Опыт внедрения котлов малой мощности с топками форсированного низкотемпературного кипящего слоя. Котлы с топками кипящего слоя

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Агентство по образованию

ГОУ ВПО АлтГТУ им. Ползунова И.И.

Кафедра «Теплогазоснабжение и вентиляция»

Лабораторная работа

по курсу «Теплогенерирующие установки»

«Тепловой расчет котлов с кипящим слоем»

Выполнили:

студенты ТГВ-31

О.Д. Королева

Д.А. Липезин

Проверил: С.М. Кисляк

Барнаул 2006

1. Зона кипящего слоя

2. Вывод расчетных зависимостей

2.1 Расчет кипящего слоя

2.2 Расчет теплообмена в топке

Список литературы

1. Зона кипящего слоя

Основу методики расчета кипящего слоя положено уравнение баланса тепла в слое, которое включает в себя:

приход тепла:

Тепло, выделяющееся при горении топлива в объёме кипящего слоя;

Физическое тепло, вносимое в слой псевдоожижающим воздухом и топливом;

расход тепла:

С продуктами сгорания, избыточным воздухом и золой, выносимыми из слоя;

Тепло, воспринимаемое поверхностями нагрева, контактирующими с материалом НТКС;

Тепло на прогрев уноса, возвращаемого в НТКС;

Тепло, выводимое из слоя со сливом золы (материала слоя).

Основную проблему составляет определение доли топлива, реагирующего в слое (от всего сгоревшего топлива) и теплоотдача к поверхностям нагрева. Доля выгорающего в слое крупного кокса определяется его зерновой характеристикой, скоростью псевдоожижения и интенсивностью рециркуляции частиц. Т.е. в расчетах нужно использовать зерновую характеристику кокса.

Для практических расчетов связанных с проектированием новых и реконструкцией действующих котлов, ввиду резко переменных физических, теплофизических свойств, гранулометрического состава топлива и сложности процессов целесообразна разработка приближенной методики расчета.

Учитывая наличие опробованных методик для расчета выгорания пылеугольного факела, в методике расчета НТКС (низкотемпературного кипящего слоя) предложено определять расход сгоревшего топлива в слое как разность между топливом, сгоревшим в слое, и сгоревшим в надслоевом объёме свежим топливом и вторичным (вынос из слоя от возврата на дожигание) уносом.

При расчете необходимо учитывать изменение доли уносимых частиц D ун, зависящей от рабочей скорости в слое w кс. Последняя может быть определена только после расчета избытка воздуха. Это обстоятельство приводят к необходимости введения зависимости D ун =f(w кс), которая с достаточной точностью линеаризуется в рабочем диапазоне скоростей (37 м/с).

Таким образом, прелагаемая методика позволяет рассчитывать основные режимные характеристики работы кипящего слоя (избыток воздуха, скорость на выходе из слоя, расход сгоревшего топлива, расход воздуха под решетку) при заданных конструктивных характеристиках и температуре слоя.

Рис. 1. Схема котла с кипящим слоем

1 - система распределения воздуха (воздух должен подаваться в слой для псевдоожижения и для сгорания);

2 - система вывода золы и отработанного сорбента;3 - система питания углем и известняком; 4 - пусковая система (горелка): 5 - уголь и известняк; 6 - пар; 7 - система улавливания летучей золы: механический пылеулавитель; мешочный фильтр; 8 - уходящие газы; 9 - система теплового контроля; 10 - зола; 11 - экономайзер; 12 - питательный насос; 13 - линия возврата золы с недожогом в кипящий слой

2. Вывод расчетных зависимостей

2.1 Расчет кипящего слоя

топливо теплообмен кипящий температура

Баланс тепла в слое имеет вид:

(1.1)

где -- располагаемое тепло топлива, кДж/кг;

сл -- избыток воздуха в слое;

--расход топлива, сгорающего в слое, кг/с;

В -- расход топлива, вводимого в котел, кг/с;

сл -- температура слоя, К;

-- энтальпии продуктов сгорания, воздуха, золы при температуре слоя, кДж/кг;

k j -- коэффициент теплоотдачи к теплообменным поверхностям, Вт/м 2 К;

H j -- поверхность нагрева, контактирующая с кипящим слоем, м 2 ;

t ср -- температура рабочей среды, К;

K цi -- кратность циркуляции (отношение расхода циркулирующего материала к расходу подаваемого топлива в 1, 2-ом контурах);

t цi -- температура уноса, уловленного в i-ом золоуловителе, К;

t слив -- температура сливаемой золы (материала слоя), К.

Суммарная кратность и кратность циркуляции в 1, 2-ом контурах определяется из материального баланса для контуров, и могут быть записаны как:

где: D=(1- 1)(1- 2)

1 , 2 -- интегральные КПД золоуловителей 1, 2 ступени.

Учитывая, что J в В р =V в 0 с в t в В р =Q в с в t в, кДж/кг, и обозначив:

уравнение (1.1) можно переписать в более удобном виде:

Расчетный расход топлива, сгорающего в слое, складывается из расходов реагирующего в объёме НТКС свежего топлива размером более уносимого, а также уноса, возвращенного на дожигание, т.е.

Принимая, что весь унос, возвращенный на дожигание, реагирует в объёме слоя, имеем:

Доля уносимых частиц в подаваемом топливе в интервале скоростей 37 м/с практически линейно зависит от рабочей скорости газов на выходе из слоя w р, т.е.

D ун =X+Yw р.

Рабочая скорость газов на выходе из слоя определяется из уравнения расхода:

Обозначив

Расход воздуха, подаваемого под слой (для обеспечения заданных избытков воздуха и температуры кипящего слоя), определяется из (1.1а):

Избыток воздуха на выходе из слоя при этом (по определению) равен:

2.2 Расчет теплообмена в топке

Для расчета температуры газов на выходе из топки используется формула нормативного метода:

Т а - теоретическая температура горения, К;

М - коэф-т, учитывающий характер распределения температур по высоте топки;

у 0 = 5,67·10 -11 - коэффициент излучения абсолютно черного тела, кВт/(м 2 ·К 4);

ш ср - средний коэффициент тепловой эффективности топочнфх экранов;

F ст - полная поверхность стен топочной камеры;

б т - степень черноты топки;

ц - коэффициент сохранения тепла;

Vc ср - средняя суммарная теплоемкость продуктов сгорания.

Использование этой формулы для расчета надслоевого объёма топок кипящего слоя приближает расчетную схему к традиционной, но требует уточнения методики и определения (с учетом специфики топок НТКС) адиабатической температуры горения. Адиабатическая температура в этом случае существенно ниже, чем для топок слоевых и прямоточно-факельных котлов. Это обусловлено сжиганием основной массы (до 6090%) топлива непосредственно в объеме слоя, имеющего достаточно низкую температуру (1120-1220 К).

Таким образом, выражение для определения тепловыделения в топке (соответствующее адиабатической температуре горения) может быть записано в виде:

где: -- максимально возможное тепловыделение в топке (т.е. тепловыделение, которое имело бы место при сжигании всего топлива в надслоевой зоне)

Энтальпия газов, уходящих из слоя, кДж/кг,

Расчетные расходы топлива, сгорающие в котле и непосредственно в слое, кг/с,

К т -- доля топлива, сгорающего в слое,

Тепло, вносимое со вторичным (холодным или нагретым) воздухом;

КДж/кг;(1.11)

Расходы воздуха на котел и вводимого под слой, нм 3 /с;

Тепло, вносимое в топку с присасываемым воздухом, кДж/кг;

Энтальпии вторичного и холодного воздуха, кДж/кг;

Тепло, вносимое с рециркулирующими газами и с газами, эжектируемыми с уносом из-под вынесенных уловителей, кДж/кг;

Тепло, возвращаемое в топку с уносом, вводимым в надслоевой объем,

КДж/кг (1.12)

где -- кратность циркуляции уноса, возврат которого осуществляется над слоем,

с зл -- теплоемкость золы (уноса) при температуре в системе возврата уноса t ц, кДж/кгК.

Адиабатическая температура определяется по J- таблице при расчетном избытке воздуха на выходе из топки с учетом энтальпии золы, равной

где К ц -- суммарная кратность циркуляции, определяемая по формуле (1.2).

При этих же условиях определяется и энтальпия газов на выходе из топки, входящая в выражение для определения средней суммарной теплоемкости продуктов сгорания Vc ср.

Концентрация золы в продуктах сгорания рассчитывается как:

Тепловой баланс котлоагрегата

Наименование величины

Размерность

Обозначение

Расчетная формула

располагаемое тепло топлива

расход топлива, сгорающего в слое

потеря тепла от механического недожега

по приложению Д-Ж

скорость газов на выходе из слоя

расход воздуха, подаваемого под слой

энтальпя продуктов сгорания

по приложению В

энтальпя воздуха

по приложению В

энтальпя золы

по приложению В

кратность циркуляции

избыток воздуха на выходе из слоя

Тепловой расчет топочной камеры

Наименование величины

Размерность

Обозначение

Расчетная формула

температура газов на выходе

тепловыделение в топке (max)

энтальпия газов, уходящих из слоя

по диаграмме

доля топлива, сгорающего в слое

тепло, вносимое со втооричным воздухом

тепло, вносимое в топку с присасываеиым воздухом

тепло, возвращаемое в топку

энтальпия золы

концентрация золы в продуктах сгорания

Список литератуы

1. Тепловой расчёт котлоагрегатов малой и средней мощности: Методические указания/ С.М. Кисляк; Алт. гос. техн. ун-т им. И.И. Ползунова. - Барнаул: Изд-во АлтГТУ, 2006.-57с.

2. Радованович. М., Сжигание топлива в псевдоожиженном слое, - М.: Энергоатомиздат, 1990. - 248.

Размещено на Allbest.ru

...

Подобные документы

    Проектирование и тепловой расчет котельного агрегата. Характеристика котла, пересчет топлива на рабочую массу и расчет теплоты сгорания. Определение присосов воздуха. Вычисление теплообмена в топке и толщины излучающего слоя. Расчет пароперегревателя.

    курсовая работа , добавлен 08.04.2011

    Описание котельной и ее тепловой схемы, расчет тепловых процессов и тепловой схемы котла. Определение присосов воздуха и коэффициентов избытка воздуха по газоходам, расчет объемов воздуха и продуктов сгорания, потерь теплоты, КПД топки и расхода топлива.

    дипломная работа , добавлен 15.04.2010

    Топливо, его состав, объемы воздуха и продуктов сгорания для котла определенного типа. Элементарный состав топлива. Коэффициент избытка воздуха в топке. Объёмы продуктов сгорания. Тепловой баланс котла, расчет расхода топлива на весь период его работы.

    контрольная работа , добавлен 16.12.2010

    Применение аппаратов с кипящим слоем. Материальный, тепловой, гидродинамический, гидравлический и конструктивный расчеты сушилки с псевдоожиженным слоем. Подбор вспомогательного оборудования: калорифера, циклона, вентилятора, питателя, разгрузителя.

    курсовая работа , добавлен 07.08.2017

    Принципиальное устройство котла ДЕ16-14ГМ. Теплота сгорания топлива; присосы воздуха, коэффициенты его избытка по отдельным газоходам; энтальпии продуктов сгорания. Тепловой баланс котла, расход топлива. Поверочный расчет теплообмена в топочной камере.

    курсовая работа , добавлен 30.01.2014

    Особенности методики теплового расчета котлов типа ДКВР, не содержащих пароперегревателя. Выявление объема и состава дымовых газов. Определение расхода топлива, адиабатной температуры сгорания. Расчет чугунного экономайзера ВТИ, пучка кипятильных труб.

    методичка , добавлен 06.03.2010

    Параметры топочных газов, подаваемых в сушилку. Расход воздуха, скорость газов и диаметр сушилки. Высота псевдоожиженного слоя. Расчет толщины обечайки, днища. Расчет питателя, вентилятора. Способы повышения интенсивности и экономичности установки.

    курсовая работа , добавлен 23.02.2016

    Характеристика сырьевых материалов, используемых для производства керамзитового песка, и основные процессы, происходящие при обжиге. Пути связи влаги с материалом. Принцип создания кипящего слоя. Расчет горения природного газа и теплового баланса.

    курсовая работа , добавлен 18.08.2010

    Экспериментальное изучение зависимости гидравлического сопротивления слоя от фиктивной скорости газа. Определение критической скорости газа: скорости псевдоожижения и скорости свободного витания. Расчет эквивалентного диаметра частиц монодисперсного слоя.

    лабораторная работа , добавлен 23.03.2015

    Классификация методов переработки пластиковой тары. Принцип создания кипящего слоя. Печь псевдоожиженного слоя, ее схема. Компоновка производственной линии сортировки отходов. Изменение сопротивления слоя сыпучих материалов от скорости сушильного агента.

Процесс сжигания топлива происходит в неподвижном и кипящем слое (псевдоожиженном), В неподвижном слое (рис. 13, а) куски топлива не перемещаются относительно решетки, под кото­рую подается необходимый для горения воздух. В кипящем слое (рис. 13, б) частицы твердого топлива под действием скоростного напора воздуха интенсивно перемещаются одна относительно другой. Кипящий слой существует в границах скоростей от начала псевдоожижения до режима пневмотранспорта.

На рис. 14 показана структура неподвижного слоя. Топливо 4, ссыпаемое на горящий кокс, прогревается. Выделяющиеся лету­чие сгорают, образуя надслойное пламя 5. Максимальная темпера­тура (1300-1500 °С) наблюдается в области горения коксовых частиц 3. В слое можно выделить две зоны: окислительную, а > 1; восстановительную, а < 1. В окислительной зоне продуктами реакции горючего и окислителя являются как С02, так и СО. По мере использования воздуха скорость образования С02 за­медляется, максимальное ее значение достигается при избытке воздуха а = 1. В восстановительной зоне ввиду недостаточного количества кислорода (а < 1) начинается реакция между С02 и горящим коксом (углеродом) с образованием СО. Концентрация СО в продуктах сгорания возрастает, а С02 уменьшается. Длина зон в зависимости от среднего размера 6К частиц топлива следую­щая: Ьг = (2 - 4) 6К; L2 = (4 - 6) 8К. На длины зон Lx и La (в сторону их уменьшения) влияют увеличение содержания лету­чих горючих V„, уменьшение зольности Ар, рост температуры воздуха.

Поскольку в зоне 2 кроме СО содержатся Нг и СН4, появление которых связано с выделением летучих, то для их дожигания часть воздуха подается через дутьевые сопла 3, расположенные над слоем (см. рис. 13, а). В кипящем слое крупные фракции топ­лива находятся во взвешенном состоянии. Кипящий слой может быть высокотемпературным и низкотемпературным. Низкотемпе­ратурное (800-900 °С) сжигание топлива достигается при разме­щении в кипящем слое поверхности нагрева . Динамика кипящего слоя (по его высоте hcn)- выход газообразных состав­ляющих (S08, SO, На и 02) и изменение температуры і - пред-

Рис. 13. Схемы сжигания топ­лива в неподвижном и кипящем слое:

1 - подвод воздуха; 2 - решетка; 3 - дутьевое кольцо

Ставлена на рис. 15. В отличие от неподвижного слоя, где размер частиц топлива достигает 100 мм, в кипящем слое сжигается дроб­леный уголь с 6„ < 25 мм. В слое содержится 5-7 % топлива (по объему). Коэффициент теплоотдачи к поверхностям, распо­ложенным в слое, довольно высок и достигает 850 кДж/(м2-ч. К)- При сжигании малозольных топлив для увеличения теплоот­дачи в слой вводят наполнители в виде инертных зернистых ма­териалов: шлак, песок, доломит. Доломит связывает оксиды серы (до 90 %), в результате чего снижается вероятность возникнове­ния низкотемпературной коррозии. Более низкий уровень темпе­ратур газов в кипящем слое способствует уменьшению образова­ния в процессе горения оксидов азота, при выбросе которых в атмосферу загрязняется окружающая среда. Кроме того, исклю­чается шлакование экранов, т. е. налипание на них минеральной части топлива.

Следует отметить также циркулирующий кипящий слой, ха­рактерной особенностью которого является приближение к работе

Слоя в режиме пневмотранспорта.

Топка с неподвижным слоем может быть ручной, полумеханической или ме­ханической с цепной решеткой. Разли­чают топки с прямым (рис. 16, а) и об­ратным (рис. 16, б) ходом решеток /, приводимых в движение звездочками 2. Расход топлива, подаваемого из бункера 3, регулируется высотой установки ши­бера 4 (см. рис. 16, а) или скоростью движения дозаторов 7 (рис. 16, б). В ре­шетках с обратным ходом топливо пода­ется на полотно забрасывателями 8 меха­нического (рис. 16, б, в) или пневмати­ческого (рис. 16, г) типа. Мелкие фракции топлива сгорают во взвешенном состоя­нии, а крупные - в слое на решетке,

Под которую подводится воздух 9. Прогрев, воспламенение и горение топлива происходят за счет теплоты, переда­ваемой излучением от продуктов сгорания. Шлак 6 с помощью щлакоснимателя 5 (рис. 16, а) или под действием соб­ственного веса (рис. 16, б) поступает в шлаковый бункер. Структура горящего слоя представлена на рис. 16, а. Об­ласть III горения кокса после зоны II подогрева поступающего топлива (зона I) расположена в центральной части решетки. Здесь же находится восстановительная зона IV. Неравномерность сте­пени горения топлива по длине решетки приводит к необходимости секционного подвода воздуха. Большая часть окислителя должна подаваться в зону III, меньшая -в конец зоны реагирования кокса и совсем небольшое количество - в зону // подготовки топлива к сжиганию и зону V выжига шлака. Этому условию отве­чает ступенчатое распределение избытка воздуха ах по длине

Рис. 17. Схема котла с топкой с кипящим слоем и конструкция «колпачка раз­дачи воздуха

Решетки. Подача одинакового количества воздуха во все секции могла бы привести к повышенным избыткам воздуха в конце по­лотна решетки, в результате чего его будет не хватать для горения кокса (кривая аг) в зоне III.

Основным недостатком топок с цепными решетками являются повышенные потери теплоты от неполноты сгорания топлива. Область применения таких решеток ограничена котлами паро - производительностью D - 10 кг/с и топливами с выходом летучих Уд f= 20 % и приведенной влажностью W" = 3,25 %. кг/МДж.

Tonnfa с кипящим слоем применена на котле паропроизводи- тельностью D = 75 т/ч, работающем на сланцах (рис. 17). В зоне низкотемпературного кипящего слоя размещены перегреватель - ные 8 и испарительные 9 поверхности нагрева. Подача топлива в слой 3 происходит сверху, а ввод воздуха - из короба 6 через «олпачки (рис. 17, б), расположенные по полотну решетки. Отвод золы из слоя осуществляется по золоотводу 7. Мелкие фракции топлива сгорают во взвешенном состоянии над слоем. Передача теплоты испарительным поверхностям 2 в топке U перегревателю 11 и экономайзеру 10 происходит как в барабанном котле.

Для обеспечения надежности циркуляции среды в испаритель­ных поверхностях 9, расположенных в слое, используется цирку­ляционный насос 5.

Топки с кипящим слоем отличаются пониженным выбросом Таких вредных соединений, как NOx, S02, малой вероятностью шлакования экранов, возможностью (ввиду низкой температуры (Газов) насыщения объема топки поверхностями нагрева. Недо - 44

Статками их являются повышенная неполнота сгорания топлива, высокое аэродинамическое сопротивление решетки 4 и слоя 3, узкий диапазон регулирования паропроизводительности котла.

Кафедра Промышленной теплоэнергетики

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №2

по дисциплине «Энергосбережение в теплоэнергетике и

теплотехнологии»

на тему: Расчет комбинированной газо-паротурбинной установки (ГПТУ), содержащий топку с кипящим слоем под давлением

Проверил: ______________

Выполнил: ____________

Алматы 2008


1. ЗАДАНИЕ К РГР

2. ОПИСАНИЕ УСТРОЙСТВА РАБОТЫ КОМБИНИРОВАННОЙ ГАЗОПАРОТУРБИННОЙ УСТАНОВКИ, РАБОТАЮЩЕЙ НА ТВЕРДОМ ТОПЛИВЕ, СОДЕРЖАЩЕЙ ТОПКУ С КИПЯЩИМ СЛОЕМ ПОД ДАВЛЕНИЕМ

3. ИСХОДНЫЕ ДАННЫЕ

4. РЕШЕНИЕ

5. ВЫВОДЫ ПО РАБОТЕ

6. СПИСОК ЛИТЕРАТУРЫ


Описание устройства работы комбинированной газопаротурбинной установки, работающей на твердом топливе, содержащей топку с кипящим слоем под давлением.

(Сибикин Ю.Д., Сибикин М.Ю. «Технология энергосбережения» М. 2006г. стр. 170-172, Котлер В.Р. «Специальные топки энергетических котлов» М. 1990г. стр. 95-98)

Принципиальная схема установки показана на рис.

1. Камера с кипящим слоем под давлением

2. пароперегреватель

3. парообразователь с экономайзером

4. паровая турбина

5. конденсатор

6. бак для конденсата

7. циклоны

8. газовая турбина ГТУ

9. осевой компрессор ГТУ

10. воздухоочиститель

12. доломит

13. воздух

14. электрогенератор

15. , 16. насосы

17.сепаратор

18.дополнительная камера сгорания

Представленная на рисунке схема позволяет осуществить бинарный цикл, когда генерируемый в котле пар используется в паровой турбине, а продукты сгорания, имеющие высокое давление, используются в газовой турбине, что позволяет существенно повысить термический КПД установки, позволяет уменьшить габариты топочных устройств и вредные выбросы в атмосферу, появляется возможность сжигания низкосортных углей.

Колы с кипящим слоем под давлением по габаритам, по сравнению с котлами обычного типа, получаются на 60% меньше, поэтому при перевооружении устаревших ТЭС можно увеличить мощность энергоблока без использования дополнительной территории, повысить экономичность энергоблока, обеспечить соблюдение экологических требований. Установка может быть выполнена в модульном исполнении полностью в заводских условиях. Модули к месту установки можно транспортировать железнодорожным и воздушным транспортом, что позволяет свести до минимума объем монтажных работ на месте сооружения ТЭС, сократить срок строительства на 25%, сократить капитальные затраты на 10%.

Установка работает следующим образом:

Воздух компрессором 9 ГТУ под давлением 1,2-1,6 МПа подается сначала в корпус 1 топки котла, а затем в камеру с кипящим слоем. Уголь и доломит смешиваются и пневматической системой подается в кипящий слой в который погружены трубы пароперегревателя 2 котла. Горячие газы, образовавшиеся в камере с кипящим слоем, отчищаются в циклонах 7 и подаются в газовую турбину 8 установленную на одном валу с компрессором 9. Часть механической энергии. вырабатываемой газовой турбиной 8. расходуется на сжатие воздуха в компрессоре 9, а часть идет на привод электрогенератора 14 для получения электроэнергии. Обработавшие газы после газовой турбины 8 поступают в регенератор 3 и затем, через выхлопное устройство в атмосферу. В регенераторе 3 установлен экономайзер, куда из бака конденсатной воды 6 насосом 15 подается конденсат под давлением. Здесь конденсат, за счет утилизации тепла выхлопных газов, нагревается и поступает в пароперегреватель 2 установленный в кипящем слое камеры 1. Перегретый пар, расширяясь в паровой турбине 4, производит механическую работу для привода электрогенератора 14. Отработавший пар, в турбине 4 поступает в конденсатор 5, где он конденсируется обдавая тепло воде используемой для бытовых и технических нужд. Полученный конденсат насосом 16 подается в бак конденсата. Зола из кипящего слоя и из циклонов пневмотранспортом подается в бункер. Доломит подмешивается в молярном отношении Ca/S=1,9-2. (При температуре около 850°С оксиды реагирующей с кальцием доломита превращаясь в сульфат кальция (гипс), который удаляется вместе с золой). Средняя скорость воздуха для ожижения слоя составляет 0,9-1 м/с, а избыток воздуха α=1,1-1,3. Эффективность горения 97-99%. Температура в кипящем слое должна быть не выше 900°С, поэтому температура газов, поступающих в газовую турбину 8, не более 850°С. Для повышения температуры газов можно часть угля подвергать пиролизу, а полученный газ сжигать для повышения температуры в дополнительной камере сгорания 18. В результате этого можно повысить мощность турбины. Кипящий слой под давлением разжигается с помощью мазутных форсунок, затем переводится на уголь. Кипящий слой высотой 3,5-4 м. ведет себя стабильно. При полной нагрузке все трубы котла погружены в кипящий слой. Если высота слоя уменьшается, например, после удаления золы, некоторые трубы оказываются над слоем и нагрузка котла уменьшается, т.к. уменьшается количество тепла передаваемого трубам, а также уменьшается температура газа. Это приводит к снижению мощности паровой и газовой турбин. Таким образом, регулирование можно осуществлять изменением массы кипящего слоя.

В таблице 1 приведены расчетные параметры блоков мощностью 200 и 800 МВт, которые осваиваются в Испании (ТЭС Эскатфон).

В Испании в качестве топлива используются лигниты, содержащие 4-8% серы, 25-45% золы и 20% влаги. Установленный на ТЭС Эскатрон котел вырабатывает 288т/ч пара с параметрами 9,5 МПа, 510°С. Расход топлива Gт=65 т/ч, известняка Gизв.=25т/ч. Установка позволяет снизить выбросы SO2 на 90%, высота слоя 3,5м., давление в топке 1,2 МПа.

Расчет комбинированной газапаротурбинной установки, работающей на твердом топливе, содержащей топку с кипящим слоем под давлением.


ИСХОДНЫЕ ДАННЫЕ

1. Суммарная степень повышения давления воздуха в компрессоре ГТУ, Пке =12,8

2. Расход воздуха через воздушный тракт компрессора ГТУ и топку котла Gв =115 кг/с.

3. Расход газов, идущих из камеры с кипящим слоем под давлением принимаем равным Gг≈Gв=115 кг/с

4. Коэффициент избытка воздуха, поступающего в камеру с кипящим слоем, принимаем равным α=1.2

5. Температура кипящего слоя Ткс=1173°К (900°С)

6. температура газов, выходящих из камеры с кипящим слоем, Т4’= 1123°К (850°С)

7. Температура газа, поступающего в газовую турбину ГТУ, принимаем равной Т*4=1270°К (997°С). Газ с температурой Т4’= 1123°К подогреваем в специальной камере до Т*4=1270°К, при сжигании газа, полученного в результате пиролиза части твердого топлива.

8. Температура воздуха на входе в компрессор Т*1=288°К (15°С).

9. Давление воздуха окружающей среды Рн=0.1013 МПа. С учетом потерь в воздухоочистителе входного устройства ГТУ, давление на входе в компрессор Р1*= РН*0,9=0.1013*0.9=0.09117 МПа

10. КПД компрессора и турбины ГТУ принимаем равным ηк=0.85 ηт=0.91

11.Уголь, сжигаемый в топке – Экибастузский

12.Давление воды и пара в паровом тракте, Рк =9 МПа

13.Температура перегрева пара, t0=550 0С

14.Температура отработавшего в турбине пара t2=80 0C


РЕШЕНИЕ

1. Термодинамический расчет ГТУ.

1.1 Удельная работа, затрачиваемая на адиабатическое сжатие 1 кг воздуха в компрессоре

(378,1°С).

Воздух после компрессора под давлением Р3=1,17 МПа, температурой Т3=651,1°К, с расходом Gв =115 кг/с поступает в камеру с кипящим слоем. Туда же подается топливо Gт и доломит Gизв.

°К.

Ср.г. при Т4*=1270°К, и α=1,1 из монограммы Ср.г.=1,26

МПа

Рст=0,11 МПа

При Т5*=980 °К и α=1,1; Срг=1,21;

°К (509°С)

кВт = 27,577 МВт

За счет газотурбинного цикла получена электрическая мощность

Nэ=Nст=27,577 МВт

Выходные газы после силовой газотурбины с параметрами Gг=115 кг/с, Рст=0,11 МПа, Тст=782°К (509°С) уходят в котел утилизатор.

2. Расчет паротурбинной части установки.

В котле утилизаторе устанавливаем только экономайзер. На рис. 2 приведен график распределения температур газов и воды по высоте котла утилизатора. На рис.3 показана схема котла утилизатора конденсат из бака 6 насосом высокого давления 15 подается в экономайзер 2 котла утилизатора под давлением Рк=

9 МПа. Температура воды на входе в экономайзер принята равной t3=80°C. В экономайзере вода нагревается до температуры Ts ≤ 250 °C. Из экономайзера вода поступает в испаритель, а затем в пароперегреватель установленный в кипящем слое камеры сгорания твердого топлива.

В испарители вода нагревается до температуры 300°С при которой она преобразовывается в сухой насыщенный пар с теплосодержанием h1=2961,5 кДж/кг. Теплота парообразования составляет величину:

2.1 Zn=h1-hs= 2961,5 –1085,7= 1876 кДж/кг

Сухой насыщенный пар поступает в пароперегреватель, где пар перегревается до температуры t0=550°C и его теплосодержание становится равным h0=3512 кДж/кг.

2.2 Температура кипящего слоя не превышает 900°С (1173°К), т.к. парообразователь с пароперегревателем, находящиеся в кипящем слое, отбирают тепло.

На рисунке 4 показано распределение температур воды, пара и газа в парообразователе и пароперегревателе.

Перегретый пар срабатывает в паровой турбине до атмосферного давления Pвых=0,11 МПа и температуры 100°С. Теплосодержание пара на выходе из турбины h’вых=2675,6 кДж/кг.

Отработавший пар конденсируется в бойлере до температуры t3=80°C. C теплосодержанием h3=335 кДж/кг. Теплоперепад отработавшего пара и конденсата hбоил.= h’вых - h3 = 2675,6-335=2341 кДж/кг. Это тепло перейдет в воду круга циркуляции воды системы отопления и горячего водоснабжения.

Важнейшим параметром комбинированной ГПТУ является паровое отношение Тп. Тп=Gп/Gг. Паровое отношение может быть определено из уравнений теплового баланса для экономайзера, испарителя или пароперегревателя. В кипящем слое установлены испаритель и пароперегреватель. Уравнение теплового баланса для парообразователя и пароперегревателя запишется в виде:

2.3 Ср((h0-h1)+zn)=GгCрг(Т4-T’4)

Здесь Т4 из монограмм при Т3=651,1°К и gт=0,056

В этом случае паровое соотношение будет

2.4 =

В котле утилизаторе установлен только экономайзер. Уравнение теплового баланса экономайзера, согласно рис. 2 запишется в виде

2.5 Gв(hs-h3)=GгCрг(Tтс-T5)

2.6 =

2.7 Выбираем Тп=0,65. В этом случае вода в экономайзере нагреется до температуры ts<250°C?, т.к. Тэкп=0,55<0,65

Из уравнения теплового баланса экономайзера при Тп=0,65 следует, что теплосодержание воды на выходе из экономайзера будет

=кДж/кг

Из таблиц следует, что вода в экономайзере нагреется до температуры ts=222°C. Дальнейший нагрев воды, парообразование и перегрев пара обеспечит кипящий слой.

2.8 Количество пара, которое можно получить Gп=Gп*Тп=115*0,65=74,75кг/с. ≈ 269,1 т/ч.

2.9 Для сжигания в топке с кипящим слоем под давлением используется экибастузский уголь. При этом принимаем: Wр=6,5 Aспр=43,5 Cр=38,2 Sрп=0,4 Hр=3 Nр=0,8 Oр=7,3 Qрн=15,8 МДж/кг Vг=24 K=1,35 –коэф. размолотости.

(Под ред. Григорьева, Зорина. Книга 2., стр. 362)

2.10 Из уравнения Менделеева найден теоретический расход сухого воздуха.

U0в=3,9712 м3/кг при ρв=1,293 кг/м3, L0= U0в ρв=5,135 кг возд./кг топл.

2.11 Коэффициент избытка воздуха, поступающего в камеру с кипящим слоем принимаем равным α=1,2

2.12 Удельный расход топлива qт на 1 кг воздуха составляет величину

qт=1/ α L0 =0,1623 кг топл./кг возд.

2.12* Удельный расход топлива q*т приведенный к жидкому или газообразному на 1 кг воздуха составляет величину

q*т=1/ α L*0 =0,1623 кг топл./кг возд.

2.13 Расход топлива при qт=0,1623 кг топл./кг возд. При Gв =115 кг/с составляет величину Gт=Gв*qт=115*0,1623=18,66 кг/с ≈ 67,2 т/час угля.

2.14 Количество тепла подведенного с топливом в единицу времени. QрнGт=15800*18,66=294,8*103 кВт = 294,8 МВт.

2.15 Потери тепла с уходящими газами. QII=CргGг(Твых5-Тн)=1,07*115*(423-288) = 16,612 МВт.

2.16 В дополнительной камере сгорания при сгорании топлива выделяется следующее количество тепла Qкс=Gгcрг(Т-Т4)=115*1,255*(1270-1123)= 21,22 МДж/кг

В дополнительной камере сгорания сжигается газообразное топливо, состоящее в основном из СО, полученного в результате пиролиза угля, например экибастузского. При коэффициенте избытка воздуха α=0,5-0,8 под давлением 0,15-0,3 МПа. Теплотворная способность такого топлива Qрн=5,5 МДж/кг Из 1 т. угля получается 3500 м3 топливного газа. В дополнительной камере сгорания нужно сжигать газообразного топлива в количестве Gкст=Qкс/Qрн гп=21,22/5,5=3,86 м3/с Gкстг= Gкстρг=3,86 *1,167=4,5 кг/с

Чтобы получать такое количество газа, нужно подвергать пиролизу Gугля=Gкст/3500=9241/3500=2,64 т/час.

Из расчета реакции горения, получено требуемое количество воздуха для сгорания 1 кг топлива. L0=4,9436 кг возд./кг топл. В газах, на входе в дополнительную камеру сгорания, с расходом Gв =115 кг/с содержится G*в=α* Gг=0,2*115 = 23 кг/с

В камере сгорания может сгореть Gкст= G*в/Lкс0=23/4,9436=4,65 кг топл./с, а должно сгорать Gкстг=4,5 кг/с, следовательно количество кислорода, содержащегося в газах, идущих из камеры с кипящим слоем под давление, достаточно для сгорания топлива в дополнительной камере сгорания.

2.17 Мощность установки, с учетом внутренних потерь, составляет величину

N*уст=QрнGт+Qкс-QII=294,8 +21,22 -16,612 =299,41 МВт

2.18 Термический КПД цикла Ренкина, если пренебречь работой насоса, и с учетом нагрева воды в экономайзере за счет тепла выхлопных газов до температуры 204,5 °С.

=

2.19 Мощность паровой турбины можно определить из выражения = МВт

2.20 Мощность паровой турбины можно также определить используя T-S диаграмму действительного цикла Ренкина для паровой силовой установки, работающей на перегретом паре, рис. 5, при Р0=9 МПа и Т0=823°К.

Параметры воды и пара в точках построенной на Т-S диаграммы взяты из таблицы 3. и сведены в нижеприведенную таблицу,

Точки T-S диаграммы
3
S 494,8221,6 953
S*
1
0 823 550 3512 6,82
2

Диаграмма T-S на рис. 5 построена в масштабе μт=4 °К/мм μs=0,05 кДж/кг.К.мм. Площадь полезной работы на T-S диаграмме 3S3*1023

Полезная работа, совершенная 1 кг пара в необратимом процессе в паровой турбине, составляет величину. Lт= FΣ μт μs= 5635*4*0.05 = 1127 кДж/кг.

От паровой турбины можно получить мощность, идущую на привод электрогенератора. Nпт= LтGпηпт = 1127*74,75*0,93=78,3 МВт

Мощность паровой турбины, полученная по двум разным методикам близка.

2.21 Суммарная мощность брутто, идущая на выработку электрической энергии, составляет величину. Nэ=NΣбрутто=Nст+Nпт= 27577 + 78300=105877 кВт

2.22 КПД установки брутто.

=

2.23 При конденсации отработавшего пара в бойлере получаем горячую воду для бытовых нужд. Удельная работа отработавшего пара при его конденсации в бойлере составит величину

2.24 Тепловая мощность системы отопления и горячей воды составит величину Nбойл=Gпhбойл = 1989,5*74,75=148716 кВт = 149 МВт

2.25 С учетом тепловой мощности, полученной дополнительно в результате конденсации пара КПД установки составляет величину

=

2.26 Внутренние потери в топке котла, в газотурбинном тракте и паротурбинном тракте составляют величину

Niпотерь= Nуст- NΣбрутто- Nбойл=299,41 -105,877-148,716=44,82 МВт, что составляет 14,9% от тепла полученного от сжигания топлива в топке с кипящим слоем и в дополнительной камере сгорания. Остальные 5,3% уходят в атмосферу с выхлопными газами.


ВЫВОД

Проделав и рассчитав данную расчетно-графическую работу можно сделать вывод, что в нашем случае мощность паровой турбины, полученная по двум разным методикам, это по формуле и используя T-S диаграмму действительного цикла Ренкина для паровой силовой установки, работающей на перегретом паре близки. Так как использование и определение площади на T-S диаграмме занимает время и усложняет расчет, для инженера приемлем и удобен первый способ нахождения мощности паровой турбины.

Внутренние потери в топке котла, в газотурбинном тракте и паротурбинном тракте составили величину 44,82 МВт, что составляет примерно 14,9% от тепла полученного от сжигания топлива в топке с кипящим слоем и в дополнительной камере сгорания.


СПИСОК ЛИТЕРАТУРЫ

1. Сибикин Ю.Д., Сибикин М.Ю. «Технология энергосбережения» М. 2006г. стр. 170-172, Котлер В.Р. «Специальные топки энергетических котлов» М. 1990г. стр. 95-98

2. В.Р. Котлер – Специальные топки энергетических котлов; 1990 г. 104 с.

3. Модоян и др. Эффективное сжигание низкосортных углей в энергетических котлах М.:1993 г. 200 с.

4. А.П. Воинов - Паровые котлы на отходящих газах; 1983 г.

5. Ключников А.Д. – Энергетика, теплотехнологий и вопросы энергосбережение

6. Борисова Н.Г. Энергосбережение в теплоэнергетике и теплотехнике, уч. пособие, Алматы, 2006 г.

Статус рассмотрения проекта Координационным Советом: Не рассматривался . Объекты внедрения: Промышленность , Котельные, РТС, КТС, ТЭЦ . Эффект от внедрения:
- для объекта экономия капиталовложений на сооружение станций до 10%, экономия топлива, увеличение КПД котлоагрегатов;
- для муниципального образования снижение потребления топлива, улучшение качества и надежности теплоисточников, уменьшение тарифа для потребителей. .

Стационарный котел с кипящим слоем - стационарный котел для сжигания топлива в псевдоожиженном слое инертного материала, золы или смесей с размещением в этом слое части поверхностей нагрева.

Кипящий слой - псевдоожиженный слой, состояние слоя зернистого сыпучего материала, при котором под влиянием проходящего через него потока газа или жидкости (сжижающих агентов) частицы твёрдого материала интенсивно перемещаются одна относительно другой. В этом состоянии слой напоминает кипящую жидкость, приобретая некоторые её свойства, и его поведение подчиняется законам гидростатики. В К. с. достигается тесный контакт между зернистым материалом и сжижающим агентом, что делает эффективным применение К. с. в аппаратах химической промышленности, где необходимо взаимодействие твёрдой и текучей фаз (диффузионные, каталитические процессы и др.).

Таблица по данным ОАО "НПО ЦКТИ"

Количество

Тепловая

мощность, МВт

Год ввода в эксплуатацию

пос. Пюсси, Эстония, предприятие AS "Repo"

древ. отходы/ сланец

пос. Юри, Эстония, предприятие AS "ELVESO"

новый водогрейный котел

фрез. торф/

древ. отходы

пос. Киетавишкес, Литва, предприятие АВ "DOMINGA HARDWOOD" (совместно с АО "Казлу Рудос Металас")

древ.отходы

г. Мариямполе, Литва, "Мариямполес РК" (совместно с АО "Казлу Рудос Металас")

(оснащение нового котла топкой НТКС)

древ. отходы

пос.Максатиха Тверской обл., Максатихинский ДОК

(реконструкция существующего котла)

древ. отходы

(оснащение нового котла топкой НТКС)

древ. отходы

г.Плунге, Литва, предприятие AB "PLUNGES BIOENERGIJA" (совместно с АО "Казлу Рудос Металас")

(оснащение нового котла топкой НТКС)

древ. отходы

г. Вилейка, Белоруссия,

Мини-ТЭЦ на базе РК №3 (совместно с АО "Аксис Индастриз")

Новый паровой котел

Д=22 т/ч, р=24 бар, t=350ºC

древ. отходы

в данный момент - проведение ПНР

пос.В.Синячиха Свердловской обл., фанерный комбинат ЗАО "Фанком"

Новый паровой котел

Еп-20-2,4-350 ДФ

древ. отходы

в данный момент - стадия изготовления оборудования

Основными, присущими только кипящему слою особенностями сжигания топлива является:

Интенсивное перемешивание частиц топлива газовыми пузырями, позволяющими избежать появления в слое существенных температурных перекосов, и как, следствие, шлакования;

Интенсификация теплопередачи от кипящего слоя к теплопередающим поверхностям (частица твердого материала, охлаждаясь у поверхности трубы, омываемой рабочим телом, из-за различия плотностей отдает на несколько порядков теплоты больше, чем такая же по объему частица газа, охлаждающаяся до той же температуры; коэффициент теплоотдачи к погруженным в кипящий слой трубам составляет в современных топках ~250 Вт/м2К);

Интенсификация горения твердого топлива (объясняется увеличением удельной поверхности окисления и постоянным «обновлением» его поверхности, благодаря интенсивной пульсации, вращению, соударениям, дроблению и истиранию в мельчайшую пыль).

В топках с кипящим слоем (рис.1, 2) сжигается угольная мелочь бурых и каменных углей с размерами кусков от 2 до 12 мм.

Температура слоя, во избежание шлакования, регулируется вводом пара в количестве 0,3-0,6 кг/кг. Возможна замена пара водой, распыленной при помощи пульверизаторов (расход воды 0,2-0,3 кг/кг).

Недостатком топок с кипящим слоем являются:

Вынос углерода до 20-30% всего углерода топлива (поэтому эти топки рекомендуют применять при возможности дожигания уноса 0-1 мм, в рабочем пространстве котла);

Зашлаковывание межсоплового пространства и самих сопл воздухораспределительных колосниковых решеток при недостаточном динамическом напоре воздуха;

Абразивный износ теплопередающих поверхностей, особенно высокий у погружных в кипящий слой.

Рис. 1. Полугазовая топка с кипящим слоем.

1 - бункер для топлива; 2 - шнековый питатель; 3 - колосниковая решетка; 4 - дутьевая коробка для подачи первичного воздуха; 5 - подача вторичного воздуха; 6 - затвор бункера; 7 - дутьевой вентилятор.

Рис. 2. Топка с кипящим слоем и с погруженным теплообменником.

1 - воздухораспределительная решетка; 2 - теплообменник; 3 - шлаковый питатель; 4 - горелка растопочная; 5 - устройство для накопления и удаления золы; 6 - винтовой конвейер.


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Введение

Для теплоснабжения комплекса поверхности и обогрева стволов на шахтах Украины используются собственные котельные, значительное количество которых работает на твердом топливе. Это обусловлено достаточными запасами энергетических углей, однако доля углей ухудшенного качества, с зольностью до 50%, в общем балансе твердого топлива в стране приближается к 39% и, в дальнейшем, будет возрастать из–за разработки тонких пластов . При сжигании высокозольных углей коэффициенты полезного действия угольных котлов снижаются, теплопроизводительность их не достигает расчетной, в результате снижается надежность теплоснабжения потребителей.

Одной из эффективных технологий сжигания низкосортных и высокозольных (до 80%) углей является использование низкотемпературного кипящего слоя (НТКС). Данный метод сжигания топлива отличается высоким уровнем смешения топлива и окислителя, повышенным по сравнению со слоевыми топками временем пребывания топлива в зоне горения, интенсивным теплоотводом к поверхностям нагрева, отсутствием движущихся частей в топочном объёме, возможностью сжигания в одном агрегате топлив различного состава и качества, пониженным до 1–5% содержанием топлива в слое. Технология НТКС облегчает воспламенение топлива, препятствует спеканию топливных частиц и шлакованию конвективных поверхностей нагрева .

1. Актуальность темы

В связи с увеличением доли углей ухудшенного качества, с зольностью до 50%, связанных с увеличением количества тонких пластов в стране, актуально применение котельных установок с низкотемпературным кипящим слоем, способных использовать данный вид топлива.

В настоящее время управление котлоагрегатом с низкотемпературным кипящим слоем осуществляется оператором вручную и не всегда проходит успешно и, как следствие, сопровождается вынужденным непроизводительным простоем оборудования, а в худшем случае полной остановкой технологического процесса.

Данные котельные установки применяются на территории Украины продолжительное время. За весь период усовершенствование систем автоматизации объектов не производилось. В условиях реструктуризации и перехода к рыночным механизмам в энергетике Украины требования к котельным установкам повышается. К сожалению устаревшая аппаратура не способна выводить котлоагрегат на требуемые характеристики. Необходима модернизация аппаратуры автоматизации котельной установки.

2. Харатерисики объекта автоматизации

Сжигание в кипящем слое – одна из технологий сжигания твёрдых топлив в энергетических котлах, при которой в топке создаётся кипящий слой из частиц топлива и негорючих материалов. Технология была привнесена в энергетику из химической промышленности примерно в 1970–е гг. .

Рисунок 1 – Способы сжигания твердого топлива
(анимация: 4 кадров, 20 циклов повторения, 26 килобайт)

2.1 Технологии сжигания топлив

В восходящем потоке газа загрузка из твёрдых частиц может находиться в трёх состояниях:

  • в покоящемся, когда скорость газа мала и он не может поднять частицы – характерен для слоевых топок;
  • в режиме пневмотранспорта, когда частицы переносятся с быстрым потоком газа – в камерных топках;
  • в псевдоожиженном состоянии при промежуточной скорости газа, когда он при прохождении через слой «раздвигает» частицы и увеличивает его толщину, понижая плотность, но не способен унести частицу за пределы слоя. Этот последний режим и создаётся в топках кипящего слоя.

Кипящий слой может быть высокотемпературным и низкотемпературным (800–900 °C), в настоящее время по ряду причин почти всегда используется второй. В частности, в нём весьма эффективно подавляется выделение оксидов азота и можно применить погружную поверхность, к которой исключительно высок коэффициент теплоотдачи (нагретые частицы топлива соприкасаются с ней непосредственно, и часть тепла передаётся не конвекцией, а теплопроводностью). Для регулировки температуры слоя во избежание шлакования можно вводить воду и пар, но в принципе из–за высокой абразивности этого слоя топки с его применением к шлакованию не склонны.

В кипящий слой вводят значительное количество инертных наполнителей – шлак, песок, доломит, известняк; они повышают теплоотдачу. Доломит и известняк, помимо этого, связывают в карбонаты до 90 % оксидов серы. Топливом могут служить уголь (в том числе в виде остатков в золе от низкоэффективных котлов), горючий сланец, торф, древесные и иные отходы.

Топки кипящего слоя не чувствительны к качеству топлива в смысле его химического состава, но чувствительны к однородности фракционного состава частиц топлива и инертной засыпки. Горение в данных топках более интенсивное, чем в обычных слоевых, их габариты меньше; однако для них требуется создать воздухораспределительная решётка и вентилятор большей мощности. В числе других недостатков этого типа топок:

  • вынос до 20–30 % всего углерода топлива (поэтому эти топки рекомендуют применять при возможности дожигания уноса размером 0–1 мм в рабочем пространстве котла);
  • зашлаковывание межсоплового пространства и самих сопл воздухораспределительных колосниковых решеток при недостаточном динамическом напоре воздуха;
  • очень большой абразивный износ теплопередающих поверхностей, особенно высокий у погружных.

Эффект интенсивного горения, аналогичный наблюдаемому при сжигании в кипящем слое, можно получить постоянным встряхиванием колосника с кусками топлива любого размера; но из–за снижения прочности металла колосника при высокой температуре этот способ сложно практически реализовать.

Топки кипящего слоя под давлением до 16 кгс/см² с глубокой очисткой газа от золы могут использоваться для организации работы газовых турбин на твёрдом топливе (в составе высоконапорного парогенератора ПГУ)

2.2 Описание технологии НТКС

В последние годы проявляется повышенный интерес к котлам, оборудованным топками с псевдосжиженным или кипящим слоем (рисунок 2). Эти топки занимают промежуточное положение между топками слоевого сжигания и факельными. Со слоевыми топками их объединяет прежде всего возможность сжигания дробленки с размером кусков до 10–20 мм и наличие решетки, через которую в слой подается воздух. При повышении скорости воздуха, продуваемого через слой, наступает момент, когда аэродинамическая сила, действующая на каждую частицу топлива, преодолевает силы взаимного трения частиц. Дальнейшее увеличение расхода воздуха приводит к псевдосжижению частиц топлива, слой как бы кипит (отсюда название кипящий слой), высота и пористость его увеличивается.

Минимальную скорость, при которой начинается псевдосжижение, называют первой критической скоростью Wкр1; при второй критической скорости Wкр2 аэродинамическая сила становится равной силе тяжести частиц топлива, и начинается их интенсивный вынос из слоя. Оба эти параметра имеют строго определенные значения только для монодисперсного материала с постоянной плотностью, а слой, как известно, состоит из полифракционного инертного материала и частиц топлива разной плотности.

Реальные топочные устройства с кипящим слоем работает со скоростями от Wкр1 до Wкр2. Различают топки с обычным, или стационарным кипящим слоем (когда скорость в нем близка к Wкр1) и топки с циркулирующим кипящим слоем (когда скорость близка к Wкр2). В последнем случае из слоя выносится значительная часть недогоревшего топлива, которое улавливается затем в горячих циклонах и возвращается для обжигания .

Важно отметить, что в топках с кипящим слоем количество горючего материала составляет обычно небольшую долю от массы слоя, основу его составляет инертный материал или зола топлива (при сжигании высокозольных углей). Интенсивное перемешивание твердых частиц под воздействием сжижающего воздуха, проходящего через слой зернистого материала, обеспечивает повышенный тепло- и массообмен в слое. Погружение в кипящий слой поверхностей нагрева позволяет поддерживать температуру на таком уровне, при котором не происходит зашлаковки слоя.

Рисунок 2 - Схема котла со стационарным кипящем слоем при атмосферном давлении:
1 – парогенерирующие панели; 2 – мембранный экран; 3 – циклон; 4 – фильтр; 5 – дымовая труба; 7 – уголь; 8 – известняк; 9 – твердые частицы из циклона; 10 – транспортирующий воздух; 11 – воздух для горения; 12 – удаление шлака; 13 – кипящий слой.

К основным достоинствам метода сжигания твердого топлива в кипящем слое относятся следующие:

  • обеспечивается высокий коэффициент теплопередачи;
  • длительное пребывание частиц в слое позволяет сжигать уголь с повышенной зольностью и отходы производства;
  • появляется возможность создать более компактное топочное устройство без системы пылеприготовления, при этом снижаются удельные капитальные затраты на сооружение котельной, а также ремонтные расходы;
  • добавка известняка в слой связывает серу топлива с зольным остатком, что уменьшает выбросы сернистого ангидрида с дымовыми газами в атмосферу;
  • низкие температуры в слое (800–950°С) обеспечивают отсутствие термических оксидов азота, что в некоторых случаях сокращает выбросы оксидов азота в атмосферу.

Большой опыт использования в энергетике топочных устройств с кипящим слоем накоплен в ФРГ, США, Финляндии и некоторых других странах. В последние годы большое внимание уделяется топкам с циркулирующим кипящим слоем. Эти котлы отличаются прежде всего наличием циклонов, в которых улавливается вынесенные из слоя крупные частицы (рисунок 3). Тепловое напряжение сечения в таких топках достигает 4–8 МВт/кв.м, а скорость газов в слое – 3–8 м/с. Аналогичные параметры у топок со стационарным кипящим слоем равны соответственно 2 МВт/кв.м. и 1–2,5 м/с. Топки с циркулирующим кипящим слоем отличаются более высокой степенью выгорания топлива (примерно 99% против 90–95% у котлов со стационарным кипящим слоем), они могут работать с меньшим коэффициентом избытка воздуха (1,1–1,15 вместо 1,2–1,25).

Система подачи топлива у котлов с циркулирующим кипящим слоем проще, они менее требовательны к качеству топлива и лучше приспособлены к его ступенчатому сжиганию, необходимому для снижения выбросов оксидов азота. Такие топки позволяют связывать более 90% серы при мольном отношении Са/S=2, в то время как в топки со стационарным кипящим слоем для связывания 80–90% серы требуется подавать больше известняка (Са/S=3).

Самый крупный в Европе котел с циркулирующим кипящим слоем сооружен фирмой Zurgi в Дуйсбурге (ФРГ). К середине 1987 г. он отработал около 10 тыс.ч. Паропроизводительность котла составляет 270 т/ч, давление свежего пара – 14,5 МПа, температура перегрева – 535°С.

Рисунок 3 - Схема котла с циркулирующим кипящим слоем при атмосферном давлении:
1 – уголь и известь; 2 – вторичный воздух; 3 – реактор с кипящим слоем; 4 – испарительная часть; 5 – циклон; 6, 11 – паровые котлы; 7 – электрофильтр; 8 – воздухоподогреватель; 9 – дымовая труба; 10 – зола; 12 – охладитель материала; 13 – воздух; 14 – первичный воздух.

В последнее время значительно расширились исследования топок с кипящим слоем под давлением (рисунок 4). Основное достоинство таких топок состоит в возможности осуществления комбинированного цикла, когда генерируемый в котле пар используется в паровой турбине, а продукты сгорания повышенного давления – в газовой турбине. При этом повышается термодинамический КПД цикла, еще в большей степени сжижаются габаритные размеры топочных устройств (почти на 60% по сравнению с котлами обычного типа) и уменьшаются вредные выбросы в атмосферу.

Широкое внедрение котлов с топками кипящего слоя под давлением сдерживается тем, что имеется еще ряд нерешенных проблем. Например, продукты сгорания, которые используются в газовой турбине, требуют тщательной очистки. Тканевые фильтры в этом случае нельзя использовать из–за высокой температуры газов, а механические золоуловители не обеспечивают необходимой степени очистки газов. Вторая нерешенная проблема – обеспечение плотности установки, работающей под давлением до 1,4 МПа.

Рисунок 4 – Принципиальная схема установки с кипящим слоем под давление:
1 – газотурбинная установка; 2 – уходящие газы; 3 – циклон; 4 – зола; 5 – камера с кипящем слоем под давлением; 6 – паротурбинная установка; 7 – уголь и известь; 8 – воздух.

Энергетическая компания American Electric Power еще в 1976 г. заявила о сооружении демонстрационного энергоблока мощностью 170 МВт с топкой кипящего слоя под давлением. Предварительно были проведены испытания на плотной установке в Лизенхэд (Великобритания). Они подтвердили, что выбросы сернистого ангидрида и оксидов азота существенно уменьшаются, работоспособность лопаточного аппарата ГТУ а продуктах сгорания повышается.

2.3 Автоматизация котельных агрегатов

Контроль за протеканием теплотехнического процесса на ряду с реализацией задач аварийных блокировок, обеспечивает ведение технического режима в строгом соответствии с нормами технологического регламента. Решение этих задач полностью исключает остановку котлов из–за неконтролируемых нарушений границ технологического регламента, а также резко повышает безопасность работы всех технологической системы .

Рисунок 5 – Структурная схема регулирования параметров котла, оборудованного топкой низкотемпературного кипящего слоя:
1 – дутьевой вентилятор; 2 – исполнительный механизм МЭО; 3 – забрасыватель топлива; 4 – котел; 5 – прямоточный циклон; 6 – экономайзер; 7 – циклоны первой и второй ступени очистки дымовых газов;
8 – дымосос; 9 – подпиточный трубопровод; 10, 11, 12, 13, 14 – регуляторы соответственно разряжение, уровня, выпуска шлака, расхода воздуха и топлива.

Структурной схемой автоматизации котлоагрегатов (рисунок 5) предусматривается выполнение следующих мероприятий :

1. Контроль следящих параметров:

  • температура отходящих дымовых газов;
  • давление дутьевого воздуха;
  • разрежение в топке котлоагрегата;
  • температура воздуха при розжиге;
  • температура в слое;
  • температура горячей воды или давление пара в барабане котла;
  • расход горячей воды или пара;
  • ток двигателя дутьевого вентилятора;
  • ток двигателя дымососа;
  • давление до и после жидкого топлива;
  • температура газов перед экономайзером и дымососом;
  • давление воды перед погружными поверхностями нагрева;
  • давление горячей воды после котлоагрегата;
  • разряжение перед экономайзером, циклоном, дымососом;
  • содержание кислорода в дымовых газах;
  • уровень кипящего слоя;
  • уровень воды в барабане котла (для паровых котлов).

2. Сигнализация и защита:

  • давление дутьевого воздуха низко;
  • разряжение в топке низко;
  • температура в слое высока или низка;
  • отсутствие протока воды через котел;
  • давление пара высоко;
  • температура воды высока;
  • аварийный уровень в барабане котла;
  • температура при розжиге высока;
  • отсутствие пламени при розжиге котлоагрегата.

3. Дистанционное управление механизмами котлоагрегата:

  • дымосос – дистанционно;
  • дутьевым вентилятором – дистанционное сблокированное с дымососом и схемой защиты котлоагрегата;
  • вентилятор возврата уноса №1 и №2 – дистанционное сблокированное с дутьевым вентилятором;
  • забрасывателем угля – дистанционное сблокированное с дутьевым вентилятором и схемой защиты котлоагрегата;
  • насосом подачи жидкого топлива – дистанционное и местное с контролем пламени в зависимости от числа розжиговых форсунок;
  • разгрузчиком золы;
  • вибратором;
  • конвейером золоудаления;
  • разгрузчиком уловленных частиц из первой ступени газоочистки.

4. Автоматическое регулирование

Выводы

Повышение цен на энергоносители, дефицит собственных топливных ресурсов, снижение качества угля, рост требований к уменьшению загрязнения окружающей среды требуют внедрения в производство более совершенного метода сжигания угля.

Именно наличие топливно–энергетических ресурсов определяют темпы и масштабы развития отдельных районов промышленного и сельскохозяйственного производства. Главными задачами являются обеспечения более комплексной переработки сырья, создание ресурсосберегающей техники и технологий, резкого сокращения потерь и отходов. В последние годы во многих странах структурная перестройка топливного баланса с целью уменьшения зависимости от нефти и газа возродила интерес к угольной тематике.

При написании данного реферата квалификационная работа магистра не завершена. Дата окончательного завершения работы: 15 декабря 2012 г. Полный текст работы и материалы по теме работы могут быть получены у автора или его научного руководителя после указанной даты.

Список источников

  1. Ж.В. Вискин Сжигания угля в кипящем слое и утилизация его отходов, Донецк 1997, – 283 с.
  2. Сургай М. Пріоритети у вугіллі й ціна їхньої недооцінки / М. Сургай // Віче. Журнал Верховної Ради України. Київ, 2008. № 3. – с. 40–45.
  3. Приборы регулирующие Р–25. Техническое описание и инструкция по эксплуатации. – М.: Завод тепловой автоматики, 1985. – 48 с.
  4. Файерштейн Л.М. и др. Справочник по автоматизации котельных/ М.: Энергоатомиздат, 1985.– 296с.
  5. Махорин К. Е. Сжигание топлива в псевдоожиженном слое / К. Е. Махорин, П. А. Хинкис К.: Наукова думка, 1989. – 204 с.
  6. Киричков В. Н. Построение адаптивных моделей динамических объектов по данным эксперимента / В. Н. Киричков, А. Н. Сильвестров. К.: Вища школа. Головное издательство, 1985. – 68 с.
  7. Макроклиматические районы земного шара с холодным и умеренным климатом: ГОСТ 25870–83.[Действует с 1984–07–01]. – М.: Государственный комитет СССР по стандартам, 1983.
  8. Неежмаков С. В. Исследование математической модели топки кипящего слоя шахтного автономного воздухоподогревателя С. В. Неежмаков // Праці Таврійського державного агротехнологічного університету.
    – Вип. 8. Т. 10. – Мелітополь: ТДАТУ, 2008. С. 173–180.
  9. О результатах разработки аналитических и численных методов оценки макрокинетических характеристик процессов термохимической переработки одиночных топливных частиц в кипящем слое /[Корчевой Ю. П., Майстренко А. Ю., Пацков В. П. и др.]. Киев, 1994. – 77 с. – (Препринт/Ин–т проблем энергосбережения НАНУ, Отделение ВПЭ).