Как выполнять действия со степенями. Решение показательных уравнений. Примеры

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Онлайн-калькулятор возведения в степень

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом:

a n = a * a * a * …a n .

Например:

  • 2 3 = 2 в третьей степ. = 2 * 2 * 2 = 8;
  • 4 2 = 4 в степ. два = 4 * 4 = 16;
  • 5 4 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625;
  • 10 5 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000;
  • 10 4 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло 2-ая ст-нь 3-я ст-нь
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 279
10 100 1000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • a n * a m = (a) (n+m) ;
  • a n: a m = (a) (n-m) ;
  • (a b) m =(a) (b*m) .

Проверим на примерах:

2 3 * 2 2 = 8 * 4 = 32. С другой стороны 2 5 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично: 2 3: 2 2 = 8 / 4 =2. Иначе 2 3-2 = 2 1 =2.

(2 3) 2 = 8 2 = 64. А если по-другому? 2 6 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием ? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 3 3 + 2 4 = 27 + 16 = 43;
  • 5 2 – 3 2 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 — 3) 2 = 2 2 = 4.

А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3) 3 = 8 3 = 512.

Как производить вычисления в более сложных случаях ? Порядок тот же:

  • при наличии скобок – начинать нужно с них;
  • затем возведение в степень;
  • потом выполнять действия умножения, деления;
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: a m / n .
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b) n = a n * b n .
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Эти правила важны в отдельных случаях, их рассмотрим подробней ниже.

Степень с отрицательным показателем

Что делать при минусовой степени, т. е. когда показатель отрицательный?

Исходя из свойств 4 и 5 (смотри пункт выше), получается :

A (- n) = 1 / A n , 5 (-2) = 1 / 5 2 = 1 / 25.

И наоборот:

1 / A (- n) = A n , 1 / 2 (-3) = 2 3 = 8.

А если дробь?

(A / B) (- n) = (B / A) n , (3 / 5) (-2) = (5 / 3) 2 = 25 / 9.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

A 0 = 1, 1 0 = 1; 2 0 = 1; 3.15 0 = 1; (-4) 0 = 1…и т. д.

A 1 = A, 1 1 = 1; 2 1 = 2; 3 1 = 3…и т. д.

Кроме того, если (-a) 2 n +2 , n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот.

Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Дробная степень

Этот вид можно записать схемой: A m / n . Читается как: корень n-ой степени из числа A в степени m.

С дробным показателем можно делать, что угодно: сокращать, раскладывать на части, возводить в другую степень и т. д.

Степень с иррациональным показателем

Пусть α – иррациональное число, а А ˃ 0.

Чтобы понять суть степени с таким показателем, рассмотрим разные возможные случаи:

  • А = 1. Результат будет равен 1. Поскольку существует аксиома – 1 во всех степенях равна единице;

А r 1 ˂ А α ˂ А r 2 , r 1 ˂ r 2 – рациональные числа;

  • 0˂А˂1.

В этом случае наоборот: А r 2 ˂ А α ˂ А r 1 при тех же условиях, что и во втором пункте.

Например, показатель степени число π. Оно рациональное.

r 1 – в этом случае равно 3;

r 2 – будет равно 4.

Тогда, при А = 1, 1 π = 1.

А = 2, то 2 3 ˂ 2 π ˂ 2 4 , 8 ˂ 2 π ˂ 16.

А = 1/2, то (½) 4 ˂ (½) π ˂ (½) 3 , 1/16 ˂ (½) π ˂ 1/8.

Для таких степеней характерны все математические операции и специфические свойства, описанные выше.

Заключение

Подведём итоги — для чего же нужны эти величины, в чем преимущество таких функций? Конечно, в первую очередь они упрощают жизнь математиков и программистов при решении примеров, поскольку позволяют минимизировать расчеты, сократить алгоритмы, систематизировать данные и многое другое.

Где еще могут пригодиться эти знания? В любой рабочей специальности: медицине, фармакологии, стоматологии, строительстве, технике, инженерии, конструировании и т. д.

I. Произведение n сомножителей, каждый из которых равен а называется n -й степенью числа а и обозначается а n .

Примеры. Записать произведение в виде степени.

1) mmmm; 2) aaabb; 3) 5·5·5·5·ccc; 4) ppkk+pppk-ppkkk.

Решение.

1) mmmm=m 4 , так как, по определению степени, произведение четырех сомножителей, каждый из которых равен m , будет четвертой степенью числа m .

2) aaabb=a 3 b 2 ; 3) 5·5·5·5·ccc=5 4 c 3 ; 4) ppkk+pppk-ppkkk=p 2 k 2 +p 3 k-p 2 k 3 .

II. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень. Число, которое возводится в степень, называется основанием степени. Число, которое показывает, в какую степень возводится основание, называется показателем степени. Так, а n – степень, а – основание степени, n – показатель степени. Например:

2 3 — это степень. Число 2 — основание степени, показатель степени равен 3 . Значение степени 2 3 равно 8, так как 2 3 =2·2·2=8.

Примеры. Написать следующие выражения без показателя степени.

5) 4 3 ; 6) a 3 b 2 c 3 ; 7) a 3 -b 3 ; 8) 2a 4 +3b 2 .

Решение.

5) 4 3 = 4·4·4; 6) a 3 b 2 c 3 = aaabbccc; 7) a 3 -b 3 = aaa-bbb; 8) 2a 4 +3b 2 = 2aaaa+3bb.

III. а 0 =1 Любое число (кроме нуля) в нулевой степени равно единице. Например, 25 0 =1.
IV. а 1 =а Любое число в первой степени равно самому себе.

V. a m a n = a m + n При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.

Примеры. Упростить:

9) a·a 3 ·a 7 ; 10) b 0 +b 2 ·b 3 ; 11) c 2 ·c 0 ·c·c 4 .

Решение.

9) a·a 3 ·a 7 =a 1+3+7 =a 11 ; 10) b 0 +b 2 ·b 3 = 1+b 2+3 =1+b 5 ;

11) c 2 ·c 0 ·c·c 4 = 1·c 2 ·c·c 4 =c 2+1+4 =c 7 .

VI. a m : a n = a m - n При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Примеры. Упростить:

12) a 8:a 3 ; 13) m 11:m 4 ; 14) 5 6:5 4 .

12) a 8:a 3 =a 8-3 =a 5 ; 13) m 11:m 4 =m 11-4 =m 7 ; 14) 5 6:5 4 =5 2 =5·5=25.

VII. (a m ) n = a mn При возведении степени в степень основание оставляют прежним, а показатели перемножают.

Примеры. Упростить:

15) (a 3) 4 ; 16) (c 5) 2 .

15) (a 3) 4 =a 3·4 =a 12 ; 16) (c 5) 2 =c 5·2 =c 10 .

Обратите внимание , что, так как от перестановки множителей произведение не меняется, то :

15) (a 3) 4 =(a 4) 3 ; 16) (c 5) 2 =(c 2) 5 .

V I II . (a∙b) n =a n ∙b n При возведении произведения в степень возводят в эту степень каждый из множителей.

Примеры. Упростить:

17) (2a 2) 5 ; 18) 0,2 6 ·5 6 ; 19) 0,25 2 ·40 2 .

Решение.

17) (2a 2) 5 =2 5 ·a 2·5 =32a 10 ; 18) 0,2 6 ·5 6 =(0,2·5) 6 =1 6 =1;

19) 0,25 2 ·40 2 =(0,25·40) 2 =10 2 =100.


IX. При возведении в степень дроби возводят в эту степень и числитель и знаменатель дроби.

Примеры. Упростить:

Решение.

Страница 1 из 1 1

Тип урока: урок обобщения и систематизации знаний

Цели:

  • обучающие – повторить определение степени, правила умножения и деления степеней, возведения степени в степень, закрепить умения решения примеров, содержащих степени,
  • развивающие – развитие логического мышления учащихся, интереса к изучаемому материалу,
  • воспитывающие – воспитание ответственного отношения к учебе, культуры общения, чувства коллективизма.

Оборудование: компьютер, мультимедийный проектор, интерактивная доска, презентация “Степени” для устного счета, карточки с заданиями, раздаточный материал.

План урока:

  1. Организационный момент.
  2. Повторение правил
  3. Устный счет.
  4. Историческая справка.
  5. Работа у доски.
  6. Физкультминутка.
  7. Работа на интерактивной доске.
  8. Самостоятельная работа.
  9. Домашнее задание.
  10. Подведение итогов урока.

Ход урока

I. Организационный момент

Сообщение темы и целей урока.

На предыдущих уроках вы открыли для себя удивительный мир степеней, научились умножать и делить степени, возводить их в степень. Сегодня мы должны закрепить полученные знания при решении примеров.

II. Повторение правил (устно)

  1. Дайте определение степени с натуральным показателем? (Степенью числа а с натуральным показателем, большим 1, называется произведениеn множителей, каждый из которых равен а .)
  2. Как умножить две степени? (Чтобы умножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели сложить.)
  3. Как разделить степень на степень? (Чтобы разделить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели вычесть.)
  4. Как возвести произведение в степень? (Чтобы возвести произведение в степень, надо каждый множитель возвести в эту степень)
  5. Как возвести степень в степень? (Чтобы возвести степень в степень, надо основание оставить тем же, а показатели перемножить)

III. Устный счет (по мультимедиа)

IV. Историческая справка

Все задачи из папируса Ахмеса, который записан около 1650 года до н. э. связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и дробями, пропорциональное деление, нахождение отношений, здесь присутствует и возведение в разные степени, решение уравнений первой и второй степени с одним неизвестным.

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления. Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём обобщений и догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что египетские математики умели извлекать корни и возводить в степень, решать уравнения, и даже владели зачатками алгебры.

V. Работа у доски

Найдите значение выражения рациональным способом:

Вычислите значение выражения:

VI. Физкультминутка

  1. для глаз
  2. для шеи
  3. для рук
  4. для туловища
  5. для ног

VII. Решение задач (с показом на интерактивной доске)

Является ли корень уравнения положительным числом?

а) 3x + (-0,1) 7 = (-0,496) 4 (x > 0)

б) (10,381) 5 = (-0,012) 3 - 2x (x < 0)

VIII. Самостоятельная работа

IX. Домашнее задание

Х. Подведение итогов урока

Анализ результатов, объявление оценок.

Полученные знания о степенях мы будем применять при решении уравнений, задач в старших классах, также они часто встречаются в ЕГЭ.

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 - b n и h 5 -d 4 есть a 3 - b n + h 5 - d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат - это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 - это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Ответ: x 4 - y 4 .
Умножьте (x 3 + x - 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых - отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a - b, результат будет равен a 2 - b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a - y).(a + y) = a 2 - y 2 .
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Или:
$\frac{9a^3y^4}{-3a^3} = -3y^4$
$\frac{a^2b + 3a^2}{a^2} = \frac{a^2(b+3)}{a^2} = b + 3$
$\frac{d\cdot (a - h + y)^3}{(a - h + y)^3} = d$

Запись a 5 , делённого на a 3 , выглядит как $\frac{a^5}{a^3}$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac{yyy}{yy} = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac{aa^n}{a} = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac{1}{h} = h^2.\frac{h}{1} = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a^4}{3a^2}$ Ответ: $\frac{5a^2}{3}$.

2. Уменьшите показатели степеней в $\frac{6x^6}{3x^5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a - b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 - 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

9. Разделите (h 3 - 1)/d 4 на (d n + 1)/h.

Урок на тему: "Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Пособие к учебнику Ю.Н. Макарычева Пособие к учебнику А.Г. Мордковича

Цель урока: научится производить действия со степенями числа.

Для начала вспомним понятие "степень числа". Выражение вида $\underbrace{ a * a * \ldots * a }_{n}$ можно представить, как $a^n$.

Справедливо также обратное: $a^n= \underbrace{ a * a * \ldots * a }_{n}$.

Это равенство называется "запись степени в виде произведения". Оно поможет нам определить, каким образом умножать и делить степени.
Запомните:
a – основание степени.
n – показатель степени.
Если n = 1 , значит, число а взяли один раз и соответственно: $a^n= 1$.
Если n= 0 , то $a^0= 1$.

Почему так происходит, мы сможем выяснить, когда познакомимся с правилами умножения и деления степеней.

Правила умножения

a) Если умножаются степени с одинаковым основанием.
Чтобы $a^n * a^m$, запишем степени в виде произведения: $\underbrace{ a * a * \ldots * a }_{n} * \underbrace{ a * a * \ldots * a }_{m}$.
На рисунке видно, что число а взяли n+m раз, тогда $a^n * a^m = a^{n + m}$.

Пример.
$2^3 * 2^2 = 2^5 = 32$.

Это свойство удобно использовать, что бы упростить работу при возведении числа в большую степень.
Пример.
$2^7= 2^3 * 2^4 = 8 * 16 = 128$.

б) Если умножаются степени с разным основанием, но одинаковым показателем.
Чтобы $a^n * b^n$, запишем степени в виде произведения: $\underbrace{ a * a * \ldots * a }_{n} * \underbrace{ b * b * \ldots * b }_{m}$.
Если поменять местами множители и посчитать получившиеся пары, получим: $\underbrace{ (a * b) * (a * b) * \ldots * (a * b) }_{n}$.

Значит, $a^n * b^n= (a * b)^n$.

Пример.
$3^2 * 2^2 = (3 * 2)^2 = 6^2= 36$.

Правила деления

a) Основание степени одинаковое, показатели разные.
Рассмотрим деление степени с большим показателем на деление степени с меньшим показателем.

Итак, надо $\frac{a^n}{a^m}$ , где n > m .

Запишем степени в виде дроби:

$\frac{\underbrace{ a * a * \ldots * a }_{n}}{\underbrace{ a * a * \ldots * a }_{m}}$.
Для удобства деление запишем в виде простой дроби.

Теперь сократим дробь.


Получается: $\underbrace{ a * a * \ldots * a }_{n-m}= a^{n-m}$.
Значит, $\frac{a^n}{a^m}=a^{n-m}$ .

Это свойство поможет объяснить ситуацию с возведением числа в нулевую степень. Допустим, что n=m , тогда $a^0= a^{n-n}=\frac{a^n}{a^n} =1$.

Примеры.
$\frac{3^3}{3^2}=3^{3-2}=3^1=3$.

$\frac{2^2}{2^2}=2^{2-2}=2^0=1$.

б) Основания степени разные, показатели одинаковые.
Допустим, необходимо $\frac{a^n}{ b^n}$. Запишем степени чисел в виде дроби:

$\frac{\underbrace{ a * a * \ldots * a }_{n}}{\underbrace{ b * b * \ldots * b }_{n}}$.
Для удобства представим.

Используя свойство дробей, разобьем большую дробь на произведение маленьких, получим.
$\underbrace{ \frac{a}{b} * \frac{a}{b} * \ldots * \frac{a}{b} }_{n}$.
Соответственно: $\frac{a^n}{ b^n}=(\frac{a}{b})^n$.

Пример.
$\frac{4^3}{ 2^3}= (\frac{4}{2})^3=2^3=8$.