящихся на луче зрения между спутником и приемником. С помощью этого и других методов удается получить «разрезы» ионосферы во всех тех направлениях, о которых ее просвечивает радиолуч, идущий от спутника.

Что касается земного магнитного поля, то его направление и величина определяются с помощью специальных приборов - магнитометров. Существуют разные типы таких приборов, некоторые из них с успехом применены на космических ракетах.

По понятным причинам явилась первым внеземным небесным телом, к которому устремились космические ракеты. Исследования установили, что магнитное поле Луны по крайней мере в 500 раз слабее земного, а возможно, и еще меньше. Луна не имеет также и ярко выраженной ионосферы, то есть окружающего ее слоя ионизированного газа. Были получены фотографии обратной стороны Луны. Можно не сомневаться, что в недалеком будущем будут получены более детальные фотографии Луны, а селенография («лунная
география») обогатится многими новыми открытиями.

Кроме того, возникло и немало новых проблем, касающихся исследований Луны, Так, например, необходимо изучение сейсмической деятельности на Луне. До сих пор не ясно, является ли Луна совершенно холодным телом или на ней время от времени происходит извержение вулканов и возникают землетрясения (видимо, их правильнее называть лунотрясениями). Как решить этот вопрос! Очевидно, нужно высадить на Луну сейсмограф и фиксировать колебания лунной поверхности, если они имеются. Можно также определить радиоактивность лунных пород и некоторые другие их свойства. Все это сделают приборы-автоматы, а полученные ими результаты будут передаваться по радио на Землю. Можно не сомневаться также в том, что в будущем Луна будет использована как космическая станция для целого комплекса исследований. Там для этого идеальные условия: у Луны нет ни атмосферной, ни ионосферной, ни, наконец, магнитной брони. Другими словами, Луна обладает теми же преимуществами, что и далекие искусственные спутники; в то же время использовать ее во многих отношениях удобнее и проще.

НА ОЧЕРЕДИ - МАРС И ВЕНЕРА

О планетах мы знаем довольно мало. Точнее, наши сведения о них очень односторонне о некоторых вопросах знаем много, а о других очень мало. До сих пор, например, ведется спор, есть ли растительность на , каковы климатические условия на этой планете, каков химический состав атмосферы. О много пишут, и задачи, стоящие перед ее исследователями, хорошо известны. Достаточно сказать, что поверхность Венеры очень плохо видна, поэтому мы знаем о ней еще меньше, чем о поверхности Марса. Кстати, в отношении Венеры с достоверностью неизвестен даже период ее вращения, неизвестно, есть ли у нее магнитное поле. Существование поля не установлено и для Марса. Эти нерешенные вопросы должны быть выяснены с помощью космических ракет.

Следующим после Марса и Венеры интересным объектом исследования будет - самая большая планета солнечной системы, планета с целым рядом особенностей. Об одной из них хотелось бы упомянуть. Юпитер является источником очень мощных радиоволн, излучаемых, например, в пятнадцатиметровом диапазоне. Это - своеобразное явление, которое исследуется сейчас радиоастрономическими методами. Юпитер будет и должен изучаться также и с помощью спутников.

Продолжение следует.

P. S. О чем еще думают британские ученные: о том, что при дальнейших исследованиях космоса придется и писать особые требования безопасности в аварийных ситуациях при работе на космических станциях, а то и в открытом космосе, где космонавта-исследователя подстерегает множество опасностей.

Специалисты по исследованию планет определили приоритеты в изучении Солнечной Системы.

Людей, родившихся уже в эпоху освоения космоса, книги о Солнечной системе, вышедшие до 1957 г., зачастую приводят в состояние шока. Как мало старшее поколение знало, не имея даже представления об огромных вулканах и каньонах Марса, по сравнению с которыми гора Эверест кажется лесным муравейником, а Большой каньон похож на кювет у обочины. Возможно, ранее считали, что под облаками Венеры могут скрываться роскошные влажные джунгли, или бескрайняя сухая пустыня, или бурлящий океан, или огромные смоляные болота — все, что угодно, но только не то, что оказалось на самом деле: огромные вулканические поля — сцены Ноева потопа из застывшей магмы. Вид Сатурна ранее представлялся унылым: два расплывчатых кольца, тогда как сегодня мы можем любоваться сотнями и тысячами изящных колечек. Спутники планет-гигантов были пятнами, а не фантастическими ландшафтами с метановыми озерами и пылевыми гейзерами.

В те годы все планеты выглядели как малые островки света, а Земля казалась гораздо больше, чем сегодня. Никто и никогда не видел нашу планету со стороны: голубой мрамор на черном бархате, покрытый тонким слоем воды и воздуха. Никто не знал, что Луна была обязана своим рождением удару, или что гибель динозавров произошла единовременно. Никто до конца не понимал, как человечество может полностью изменить окружающую среду на всей планете. Кроме того, космическая эра обогатила нас знаниями о природе и открыла новые перспективы.

С момента запуска спутника в исследованиях планет несколько раз случались взлеты и падения. Например, в 1980-е гг. работы почти застопорились. Сегодня десятки зондов различных стран бороздят Солнечную систему — от Меркурия до Плутона. Но бюджет урезают, расходы растут и не всегда приводят к нужному результату, что бросает тень на NASA. В настоящее время агентство переживает далеко не лучший период своей истории с тех пор, как 35 лет назад Никсон закрыл программу «Аполлон».

«Специалисты NASA продолжают поиск приоритетных направлений, по которым будут проводиться исследования, — говорит Энтони Джанетос (Anthony Janetos ) из Тихоокеанской северо-западной национальной лаборатории, член Национального исследовательского совета (NRC), курирующего программу NASA по наблюдению Земли. — Они исследуют космос? Они изучают человека или занимаются чистой наукой? Они рвутся к галактикам или ограничиваются Солнечной системой? Их интересуют шаттлы и космические станции или только природа нашей планеты?»

В принципе, такое развитие событий должно дать плоды. Должны возродиться не только программы с использованием автоматических зондов, но и пилотируемые космические полеты. Президент Джордж Буш определил в 2004 г. цель — ступить на поверхность Луны и Марса. Несмотря на всю спорность этой затеи, в NASA за нее ухватились. Но трудность состояла в том, что все это быстро превратилось в нефинансируемое поручение и заставило агентство пробивать стену, традиционно «защищающую» научные и пилотируемые программы от перерасхода средств. «Я полагаю, все знают, что у агентства недостаточно денег для проведения всех необходимых работ, — говорит Билл Клейбо (Bill Claybaugh ), директор отдела исследований и анализа NASA. — На космические агентства других стран деньги тоже не льются золотым дождем».

NRC временами делает шаг назад и интересуется, как обстоят дела с планетными исследованиями в мире. Поэтому мы представляем список приоритетных целей.

1. Мониторинг климата Земли

В 2005 г. комиссия Национального исследовательского совета пришла к выводу: «существует риск того, что система спутников наблюдения за окружающей средой выйдет из строя». С тех пор ситуация изменилась. NASA за пять лет перебросило $600 млн с проектов исследования Земли на программу поддержки шаттлов и космической станции. В то же время развитие новой национальной системы спутников на полярных орбитах для наблюдения Земли превысило бюджет и должно быть урезано. Это касается приборов, исследующих глобальное потепление, измеряющих падающее на Землю солнечное излучение и отражающиеся от поверхности Земли инфракрасные лучи.

В результате более 20 спутников Системы наблюдения Земли закончат функционировать еще до того, как им на смену придут новые аппараты. Ученые и инженеры надеются, что смогут некоторое время поддерживать их в рабочем состоянии. «Мы готовы работать, но сейчас нам нужен план, — утверждает Роберт Кахалан (Robert Cahalan ), руководитель отдела климата и излучения Годдардовского центра космических полетов NASA. — Нельзя ждать, пока они сломаются».

Если спутники перестанут функционировать до того, как им придет замена, то возникнет пробел в поступлении данных, затрудняющий отслеживание изменений. Например, если аппараты следующего поколения заметят, что Солнце стало ярче, то трудно будет понять, действительно ли это так, или неверно откалиброваны приборы. Если не будут проводиться непрерывные наблюдения со спутников, данный вопрос не решить. Наблюдения поверхности Земли со спутников Landsat , проводившиеся с 1972 г., уже несколько лет как прекращены, и Министерство сельского хозяйства США вынуждено покупать данные с индийских спутников для наблюдений за урожаем.

Комиссия NRC призывает восстановить финансирование и в будущем десятилетии запустить 17 новых аппаратов, следящих за ледовым покровом и содержанием двуокиси углерода, чтобы изучить влияние таких факторов на погоду и улучшить методы ее прогноза. К сожалению, исследование климата оказывается между рутинным наблюдением за погодой (задача NOAA) и наукой (этим занимается NASA). «Основная проблема в том, что никому не поручено заниматься мониторингом климата», — считает климатолог Дрю Шиндел (Drew Shindell ) из Годдардовского центра космических исследований NASA. Как и многие другие ученые, он полагает, что правительственные климатические программы, распределенные по разным ведомствам, должны быть собраны вместе и переданы одному управлению, которое будет заниматься только этой тематикой.

План действий
  • Финансировать 17 новых спутников, предлагаемых NASA в будущем десятилетии (стоимость — около $500 млн в год).
  • Основать управление по исследованию климата.

2. Подготовка защиты от астероидов

Астероидная угроза

Астероиды диаметром 10 км (убийцы динозавров) падают на землю в среднем раз в 100 млн лет. Астероиды диаметром около 1 км (глобальные разрушители) — раз в полмиллиона лет. Астероиды размером 50 м, способные разрушить город, — раз в тысячелетие.

«Обзор для космической защиты» выявил более 700 тел километрового размера, но все они не опасны для нас в ближайшие века. Однако этот обзор сможет обнаружить не более 75% таких астероидов.

Шанс, что среди необнаруженных 25% окажется астероид, который упадет на землю, мал. Средний риск составляет до 1 тыс. Погибших человек в год. Риск от астероидов меньшего размера — в среднем до 100 человек в год.

Астероид такой огромный, а космический зонд так мал... но дайте время, и даже слабая ракета сможет отклонить гигантскую скалу с ее опасной орбиты

Как и мониторинг климата, защита планеты от астероидов, по-видимому, оказалась как бы «между двумя стульями». Ни NASA, ни Европейское космическое агентство (European Space Agency , ESA) не имеют мандата на спасение человечества. Лучшее, что они сделали, — программа «Обзор для космической защиты» (Spaceguard Survey , NASA) с бюджетом $4 млн в год по поиску в околоземном пространстве тел диаметром более 1 км, которые могут причинить вред не только какому-либо региону планеты, но и Земле в целом. Однако пока никто не занимается систематическим поиском более мелких «региональных разрушителей», которых в окрестности Земли должно быть около 20 тыс. Не существует и Управления космических угроз, которое бы объявляло тревогу в случае необходимости. Если бы технология защиты существовала, понадобилось бы не менее 15 лет, чтобы обеспечить защиту от опасного вторжения. «Сейчас в США нет всеобъемлющего плана», — говорит Ларри Лемке (Larry Lemke ), инженер Эймсонского центра NASA.

На запрос Конгресса в марте 2007 г. NASA опубликовало доклад, в котором сказано, что выявление тел размером от 100 до 1000 м можно возложить на Большой обзорный телескоп (Large Sinoptic Survey Telescope , LSST), разрабатываемый для обзора неба и поиска новых объектов. Разработчики этого проекта считают, что в том виде, в каком телескоп был задуман, он сможет за 10 лет работы (2014-2024 гг.) обнаружить 80% указанных тел. При вложении в проект дополнительных $100 млн эффективность может возрасти до 90%.

Как и у всех наземных инструментов, возможности телескопа LSST ограничены. Во-первых, у него есть слепая зона: наиболее опасные объекты, движущиеся вблизи орбиты Земли немного впереди или позади нашей планеты, он может наблюдать только в лучах утренней или вечерней зари, когда солнечные лучи мешают обнаруживать их. Во-вторых, этот телескоп может определять массу астероида только косвенно — по его блеску. При этом оценка массы может различаться вдвое: большой темный астероид можно спутать с маленьким, но светлым. «А такое различие может оказаться очень важным, если нам необходима защита», — считает Клейбо.

Для решения этих проблем NASA решило построить инфракрасный космический телескоп стоимостью $500 млн и вывести его на орбиту вокруг Солнца. Он сможет фиксировать любую угрозу Земле и, наблюдая небесные тела в разных длинах волн, определять их массу с ошибкой не более 20%. «Если вы хотите все сделать правильно, то надо из космоса наблюдать в инфракрасном диапазоне», — говорит Дональд Йоманс (Donald Yeomans ) из Лаборатории реактивного движения, соавтор доклада.

Что делать, если астероид уже движется в направлении нашей планеты? Эмпирическое правило гласит: для отклонения астероида на величину радиуса Земли нужно за десять лет до столкновения изменить его скорость на миллиметр в секунду, толкая его ядерным взрывом или оттягивая гравитационным притяжением.

В 2004 г. комиссия NASA по экспедициям к околоземным объектам рекомендовала провести испытания. Согласно проекту «Дон Кихот» стоимостью $400 млн, предполагается изменить его траекторию движения за счет удара о четырехсоткилограммовое препятствие. Выброс вещества после столкновения в результате реактивного эффекта сместит направление астероида, но никто не знает, насколько сильным окажется данный эффект. Определение этого и есть главная задача проекта. Ученые должны найти тело на такой далекой орбите, чтобы случайно своим ударом не перевести его на встречный курс с Землей.

Весной 2008 г. ESA закончило предварительный проект и тут же из-за отсутствия денег положило его на полку. Для осуществления своих планов оно попробует объединить усилия с NASA и/или Японским космическим агентством (Japan Aerospace Exploration Agency , JAXA).

План действий
  • Расширенный поиск астероидов, включая мелкие тела, возможно, с помощью специального космического инфракрасного телескопа.
  • Эксперимент по управляемому отклонению астероида.
  • Развитие официальной системы оценки потенциальной опасности.

3. Поиск новой жизни

До запуска спутника ученые считали Солнечную систему настоящим раем. Затем оптимизма поубавилось. Оказалось, что сестра Земли — сущий ад. Подлетев же к пыльному Марсу, «Маринеры» обнаружили, что его покрытый кратерами ландшафт похож на лунный; сев на его поверхность, «Викинги» не смогли найти ни одной органической молекулы. Но позже обнаружились места, пригодные для жизни. Все еще подает надежды Марс. Спутники планет, особенно Европа и Энцелад, видимо, обладают большими подповерхностными морями и огромным количеством исходного вещества для формирования жизни. Даже Венера могла быть когда-то покрыта океаном. На Марсе NASA ищет не сами организмы, а следы их существования в прошлом или настоящем, ориентируясь на наличие воды. Последний зонд «Феникс», запущенный в августе, должен в 2008 г. сесть в неизученной северной полярной области. Это не марсоход, а стационарный аппарат с манипулятором, способным разрыть почву вглубь на несколько сантиметров для поиска отложений льда. Готовится к полету и «Марсианская научная лаборатория» (Mars Science Laboratory , MSL) стоимостью $1,5 млрд — марсоход размером с автомобиль, который должен быть запущен в конце 2009 г. и совершить посадку через год.

Но постепенно ученые вернутся к прямому поиску живых организмов или их остатков. В 2013 г. ESA планирует запустить зонд «ЭкзоМарс» (ExoMars ), оснащенный такой же лабораторией, как у «Викингов», и буром, способным углубиться в грунт на 2 м — достаточно, чтобы достичь слоев, где не разрушаются органические соединения.

Многие специалисты по планетам считают приоритетным направлением изучение породы, доставленной с Марса на Землю. Анализ даже небольшого ее количества даст возможность глубоко проникнуть в историю планеты, как это сделала программа «Аполлон» в отношении Луны. Проблемы с бюджетом NASA отодвинули многомиллиардный проект к 2024 г., но Агентство уже приступило к модернизации аппарата MSL, чтобы он мог сохранить образцы коллекции.

Что касается спутника Юпитера — Европы, то ученые также хотели бы иметь орбитальный аппарат, чтобы измерить, как форма и гравитационное поле спутника откликаются на приливное влияние со стороны Юпитера. Если внутри спутника жидкость, его поверхность будет подниматься и опускаться на 30 м, а если нет — всего на 1 м. Магнитометр и радар помогут заглянуть под поверхность и, возможно, нащупать океан, а фотокамеры позволят составить карту поверхности для подготовки к посадке и бурению.

Естественным продолжением работы «Кассини» вблизи Титана были бы орбитальный и посадочный аппараты. Атмосфера Титана похожа на земную, что позволяет использовать аэростат с горячим воздухом, который время от времени сможет опускаться на поверхность и брать образцы. Целью всего этого, указывает Джонатан Лунин (Jonatan Lunine ) из Аризонского университета, стал бы «анализ находящейся на поверхности органики, чтобы проверить, происходит ли продвижение в самоорганизации вещества, с которого, как думают многие специалисты, началось зарождение жизни на Земле».

В январе 2007 г. NASA приступало к рассмотрению этих проектов. Агентство планирует в 2008 г. сделать выбор между Европой и Титаном. Зонд стоимостью $2 млрд, возможно, будет запущен уже в ближайшие десять лет. Второму небесному телу придется ждать еще лет десять.

В конце концов, может оказаться, что земная жизнь уникальна. Это было бы печально, но вовсе не означало бы, что все усилия затрачены впустую. По словам Брюса Якоски (Bruce Jacosky ), директора Астробиологического центра Колорадского университета, астробиология позволяет понять, насколько разнообразной может быть жизнь, каковы ее предпосылки, и как она зарождалась на нашей планете 4 млрд лет назад.

План действий
  • Получение образцов марсианского грунта.
  • Подготовка к исследованию Европы и Титана.

4. Разгадка происхождения планет

Как и зарождение жизни, формирование планет было сложным, многоступенчатым процессом. Юпитер был первым и затем управлял другими. Как долго шло это образование? Или он зародился в едином гравитационном сжатии, как малая звезда? Сформировался ли он вдали от Солнца и затем приблизился к нему, как об этом свидетельствует аномально высокое содержание в нем тяжелых элементов? И мог ли он при этом расталкивать на своем пути небольшие планеты? Спутник Юпитера «Юнона», который NASA собирается запустить в 2011 г., должен помочь ответить на эти вопросы.

Разобраться с формированием планет помогло бы и развитие идеи зонда «Стардаст», который в 2006 г. доставил образцы пыли из комы, окружающей твердое ядро кометы. По словам руководителя проекта Дональда Браунли (Donald Brownlee ) из Вашингтонского университета, «Стардаст» показал, что кометы были колоссальными сборщиками вещества протосолнечной туманности на ранней стадии формирования Солнечной системы, которое застыло во льду и сохранилось до наших дней. «Стардаст» доставил замечательные пылинки из внутренней области Солнечной системы, из внесолнечных источников и, по-видимому, даже из разрушенных объектов типа Плутона, но их очень мало». JAXA планирует получить образцы из ядер комет.

Площадкой для астроархеологических исследования может стать и Луна. Она была своеобразным Розеттским камнем для понимания истории столкновений в молодой Солнечной системе, поскольку помогла связать относительный возраст поверхности, определенный путем подсчета кратеров, с абсолютной датировкой образцов, доставленных «Аполлоном» и российской «Луной». Но в 1960-е гг. посадочные аппараты посетили лишь несколько мест. Они не добрались до кратера Эйткен — бассейна величиной с континент на обратной стороне, возраст которого может указывать время окончания формирования планет. NASA сейчас решает вопрос о посылке туда робота, чтобы он взял образцы и доставил их на Землю.

Еще одна загадка Солнечной системы заключается в том, что астероиды Главного пояса, по-видимому, возникли до появления Марса, который, в свою очередь, сформировался раньше Земли. Похоже, что волна формирования планет шла внутрь, вероятно, спровоцированная Юпитером. Но вписывается ли Венера в эту закономерность? Ведь эта планета с ее кислотными облаками, огромным давлением и адской температурой — не самое приятное место для посадки. В 2004 г. NRC рекомендовал забросить туда аэростат, который сможет на короткое время опуститься на поверхность, взять образцы, а затем набрать необходимую высоту, чтобы проанализировать их или отправить на Землю. В середине 1980-х гг. Советский Союз уже посылал на Венеру космические аппараты, а сейчас Российское космическое агентство планирует запуск нового спускаемого аппарата.

Изучение формирования планет в некоторой степени похоже на исследования происхождения жизни. Венера расположена на внутреннем краю зоны жизни, Марс — на внешнем, а Земля — посередине. Понять различие между этими планетами значит продвинуться в поисках жизни вне Солнечной системы.

План действий
  • Получить образцы вещества с ядер комет, Луны и Венеры.

5. За переделом Солнечной системы

Два года назад легендарные «Вояджеры» преодолели финансовый кризис. Когда NASA объявило, что собирается закрыть проект, протесты общественности вынудили их продолжить работу. Ничто из созданного руками человека не удалялось от нас настолько, как «Вояджер-1»: на 103 астрономических единицы (а.е.), т. е. в 103 раза дальше, чем Земля от Солнца, и каждый год к этому добавляется по 3,6 а.е. В 2002 или 2004 г. (по разным оценкам) он достиг загадочной многослойной границы Солнечной системы, где частицы солнечного ветра сталкиваются с потоком межзвездного газа.

Но «Вояджеры» были созданы для изучения внешних планет, а не межзвездного пространства. Их плутониевые источники энергии иссякают. Уже давно в NASA думают создать специальный зонд, и доклад NRC по солнечной физике от 2004 г. советует агентству начать работу в данном направлении.

Внешние границы

Межзвездный зонд должен исследовать приграничную область Солнечной системы, где газ, выброшенный Солнцем, встречается с межзвездным газом. Он должен иметь скорость, долговечность и оснащение, которых нет у «Вояджеров» и «Пионеров»

Зонд должен измерить содержание аминокислот в межзвездных частицах, чтобы определить, сколько сложного органического вещества попало в Солнечную систему извне. Ему также необходимо найти частицы антивещества, которые могли родиться в миниатюрных черных дырах или темном веществе. Он должен определить, как граница Солнечной системы отражает вещество, включая космические лучи, способные влиять на земной климат. Еще ему надо выяснить, присутствует ли в окружающем нас межзвездном пространстве магнитное поле, которое может играть важную роль в формировании звезд. Этот зонд можно использовать как миниатюрный космический телескоп для проведения космологических наблюдений, свободных от влияния межпланетной пыли. Он помог бы изучить так называемую аномалию «Пионеров» — необъяснимую силу, действующую на два далеких космических зонда «Пионер-10» и «Пионер-11», а также проверить общую теорию относительности Эйнштейна, указав, где гравитация Солнца собирает лучи света далеких источников в фокус. С его помощью можно было бы детально изучить одну из ближайших звезд, например эпсилон Эридана, хотя чтобы добраться туда, потребуются десятки тысяч лет.

Чтобы достичь небесного тела на расстоянии сотен астрономических единиц за время жизни ученого (и плутониевого источника энергии), нужно разогнаться до скорости 15 а.е. в год. Для этого можно использовать один из трех вариантов — тяжелый, средний или легкий, соответственно, с ионным двигателем, питающимся от ядерного реактора, либо солнечный парус.

Тяжелый (36 т) и средний (1 т) зонды были разработаны в 2005 г. командами под руководством Томаса Цурбухена (Tomas Zurbuchen ) из Мичиганского университета в Анн-Арборе и Ральфа Макнатта (Ralph McNutt ) из Лаборатории прикладной физики Университета Джонса Хопкинса. Но более приемлемым для запуска выглядит самый легкий вариант. ESA рассматривает сейчас предложение международной команды ученых под руководством Роберта Виммер-Швайнгрубера (Robert Wimmer-Schweingruber ) из университета в Киле, Германия. К этому проекту может присоединиться и NASA.

Солнечный парус диаметром 200 м сможет разогнать пятисоткилограммовый зонд. После запуска с Земли он должен устремиться к Солнцу и пройти как можно ближе к нему (внутри орбиты Меркурия), чтобы поймать мощный напор солнечного света. Как спортсмен-виндсерфингист, космический корабль будет двигаться галсами. Перед орбитой Юпитера он должен сбросить парус и полететь свободно. Но прежде инженеры должны разработать достаточно легкий парус и испытать его в упрощенном варианте.

«Такой полет под эгидой ESA или NASA будет следующим логическим шагом в исследовании космоса», — считает Виммер-Швайнгрубер. На ближайшие 30 лет затраты на этот проект оцениваются в $2 млрд. Исследование планет поможет нам понять, насколько Земля вписывается в общую схему, а изучение наших межзвездных окрестностей позволит выяснить то же самое в отношении всей Солнечной системы.

Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.


1) Еще один спутник Плутона


На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является "двойной карликовой планетой". Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп "Хаббл" не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда "Хабблу" удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров. Примечательным в данном случае является то, что "Хаббл" сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.

2) Гигантские космические магнитные пузыри


Два космических аппарата НАСА "Войяжер" обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера , которая расположена в 15 миллиардах километров от Земли. В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда "Войяжер 1" достиг Гелиосферы в 2005, а "Войяжер 2" в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.

3) Хвост звезды Мира А


В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду - красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете. Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час. До этого считалось, что у звезд не бывает хвостов.

4) Вода на Луне


9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны. LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении. После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.

5) Карликовая планета Эрида


В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще. Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона. Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.

6) Следы водных потоков на Марсе


В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки. Ученые полагают, что эти потоки - соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.

7) Спутник Сатурна Энцелад и его гейзеры


В июле 2004 года космический аппарат "Кассини" вышел на орбиту вокруг Сатурна. После того, как миссии "Войяжер" приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада. После того как "Кассини" несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса. В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.

8) Тёмный поток


Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван "Темный поток" . Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.

9) Экзопланеты


Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар. Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем. К февралю 2012 года миссия НАСА "Кеплер" выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.

10) Первая планета в обитаемой зоне


В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b . Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.

Освоение космоса.

Ю.А.Гагарин.

В 1957 г. под руководством Королёва была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

3 ноября 1957 - запущен второй искусственный спутник Земли Спутник-2 впервые выведший в космос живое существо - собаку Лайку. (СССР).

4 января 1959 - станция «Луна-1» прошла на расстоянии 6000 километров от поверхности Луны и вышла на гелиоцентрическую орбиту. Она стала первым в мире искусственным спутником Солнца. (СССР).

14 сентября 1959 - станция «Луна-2» впервые в мире достигла поверхности Луны в районе Моря Ясности вблизи кратеров Аристид, Архимед и Автолик, доставив вымпел с гербом СССР. (СССР).

4 октября 1959 - запущена АМС «Луна-3», которая впервые в мире сфотографировала невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр. (СССР).

19 августа 1960 - совершён первый в истории орбитальный полёт в космос живых существ с успешным возвращением на Землю. На корабле «Спутник-5» орбитальный полёт совершили собаки Белка и Стрелка. (СССР).

12 апреля 1961 - совершён первый полёт человека в космос (Ю. Гагарин) на корабле Восток-1. (СССР).

12 августа 1962 - совершён первый в мире групповой космический полёт на кораблях Восток-3 и Восток-4. Максимальное сближение кораблей составило порядка 6.5 км. (СССР).

16 июня 1963 - совершён первый в мире полёт в космос женщины-космонавта (Валентина Терешкова) на космическом корабле Восток-6. (СССР).

12 октября 1964 - совершил полёт первый в мире многоместный космический корабль Восход-1. (СССР).

18 марта 1965 - совершён первый в истории выход человека в открытый космос. Космонавт Алексей Леонов совершил выход в открытый космос из корабля Восход-2. (СССР).

3 февраля 1966 - АМС Луна-9 совершила первую в мире мягкую посадку на поверхность Луны, были переданы панорамные снимки Луны. (СССР).

1 марта 1966 - станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР. Это был первый в мире перелёт космического аппарата с Земли на другую планету. (СССР).

30 октября 1967 - произведена первая стыковка двух беспилотных космических аппаратов «Космос-186» и «Космос-188». (CCCР).

15 сентября 1968 - первое возвращение космического аппарата (Зонд-5) на Землю после облёта Луны. На борту находились живые существа: черепахи, плодовые мухи, черви, растения, семена, бактерии. (СССР).

16 января 1969 - произведена первая стыковка двух пилотируемых космических кораблей Союз-4 и Союз-5. (СССР).

24 сентября 1970 - станция «Луна-16» произвела забор и последующую доставку на Землю (станцией «Луна-16») образцов лунного грунта. (СССР). Она же - первый беспилотный космический аппарат, доставивший на Землю пробы породы с другого космического тела (то есть, в данном случае, с Луны).

17 ноября 1970 - мягкая посадка и начало работы первого в мире полуавтоматического дистанционно управляемого самоходного аппарата, управляемого с Земли: Луноход-1. (СССР).

октябрь 1975 - мягкая посадка двух космических аппаратов «Венера-9» и «Венера-10» и первые в мире фотоснимки поверхности Венеры. (СССР).

20 февраля 1986 - вывод на орбиту базового модуля орбитальнной станции [[Мир_(орбитальная_станция)]Мир]

20 ноября 1998 - запуск первого блока Международной космической станции. Производство и запуск (Россия). Владелец (США).

——————————————————————————————

50 лет первому выходу человека в открытый космос.

Сегодня, 18 марта 1965 года, в 11 часов 30 минут по московскому времени при полёте космического корабля «Восход-2» впервые осуществлён выход человека в космическое пространство. На втором витке полёта второй пилот летчик-космонавт подполковник Леонов Алексей Архипович в специальном скафандре с автономной системой жизнеобеспечения совершил выход в космическое пространство, удалился от корабля на расстоянии до пяти метров, успешно провёл комплекс намеченных исследований и наблюдений и благополучно возвратился в корабль. С помощью бортовой телевизионной системы процесс выхода товарища Леонова в космическое пространство, его работа вне корабля и возвращение в корабль передавались на Землю и наблюдались сетью наземных пунктов. Самочувствие товарища Леонова Алексея Архиповича в период его нахождения вне корабля и после возвращения в корабль хорошее. Командир корабля товарищ Беляев Павел Иванович чувствует себя также хорошо.

——————————————————————————————————————

Сегодняшний день характеризуется новыми проектами и планами освоения космического пространства. Активно развивается космический туризм. Пилотируемая космонавтика вновь собирается вернуться на Луну и обратила свой взор к другим планетам Солнечной системы (в первую очередь к Марсу).

В 2009 году в мире на космические программы было потрачено $68 млрд, в том числе в США - $48,8 млрд, ЕС - $7,9 млрд, Японии - $3 млрд, России - $2,8 млрд, Китае - $2 млрд

На момент высадки на Луну в 1969 году многие искренне считали, что к началу 21 века космические путешествия станут обыденным делом, и земляне начнут преспокойно летать на другие планеты. К сожалению, это будущее еще не настало, а люди начали сомневаться, нужны ли нам вообще эти космические путешествия. Может быть и Луны достаточно? Тем не менее, исследования космоса продолжают давать нам бесценную информацию в сфере медицины, добычи полезных ископаемых и безопасности. Ну и, конечно же, прогресс в изучении космического пространства действует на человечество вдохновляюще!

1. Защита от возможного столкновения с астероидом

Если мы не хотим закончить как динозавры, необходимо защитить себя от угрозы столкновения с большим астероидом. Как правило, примерно раз в 10 тысяч лет в Землю угрожает врезаться какое-нибудь небесное тело размером с футбольное поле, что может привести к необратимым последствиям для планеты. Нам действительно следует опасаться таких «гостей» диаметром минимум в 100 метров. Столкновение поднимет пылевую бурю, уничтожит леса и поля, обречёт на голод тех, кто останется в живых. Специальные космические программы направлены на то, чтобы установить опасный объект задолго до того, как он приблизится к Земле, и сбить его с траектории движения.

2. Возможность появления новых великих открытий

Немалое количество всевозможных гаджетов, материалов и технологий первоначально были разработаны для космических программ, но в дальнейшем они нашли своё применение на Земле. Мы все знаем о продуктах, полученных путем сублимационной сушки, и давно их употребляем. В 1960-е годы ученые разработали специальный пластик, покрытый отражающим напылением из металла. При его использовании в производстве обычных одеял он сохраняет до 80% тепла тела человек. Еще одной ценной инновацией является нитинол — гибкий, но упругий сплав, созданный для производства спутников. Теперь из этого материала изготавливают стоматологические брекеты.

3. Вклад в медицину и сферу здравоохранения

Освоение космоса привело к появлению множества медицинских инноваций для земного использования: например, метод введения противораковых лекарств непосредственно в опухоль, аппаратура, с помощью которой медсестра может делать УЗИ и моментально передавать данные врачу за тысячи километров от неё, и механическая рука-манипулятор, выполняющая сложные действия внутри аппарата МРТ. Фармацевтические разработки в области защиты космонавтов от потери костной и мышечной массы в условиях микрогравитации привели к созданию препаратов для профилактики и лечения остеопороза. Причем эти препараты было легче протестировать в космосе, поскольку космонавты теряют около 1,5% костной массы в месяц, а пожилая земная женщина теряет 1,5% в год.

4. Освоение космоса вдохновляет человечество на новые достижения

Если мы хотим создать мир, в котором наши дети будут стремиться стать учеными и инженерами, а не ведущими реалити-шоу, кинозвездами или финансовыми магнатами, то освоение космоса – это весьма вдохновляющий процесс. Пора задавать растущему поколению вопрос: «Кто хочет быть аэрокосмическим инженером и спроектировать летательный аппарат, который сможет попасть в разреженную атмосферу Марса?»

5. Нам необходимо сырье из космоса

В космическом пространстве есть золото, серебро, платина и другие ценные металлы. Некоторые международные компании уже задумываются о добыче полезных ископаемых на астероидах, так что не исключено, что в ближайшем будущем появится профессия космического шахтёра. Луна, например, является возможным «поставщиком» гелия-3 (используется для МРТ и рассматривается как возможное топливо для атомных электростанций). На Земле это вещество стоит до 5 тысяч долларов за литр. Луна также считается потенциальным источником редкоземельных элементов, таких как европий и тантал, которые пользуются большим спросом для использования в электронике, производстве солнечных батарей и других современных приборов.

6. Освоение космоса может помочь найти ответ на очень важный вопрос

Мы все верим в то, что где-то в космосе существует жизнь. Кроме того, многие считают, что инопланетяне уже посещали нашу планету. Однако мы так до сих пор не получили никаких сигналов от далёких цивилизаций. Вот почему учёные-искатели внеземных цивилизаций готовы разворачивать орбитальные обсерватории, например, космический телескоп Джеймса Вебба. Этот спутник планируется к запуску в 2018 году, и с его помощью появится возможность поиска жизни в атмосферах далеких планет за пределами нашей Солнечной системы по химическим признакам. И это только начало.

7. Людям свойственно стремление к исследованиям

Наши первобытные предки родом из Восточной Африки расселились по всей планете, и с тех пор человечество ни разу не прекращало процесса своего перемещения. Мы всегда хотим исследовать и осваивать что-то новое и неизведанное, будь то короткая прогулка на Луну в качестве туриста, или долгое межзвездное путешествие длиной в жизни нескольких поколений. Несколько лет тому назад один из руководителей НАСА озвучил различие между «понятными причинами» и «реальными причинами» освоения космического пространства. Понятные причины – это вопросы получения экономических и технологических преимуществ, а реальные причины включают такие понятия, как любопытство и желание оставить после себя след.

8. Для своей выживаемости человечеству, вероятно, придётся колонизировать космическое пространство

Мы научились отправлять спутники в космос, и это помогает нам контролировать и бороться с насущными земными проблемами, включая лесные пожары, разливы нефти и истощение водоносных горизонтов. Однако существенное увеличение количества населения, банальная жадность и неоправданное легкомыслие касательно экологических последствий уже нанесли серьезный ущерб нашей планете. Ученые считают, что Земля имеет «допускаемую нагрузку» в размере от 8 до 16 миллиардов, а нас уже более 7 миллиардов. Возможно, человечеству пора готовиться к освоению других планет для жизни.