Основные зрительные функции, особенности их развития у детей. Центральное зрение: характеристика и методы исследования. Возрастные особенности зрительного анализатора Функции зрения возрастные особенности метод исследования таблица

Зрительная сенсорная система. Понятие о рефракции и ее изменение с возрастом. Возрастные особенности зрения: зрительные рефлексы, световая чувствительность, острота зрения, аккомодация, конвергенция. Развитие цветового зрения у детей

Среди раздражителей внешней среды для человека особенно большое значение имеют зрительные. Большая часть сведений о внешнем мире связана со зрением.

Строение глаза.

Глаз расположен в глазнице черепа. От стенок глазницы к наружной поверхности глазного яблока подходят мышцы, с их помощью глаз двигается.

Защищают глаз брови, они отводят в стороны стекающий со лба пот. Веки и ресницы защищают глаз от пыли. Слезная железа, расположенная у наружного угла глаза выделяет жидкость, которая увлажняет поверхность глазного яблока, согревает глаз, смывает попадающий на него посторонние частицы, а затем стекают из внутреннего угла по слезному каналу в носовую полость.

Глазное яблоко покрыто плотной белочной оболочкой, защищающей его от механических и химических повреждений и проникновения посторонних частиц и микроорганизмов снаружи. Это оболочка в передней части глаза прозрачна. Она называется роговицей. Роговица свободно пропускает лучи света.

Средняя сосудистая оболочка пронизана густой сетью кровеносных сосудов, снабжающих глазное яблоко кровью. На внутренней поверхности этой оболочки тонким слоем лежит красящее вещество - черный пигмент, который поглощает световые лучи. Передняя часть сосудистой оболочки глаза называются радужкой. Цвет ее (от светло - голубого до темно- коричневого) определяется количеством и распределением пигмента.

Зрачок - отверстие в центре радужной оболочки. Зрачок регулирует поступление внутрь глаза лучей света при ярком освещений зрачок рефлекторно сжимается. При слабом освещений зрачок расширяется. За зрачком прозрачный двояковыпуклый хрусталик. Он окружен ресничной мышцей. Всю внутреннюю часть глазного яблока заполняют стекловидное тело - прозрачное студенистое вещество. Глаз пропускает лучи света таким образом, что изображение предметов фиксируется на внутренней оболочке - сетчатке. В сетчатке расположены рецепторы глаза - палочки и колбочки. Палочки - рецепторы сумеречного света, колбочки раздражаются только ярким светом, с ним связано цветное зрение.

В сетчатке происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг к зрительной зоне коры больших полушарий. В этой зоне происходит окончательное различии раздражений - формы предметов, их окраски, величины, освещённости, расположение и движение.

Рефракция глаза -- преломляющая сила оптической системы глаза при покое аккомодации. Преломляющая сила оптической системы зависит от радиуса кривизны преломляющих поверхностей (роговица, хрусталик) и от состояния их друг от друга. Светопреломляющий аппарат глаза имеет сложное строение; он состоит из роговицы, камерной влаги, хрусталика и стекловидного тела. Луч света на пути до сетчатки должен пройти четыре преломляющие поверхности: переднюю и заднюю поверхности роговицы и переднюю и заднюю поверхности хрусталика. Преломляющая сила оптической системы глаза составляет в среднем 59,92 D. Для рефракции глаза имеет значение длина оси глаза, т. е. расстояние от роговицы до желтого пятна. Это расстояние составляет в среднем 25,3 мм. Поэтому рефракция глаза зависит от соотношения между преломляющей силой и длиной оси, что определяет положение главного фокуса по отношению к сетчатке и характеризует оптическую установку глаза. Различают три основные рефракции глаза: эмметропию, или «нормальную» рефракцию глаза, дальнозоркость и близорукость. Рефракция глаза изменяется с возрастом. У новорожденных наблюдается преимущественно дальнозоркость. В период роста человека происходит сдвиг рефракции глаза в сторону ее усиления, т. е. близорукости. Изменения рефракции глаза обусловлены ростом организма, в период которого удлинение оси глаза выражено больше, чем изменение преломляющей силы оптической системы. В пожилом возрасте происходит небольшой сдвиг рефракции глаза в сторону ее ослабления за счет изменений в хрусталике. Рефракцию глаза определяют субъективным и объективным методами. Субъективный метод основан на определении остроты зрения при помощи стекол. Объективными методами определения рефракции глаза являются скиаскопия и рефрактометрия, т. е. определение рефракции глаза при помощи специальных приборов -- глазных рефрактометров. Этими приборами рефракцию глаза определяют по положению дальнейшей точки ясного зрения.

Конвергенция глаз (от лат. con сближаюсь, схожусь) сведение зрительных осей глаз по отношению к центру, при котором точечные световые раздражители, отражаемые от предмета наблюдения, попадают на корреспондирующие места сетчаток в обоих глазах, за счет чего достигается устранение двоения предмета.

Однако зрительная система новорожденного не похожа на зрительную систему взрослого человека. Анатомическое строение органов зрения, обеспечивающее зрительные функции, в процессе созревания организма претерпевает значительные изменения. Зрительная система новорожденного еще несовершенна, и ей предстоит бурное развитие.

Во время роста малыша глазное яблоко изменяется весьма медленно, Наиболее сильное его развитие приходится на первый год жизни. Глазное яблоко новорожденного короче глаза взрослого человека на 6 мм (т.е. имеет укороченную переднезаднюю ось). Это обстоятельство - причина того, что глаз недавно родившегося ребенка обладает дальнозоркостью, то есть малыш плохо видит близкие предметы. И глазной нерв, и мышцы, двигающие глазное яблоко, у новорожденного сформированы не полностью, Такая незрелость глазодвигательных мышц формирует физиологическое, т.е. совершенно нормальное для периода новорожденности косоглазие.

Размер роговицы также увеличивается очень медленно. У новорожденных она имеет относительно большую толщину, чем у взрослого человека, резко отграничена от белковой оболочки и выступает сильно вперед в виде валика, Отсутствие в роговице глаза кровеносных сосудов объясняет ее прозрачность. Однако у детей первой недели жизни роговица может быть не полностью прозрачной из-за временного отека - это нормальное явление, но если оно сохраняется после 7 дней жизни, то это должно настораживать. Наблюдение с первых дней новорожденного привлекают овальная форма и движущиеся предметы с блестящими пятнами. Такой овал соответствует человеческому лицу.

У детей и взрослых людей до 25-30 лет хрусталик эластичен и представляет собой прозрачную массу полужидкой консистенции, заключенную в капсулу. У новорожденных хрусталик имеет целый ряд характерных особенностей: он почти круглой формы, радиусы кривизны передней и задней его поверхностей почти одинаковы, С возрастом хрусталик плотнеет, вытягивается в длину и приобретает форму чечевичного зерна. Особенно сильно он растет в течение первого года жизни (диаметр хрусталика глаза ребенка в возрасте 0-7 дней составляет 6,0 мм, а в возрасте 1 года -7,1 мм).

Радужная оболочка имеет форму диска, в центре которого находится отверстие (зрачок). Функция радужной оболочки - участие в световой и темновой адаптации глаза. При ярком освещении зрачок суживается, при слабом - расширяется. Радужная оболочка окрашена и просвечивает через роговицу. Окраска радужки зависит от количества пигмента. Когда его много - глаза темно- или светло-карие, а когда мало - серые, зеленоватые или голубые. Радужная оболочка у новорожденных содержит мало пигмента (цвет глаз, как правило, голубой), выпуклая и имеет воронкообразную форму. С возрастом радужка становится толще, богаче пигментом и теряет свою первоначальную воронкообразную форму.

Палочки отвечают за черно-белое или сумеречное зрение, а также помогают контролировать периферическое пространство относительно точки фиксации глаза. Колбочки определяют цветное зрение и из-за того, что их максимальное количество находится в центральном отделе сетчатки (желтом пятне), куда приходят лучи, сфокусированные всеми линзами глаза, они играют исключительную роль в восприятии объектов, расположенных в точке фиксации взгляда.

От палочек и колбочек отходят нервные волокна, образующие зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг. Сетчатка новорожденных обнаруживает признаки неполного развития. Об особенностях и развитии цветного зрения у малышей будет сказано далее.

Специфика зрения новорожденного - мигательный рефлекс. Суть его заключается в том, что сколько бы вы ни размахивали предметами возле глаз - малыш не мигает, а вот на яркий и внезапный пучок света он реагирует. Это объясняется тем, что при рождении зрительный анализатор ребенка находится еще в самом начале своего развития. Зрение новорожденного оценивается на уровне ощущения света. То есть малыш способен воспринимать только сам свет без восприятия структуры изображения.

Анатомия глаза Орган зрения представлен глазным яблоком и вспомогательным аппаратом. Глазное яблоко включает в себя несколько составляющих: светопреломляющий аппарат, представленный системой линз: роговицей, хрусталиком и стекловидным телом; аккомодационный аппарат (радужная оболочка, цилиарная область и ресничный поясок), обеспечивающий изменение формы и преломляющей силы хрусталика, фокусировку изображения на сетчатке, приспособление глаза к интенсивности освещения; и световоспринимающий аппарат, представленный сетчаткой. К вспомогательному аппарату относятся веки, слезный аппарат и глазодвигательные мышцы. Развитие зрения малыша внутриутробное зрение ребенка исследовано очень мало, однако известно, что даже рожденный на 28-й неделе беременности младенец реагирует на яркий свет. Малыш, родившийся на 32-й неделе беременности, закрывает глаза на свет, а родившийся в срок (на 37-40-й неделе) поворачивает глаза, а чуть позже и головку к источнику света и движущимся предметам. Наблюдение одним из наиболее важных достижений первых двух-трех месяцев будет постепенное развитие способности плавно прослеживать движущийся в разных направлениях и с разной скоростью предмет.

Процесс совершенствования зрения начинается сразу после рождения. В течение первого года активно развиваются участки коры головного мозга, в которых находятся центры зрения (они расположены в затылочной части), получающие информацию об окружающем мире. "Оттачивается" содружественное (одновременное) движение глаз, нарабатывается опыт зрительного восприятия, пополняется "библиотека" зрительных образов. Зрение новорожденного оценивается на уровне ощущения света. Младенцы, которым несколько дней от роду, видят вместо лиц неясные силуэты и размытые контуры с пятнами на месте глаз и рта. В дальнейшем острота зрения растет, увеличиваясь в сотни раз, и к концу первого года жизни составляет 1/3-V2 от взрослой нормы. Максимально быстрое развитие зрительной системы происходит в первые месяцы жизни малыша, При этом сам акт зрения стимулирует ее развитие. Только глаз, на сетчатку которого постоянно проецируется окружающий мир, способен развиваться нормально.

Первая-вторая недели жизни. Новорожденные практически не реагируют на зрительные стимулы: под влиянием яркого света у них сужаются зрачки, закрываются веки, глаза при этом бесцельно блуждают. Однако было замечено, что с первых дней новорожденного привлекают овальная форма и движущиеся предметы с блестящими пятнами. Это вовсе не ребус, просто такой овал соответствует человеческому лицу. Ребенок может следить за движениями такого "лица", а если при этом с ним разговаривают, он моргает. Но хотя ребенок и обращает внимание на форму, похожую на человеческое лицо, это не означает, что он узнает кого-то из людей, окружающих его. На это ему потребуется еще много времени. На первой-второй неделе жизни зрение малыша пока еще слабо связано с сознанием. Известно, что острота зрения у новорожденного намного слабее, чем у взрослого человека. Такое слабое зрение объясняется тем, что сетчатка все еще формируется, а желтое пятно (тот участок сетчатки, где достигается зрение 1,0 - т.е. 100%) еще даже не образовалось. Если бы такое зрение наблюдалось у взрослого человека, он испытывал бы серьезные трудности, но для новорожденного самое важное - это то, что крупно и близко: мамино лицо и грудь. Поле зрения малыша является резко суженым, поэтому человек, стоящий сбоку от ребенка или позади мамы, ребенком не воспринимается.

Вторая-пятая недели жизни. Младенец может фиксировать взгляд на любом световом источнике. Приблизительно на пятой неделе жизни появляются координированные движения глаз в горизонтальном направлении. Однако эти движения еще не совершенны - опускание и подымание глаз начинается позже. Малыш способен только на короткое время фиксировать взглядом медленно движущийся предмет и следить за его перемещением. Поле зрения ребенка в возрасте около месяца все еще является резко суженным, малыш реагирует только на те объекты, которые находятся от него на близком расстоянии и в пределах всего 20-30°. Кроме того, острота зрения остается еще очень слабой.

Первый месяц. Малыш способен устойчиво фиксировать взгляд на глазах взрослого. Однако зрение ребенка вплоть до четвертого месяца жизни все еще считается слаборазвитым.

Второй месяц. Ребенок начинает осваивать ближнее пространство. Он фокусирует взгляд на игрушках. При этом задействованы зрение, слух и осязание, которые взаимно дополняют и контролируют друг друга. У ребенка складываются первые представления об объемности предмета. Если мимо него "проплывают" красочные игрушки, он будет следить за ними взглядом и во всех направлениях: вверх, вниз, влево, вправо. В этот период возникает предпочтение смотреть на контрастные простые фигуры (черно-белые полосы, круги и кольца и т.д.), движущиеся контрастные объекты и вообще новые предметы. Ребенок начинает рассматривать детали лица взрослого, предметов, узоров.

Таким образом, одним из наиболее важных достижений первых двух-трех месяцев будет постепенное развитие способности плавно прослеживать движущийся в разных направлениях и с разной скоростью предмет.

Третий-четвертый месяц. Уровень развития движений глаз у ребенка уже достаточно хороший. Однако ему еще сложно дается плавное неотрывное слежение за объектом, движущимся по кругу или описывающим в воздухе "восьмерку". Острота зрения продолжает повышаться.

К трем месяцам дети начинают по-настоящему радоваться ярким цветам и подвижным игрушкам, как, например, подвесные погремушки. Такие игрушки отлично способствуют развитию зрения у ребенка, С этого периода малыш способен улыбаться, увидев что-то знакомое. Он следит за перемещающимся во всех направлениях лицом взрослого или предметом на расстоянии от 20 до 80 см, а также смотрит на свою руку и предмет, который в ней держит.

Когда ребенок тянется за предметом, он, как правило, неверно оценивает расстояние до него, кроме того, малыш часто ошибается и в определении объемности предметов. Он пытается "взять" цветок с платья мамы, не понимая, что этот цветок составляет часть плоского рисунка. Это объясняется тем, что вплоть до конца четвертого месяца жизни мир, отраженный на сетчатке глаза, все еще остается двухмерным. Когда малыш откроет третье измерение и сможет оценить расстояние до своей любимой погремушки, он научится совершать прицельное хватание. Анализируя малейшие расхождения между зрительными образами обоих глаз, мозг получает представление о глубине пространства. У новорожденных сигналы поступают в мозг в смешанном виде. Но постепенно нервные клетки, воспринимающие картину, разграничиваются, и сигналы становятся четкими. Восприятие объема у детей развивается тогда, когда они начинают передвигаться в пространстве.

В возрасте четырех месяцев ребенок способен предугадывать события, которые должны произойти. Всего несколько недель назад он продолжал кричать от голода до тех пор, пока сосок не попадал к нему в рот. Теперь, увидев маму, он тут же реагирует тем или иным способом. Он может либо замолчать, либо начать кричать еще громче. Очевидно, в сознании ребенка устанавливается связь, основанная на определенном стереотипе. Таким образом, можно заметить установление связи между зрительными способностями и сознанием. Наряду с тем, что ребенок начинает осознавать функции окружающих предметов (для чего эти предметы предназначены), он приобретает способность реагировать на их исчезновение. Малыш будет следить за двигающейся погремушкой и пристально смотреть на то место, где он видел ее в последний раз. Ребенок пытается восстановить в памяти траекторию движения погремушки.

Где-то между тремя и шестью месяцами жизни ребенка сетчатая оболочка его глаз развивается настолько, что он может различать мелкие детали предметов. Малыш уже способен переводить взгляд с близкого предмета на отдаленный и обратно, не теряя его из вида. С этого периода у малыша развиваются следующие реакции: моргание при быстром приближении предмета, рассматривание себя в отражении зеркала, узнавание груди.

Шестой месяц. Ребенок активно рассматривает и обследует свое ближайшее окружение. Он может испугаться, оказавшись в новом месте. Теперь для ребенка особенно важными являются зрительные образы, с которыми он сталкивается. До этого малыш, играя со своей любимой игрушкой, ударял по предмету в поисках интересных ощущений, затем хватал ее, чтобы засунуть в рот. Шестимесячный ребенок уже берет предметы, чтобы рассмотреть их. Хватание становится все более точным. На основе этого формируется зрительное представление о расстоянии, что, в свою очередь, развивает у малыша трехмерное восприятие. Ребенок способен выбрать взглядом любимую игрушку. Ему уже удается фокусировать свои глаза на предмете, находящемся на расстоянии 7-8 см от его носа.

Седьмой месяц. Одна из самых характерных особенностей ребенка в этот период - умение замечать мельчайшие детали окружающей обстановки. Малыш сразу же обнаруживает рисунок на новой простыне. Кроме того, он начинает интересоваться взаимосвязью окружающих предметов.

Восьмой-двенадцатый месяцы. В этот период ребенок воспринимает предмет не только в целом, но и по его частям. Он активно начинает искать предметы, которые внезапно исчезают из поля его зрения, т.к. понимает, что предмет не перестал существовать, а находится в другом месте. Выражение лица малыша меняется в зависимости от выражения лица взрослого. Он способен отличить "своих" от "чужих". Острота зрения еще увеличивается.

От года до 2 лет. Достигается почти полная согласованность движений глаз и рук. Ребенок наблюдает, как взрослый пишет или рисует карандашом. Он способен понимать 2-3 жеста ("пока", "нельзя" и др.).

В возрасте 3-4 лет зрение ребенка становится почти таким же, как и у взрослого человека.

■ Общая характеристика зрения

■ Центральное зрение

Острота зрения

Цветоощущение

■ Периферийное зрение

Поле зрения

Светоощущение и адаптация

■ Бинокулярное зрение

ОБЩАЯ ХАРАКТЕРИСТИКА ЗРЕНИЯ

Зрение - сложный акт, направленный на получение информации о величине, форме и цвете окружающих предметов, а также их взаиморасположении и расстояниях между ними. До 90% сенсорной информации мозг получает благодаря зрению.

Зрение состоит из нескольких последовательных процессов.

Отраженные от окружающих предметов лучи света фокусируются оптической системой глаза на сетчатку.

Фоторецепторы сетчатки трансформируют световую энергию в нервный импульс благодаря вовлечению зрительных пигментов в фотохимические реакции. Зрительный пигмент, содержащийся в палочках, называют родопсином, в колбочках - йодопсином. Под воздействием света на родопсин входящие в его состав молекулы ретиналя (альдегида витамина A) подвергаются фотоизомеризации, вследствие чего и возникает нервный импульс. По мере расходования зрительные пигменты ресинтезируются.

Нервный импульс от сетчатки поступает по проводящим путям в корковые отделы зрительного анализатора. Головной мозг в результате синтеза изображений от обеих сетчаток создает идеальный образ увиденного.

Физиологический раздражитель для глаза - световое излучение (электромагнитные волны длиной 380-760 нм). Морфологическим субстратом зрительных функций служат фоторецепторы сетчатки: количество палочек в сетчатке составляет около 120 миллионов, а

колбочек - около 7 миллионов. Наиболее плотно колбочки расположены в центральной ямке макулярной области, в то время как палочек здесь нет. Дальше от центра плотность колбочек постепенно умень- шается. Плотность палочек максимальна в кольце вокруг фовеолы, по мере приближения к периферии их количество также уменьшается. Функциональные отличия палочек и колбочек следующие:

Палочки высокочувствительны к очень слабому свету, но не способны передавать ощущение цветности. Они отвечают за периферическое зрение (название обусловлено локализацией палочек), которое характеризуется полем зрения и светоощущением.

Колбочки функционируют при хорошем освещении и способны дифференцировать цвета. Они обеспечивают центральное зрение (название связано с их преимущественным расположением в центральной области сетчатки), которое характеризуется остротой зрения и цветоощущением.

Виды функциональной способности глаза

Дневное, или фотопическое, зрение (греч. photos - свет и opsis - зрение) обеспечивают колбочки при большой интенсивности освещения; характеризуется высокой остротой зрения и способностью глаза различать цвета (проявление центрального зрения).

Сумеречное, или мезопическое зрение (греч. mesos - средний, промежуточный) возникает при слабой степени освещенности и преимущественном раздражении палочек. Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов.

Ночное, или скотопическое зрение (греч. skotos - темнота) возникает при раздражении палочек пороговым и надпороговым уровнем света. При этом человек способен лишь различать свет и темноту.

Сумеречное и ночное зрение преимущественно обеспечивают палочки (проявление периферического зрения); оно служит для ори- ентации в пространстве.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Колбочки, расположенные в центральной части сетчатки, обеспечивают центральное форменное зрение и цветоощущение. Центральное форменное зрение - способность различать форму и детали рассматриваемого предмета благодаря остроте зрения.

Острота зрения

Острота зрения (visus) - способность глаза воспринимать две точки, расположенные на минимальном расстоянии друг от друга, как отдельные.

Минимальное расстояние, при котором две точки будут видны раздельно, зависит от анатомо-физиологических свойств сетчатки. Если изображения двух точек попадают на две соседние колбочки, то они сольются в короткую линию. Две точки будут восприниматься раздельно, если их изображения на сетчатке (две возбужденные колбочки) будут разделены одной невозбужденной колбочкой. Таким образом, диаметр колбочки определяет величину максимальной остроты зрения. Чем меньше диаметр колбочек, тем больше острота зрения (рис. 3.1).

Рис. 3.1. Схематическое изображение угла зрения

Угол, образованный крайними точками рассматриваемого предмета и узловой точкой глаза (находится у заднего полюса хрусталика), называют углом зрения. Угол зрения -универсальная основа для выражения остроты зрения. Предел чувствительности глаза большинства людей в норме равен 1 (1 угловой минуте).

В том случае, если глаз видит раздельно две точки, угол между которыми составляет не менее 1 , остроту зрения считают нормальной и определяют ее равной одной единице. Некоторые люди имеют остроту зрения 2 единицы и более.

С возрастом острота зрения меняется. Предметное зрение появляется в возрасте 2-3 мес. Острота зрения у детей в возрасте 4 мес составляет около 0,01. К году острота зрения достигает 0,1-0,3. Острота зрения, равная 1,0 формируется к 5-15 годам.

Определение остроты зрения

Для определения остроты зрения используют специальные таблицы, содержащие буквы, цифры или знаки (для детей используют рисунки - машинка, елочка и др.) различной величины. Эти знаки называют

оптотипами. В основу создания оптотипов положено международное соглашение о величине их деталей, составляющих угол в 1" , тогда как весь оптотип соответствует углу в 5 "с расстояния 5 м. (рис. 3.2).

Рис. 3.2. Принцип построения оптотипа Снеллена

У маленьких детей остроту зрения определяют ориентировочно, оценивая фиксацию ярких предметов различной величины. Начиная с трех лет остроту зрения у детей оценивают с помощью специальных таблиц.

В нашей стране наибольшее распространение получила таблица Головина-Сивцева (рис. 3.3), которую помещают в аппарат Рота - ящик с зеркальными стенками, обеспечивающий равномерное освещение таблицы. Таблица состоит из 12 строк.

Рис. 3.3. Таблица Головина-Сивцева: а) взрослая; б) детская

Пациент садится на расстоянии 5 м от таблицы. Исследование каждого глаза проводят отдельно. Второй глаз закрывают щитком. Сначала обследуют правый (ОD - oculusdexter), затем левый (OS - oculussinister) глаз. При одинаковой остроте зрения обоих глаз используют обозначение OU (oculiutriusque).

Знаки таблицы предъявляют в течение 2-3 с. Сначала показывают знаки из десятой строки. Если пациент их не видит, дальнейшее обследование проводят с первой строки, постепенно предъявляя знаки следующих строк (2-й, 3-й и т.д.). Остроту зрения характеризуют оптотипы наименьшего размера, которые исследуемый различает.

Для расчета остроты зрения используют формулу Снеллена: visus = d/D, где d - расстояние, с которого пациент читает данную строку таблицы, а D - расстояние, с которого читает данную строку человек с остротой зрения 1,0 (это расстояние указано слева от каждой строки).

Например, если обследуемый правым глазом с расстояния 5 м различает знаки второго ряда (D = 25 м), а левым глазом различает знаки пятого ряда (D = 10 м), то

visus OD = 5/25 = 0,2

visus OS = 5/10 = 0,5

Для удобства справа от каждой строки указана острота зрения, соответствующая чтению данных оптотипов с расстояния 5 м. Верхняя строка соответствует остроте зрения 0,1, каждая последующая - увеличению остроты зрения на 0,1, и десятая строка соответствует остроте зрения 1,0. В последних двух строках этот принцип нарушается: одиннадцатая строка соответствует остроте зрения 1,5, а двенадцатая - 2,0.

При остроте зрения менее 0,1 следует подвести пациента на расстояние (d), с которого он сможет назвать знаки верхней строки (D = 50 м). Затем остроту зрения также рассчитывают по формуле Снеллена.

Если пациент не различает знаки первой строки с расстояния 50 см (т.е. острота зрения ниже 0,01), то остроту зрения определяют по расстоянию, с которого он может сосчитать раздвинутые пальцы руки врача.

Пример: visus = счет пальцев с расстояния 15 см.

Самая низкая острота зрения - способность глаза отличать свет от темноты. В этом случае исследование проводят в затемненном помещении при освещении глаза ярким световым пучком. Если исследуемый видит свет, то острота зрения равна светоощущению (perceptiolucis). В данном случае остроту зрения обозначают следующим образом: visus = 1/??:

Направляя на глаз пучок света с разных сторон (сверху, снизу, справа, слева), проверяют способность отдельных участков сетчатки воспринимать свет. Если обследуемый правильно определяет направление света, то острота зрения равна светоощущению с правильной проекцией света (visus = 1/?? proectio lucis certa, или visus = 1/?? p.l.c.);

Если обследуемый неправильно определяет направление света хотя бы с одной стороны, то острота зрения равна светоощущению с неправильной проекцией света (visus = 1/?? proectio lucis incerta, или visus = 1/??p.l.incerta).

В том случае когда больной не способен отличить свет от темноты, то его острота зрения равна нулю (visus = 0).

Острота зрения - важная зрительная функция для определения профессиональной пригодности и групп инвалидности. У маленьких детей или при проведении экспертизы для объективного определения остроты зрения используют фиксацию нистагмоидных движений глазного яблока, которые возникают при рассматривании движущихся объектов.

Цветоощущение

Острота зрения основывается на способности воспринимать ощущение белого цвета. Поэтому употребляемые для определения остроты зрения таблицы представляют изображение черных знаков на белом фоне. Однако не менее важная функция - способность видеть окружающий мир в цвете.

Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цве- товой спектр). В цветовом спектре принято выделять семь главных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый, из них приято выделять три основных цвета (красный, зеленый и фиолетовый), при смешении которых в разных пропорциях можно получить все остальные цвета.

Способность глаза воспринимать всю цветовую гамму только на основе трех основных цветов была открыта И. Ньютоном и М.М. Ломоносо-

вым. Т. Юнг предложил трехкомпонентную теорию цветового зрения, согласно которой сетчатка воспринимает цвета благодаря наличию в ней трех анатомических компонентов: одного - для восприятия красного цвета, другого - для зеленого и третьего - для фиолетового. Однако эта теория не могла объяснить, почему при выпадении одного из компонентов (красного, зеленого или фиолетового) страдает восприятие остальных цветов. Г. Гельмгольц развил теорию трехкомпонентного цветового

зрения. Он указал, что каждый компонент, будучи специфичен для одного цвета, вместе с тем раздражается и остальными цветами, но в меньшей степени, т.е. каждый цвет образуется всеми тремя ком- понентами. Цвет воспринимают колбочки. Нейрофизиологи подтвердили наличие в сетчатке трех типов колбочек (рис. 3.4). Каждый цвет характеризуется тремя качествами: тоном, насыщенностью и яркостью.

Тон - основной признак цвета, зависящий от длины волны светового излучения. Тон эквивалентен цвету.

Насыщенность цвета определяется долей основного тона среди примесей другого цвета.

Яркость или светлота определяется степенью близости к белому цвету (степень разведения белым цветом).

В соответствии с трехкомпонентной теорией цветового зрения восприятие всех трех цветов называется нормальной трихромазией, а люди, их воспринимающие, - нормальными трихроматами.

Рис. 3.4. Схема трехкомпонентного цветового зрения

Исследование цветового зрения

Для оценки цветоощущения применяют специальные таблицы (наиболее часто - полихроматические таблицы Е.Б. Рабкина) и спектральные приборы - аномалоскопы.

Исследование цветоощущения с помощью таблиц. При создании цветных таблиц используют принцип уравнивания яркости и насыщенности цвета. В предъявляемых тестах нанесены кружки основного и дополнительного цветов. Используя различную яркость и насыщенность основного цвета, составляют различные фигуры или цифры, которые легко различают нормальные трихроматы. Люди,

имеющие различные расстройства цветоощущения, не способны их различить. В то же время в тестах имеются таблицы, которые содержат скрытые фигуры, различаемые только лицами с нарушениями цветоощущения (рис. 3.5).

Методика исследования цветового зрения по полихроматическим таблицам Е.Б. Рабкина следующая. Обследуемый сидит спиной к источнику освещения (окну или лампам дневного света). Уровень освещенности должен быть в пределах 500-1000 лк. Таблицы предъявляют с расстояния 1 м, на уровне глаз исследуемого, располагая их вертикально. Длительность экспозиции каждого теста таблицы 3-5 с, но не более 10 с. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

Оценка результатов.

Все таблицы (27) основной серии названы правильно - у обследуемого нормальная трихромазия.

Неправильно названы таблицы в количестве от 1 до 12 - аномальная трихромазия.

Неправильно названы более 12 таблиц - дихромазия.

Для точного определения вида и степени цветоаномалии результаты исследования по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам Е.Б. Рабкина.

Исследование цветоощущения с помощью аномалоскопов. Методика исследования цветового зрения с помощью спектральных приборов заключается в следующем: обследуемый сравнивает два поля, одно из которых постоянно освещают желтым цветом, другое - красным и зеленым. Смешивая красный и зеленый цвета, пациент должен получить желтый цвет, который по тону и яркости соответствует контролю.

Нарушение цветового зрения

Расстройства цветоощущения могут быть врожденными и приобретенными. Врожденные нарушения цветового зрения обычно двухсторонние, а приобретенные - односторонние. В отличие от

Рис. 3.5. Таблицы из набора полихроматических таблиц Рабкина

приобретенных, при врожденных расстройствах отсутствуют изменения других зрительных функций, и заболевание не прогрессирует. Приобретенные расстройства возникают при заболеваниях сетчат- ки, зрительного нерва и центральной нервной системы, в то время как врожденные обусловлены мутациями генов, кодирующих белки рецепторного аппарата колбочек. Виды нарушений цветового зрения.

Цветоаномалия, или аномальная трихромазия - аномальное восприятие цветов, составляет около 70% среди врожденных расстройств цветоощущения. Основные цвета в зависимости от порядка расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (protos), зеленый - второй (deuteros), синий - третий (tritos). Аномальное восприятие красного цвета называется протаномалией, зеленого - дейтераномалией, синего - тританомалией.

Дихромазия - восприятие только двух цветов. Различают три основных типа дихромазии:

Протанопия - выпадение восприятия красной части спектра;

Дейтеранопия - выпадение восприятия зеленой части спектра;

Тританопия - выпадение восприятия фиолетовой части спектра.

Монохромазия - восприятие только одного цвета, встречается исключительно редко и сочетается с низкой остротой зрения.

К приобретенным расстройствам цветоощущения относят также видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Цианопсия и эритропсия нередко развиваются после удаления хрусталика, ксантопсия и хлоропсия - при отравлениях и интоксикациях, в том числе лекарственными средствами.

ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ

Палочки и расположенные на периферии колбочки отвечают за периферическое зрение, которое характеризуется полем зрения и светоощущением.

Острота периферического зрения во много раз меньше, чем центрального, что связано с уменьшением плотности расположения колбочек по направлению к периферическим отделам сетчатки. Хотя

очертание предметов, воспринимаемое периферией сетчатки весьма неотчетливо, но и этого вполне достаточно для ориентации в пространстве. Периферическое зрение особенно восприимчиво к дви- жению, что позволяет быстро замечать и адекватно реагировать на возможную опасность.

Поле зрения

Поле зрения - пространство, видимое глазом при фиксированном взоре. Размеры поля зрения определяются границей оптически деятельной части сетчатки и выступающими частями лица: спинкой носа, верхним краем глазницы, щеками.

Исследование поля зрения

Существует три метода исследования поля зрения: ориентировочный способ, кампиметрия и периметрия.

Ориентировочный метод исследования поля зрения. Врач садится напротив пациента на расстоянии 50-60 см. Исследуемый закрывает ладонью левый глаз, а врач - свой правый глаз. Правым глазом пациент фиксирует находящийся против него левый глаз врача. Врач перемещает объект (пальцы свободной руки) от периферии к центру на середину расстояния между врачом и пациентом до точки фиксации сверху, снизу, с височной и носовой сторон, а также в промежуточных радиусах. Затем аналогичным образом обследуют левый глаз.

При оценке результатов исследования необходимо учитывать, что эталоном служит поле зрения врача (оно не должно иметь патологических изменений). Поле зрения пациента считают нормальным, если врач и пациент одновременно замечают появление объекта и видят его во всех участках поля зрения. Если пациент заметил появление объекта в каком-то радиусе позже врача, то поле зрения оценивают как суженное с соответствующей стороны. Исчезновение объекта в поле зрения больного на каком-то участке указывает на наличие скотомы.

Кампиметрия. Кампиметрия - метод исследования поля зрения на плоской поверхности с помощью специальных приборов (кампиметров). Кампиметрию применяют только для исследования участ- ков поля зрения в пределах до 30-40? от центра в целях определения величины слепого пятна, центральных и парацентральных скотом.

Для кампиметрии используют черную матовую доску или экран из черной материи размером 1x1 или 2x2 м. Расстояние от исследуе-

мого до экрана - 1 м, освещенность экрана - 75-300 лк. Используют белые объекты диаметром 1-5 мм, наклеенные на конец плоской черной палочки длиной 50-70 см.

При кампиметрии необходимы правильное положение головы (без наклона) на подставке для подбородка и точная фиксация пациентом метки в центре кампиметра; второй глаз больного закрывают. Врач постепенно передвигает объект по радиусам (начиная с горизонтального со стороны расположения слепого пятна) от наружной части кампиметра к центру. Пациент сообщает об исчезновении объекта. Более детальным исследованием соответствующего участка поля зрения определяют границы скотомы и отмечают результаты на специальной схеме. Размеры скотом, а также их расстояние от точки фиксации выражают в угловых градусах.

Периметрия. Периметрия - метод исследования поля зрения на вогнутой сферической поверхности с помощью специальных приборов (периметров), имеющих вид дуги или полусферы. Различают кинетическую периметрию (с движущимся объектом) и статическую периметрию (с неподвижным объектом переменной яркости). В настоящее

Рис. 3.6. Измерение поля зрения на периметре

время для проведения статической периметрии используют автоматические периметры (рис. 3.6).

Кинетическая периметрия. Широко распространен недорогой периметр Ферстера. Это дуга 180?, покрытая с внутренней стороны черной матовой краской и имеющая на наружной поверхности деления - от 0? в центре до 90? на периферии. Для определения наружных границ поля зрения используют белые объекты диаметром 5 мм, для выявления скотом - белые объекты диаметром 1 мм.

Исследуемый сидит спиной к окну (освещенность дуги периметра дневным светом должна быть не менее 160 лк), подбородок и лоб размещает на специальной подставке и фиксирует одним глазом белую метку в центре дуги. Второй глаз пациента закрывают. Объект ведут по дуге от периферии к центру со скоростью 2 см/с. Исследуемый сообщает о появлении объекта, а исследователь замечает, какому делению дуги соответствует в это время положение объекта. Это и будет наружная

граница поля зрения для данного радиуса. Определение наружных границ поля зрения проводят по 8 (через 45?) или по 12 (через 30?) радиусам. Необходимо в каждом меридиане проводить тест-объект до центра, чтобы убедиться в сохранности зрительных функций на всем протяжении поля зрения.

В норме средние границы поля зрения для белого цвета по 8 радиусам следующие: кнутри - 60?, сверху кнутри - 55?, сверху - 55?, сверху кнаружи - 70?, снаружи - 90?, снизу кнаружи - 90?, снизу - 65?, снизу кнутри - 50? (рис. 3.7).

Более информативна периметрия с использованием цветных объектов, так как изменения в цветном поле зрения развиваются раньше. Границей поля зрения для данного цвета считают то положение объекта, где испытуемый правильно распознал его цвет. Обычно используют синий, красный и зеленый цвета. Ближе всего к границам поля зрения на белый цвет оказывается синий, далее следует красный, а ближе к установочной точке - зеленый (рис. 3.7).

270

Рис. 3.7. Нормальные периферические границы поля зрения на белый и хроматические цвета

Статическая периметрия, в отличие от кинетической, позволяет выяснить также форму и степень дефекта поля зрения.

Изменения поля зрения

Изменения полей зрения происходят при патологических процессах в различных отделах зрительного анализатора. Выявление харак- терных особенностей дефектов поля зрения позволяет проводить топическую диагностику.

Односторонние изменения поля зрения (только в одном глазу на стороне поражения) обусловлены повреждением сетчатки или зрительного нерва.

Двусторонние изменения поля зрения выявляют при локализации патологического процесса в хиазме и выше.

Выделяют три вида изменений поля зрения:

Очаговые дефекты в поле зрения (скотомы);

Сужения периферических границ поля зрения;

Выпадение половин поля зрения (гемианопсии).

Скотома - очаговый дефект в поле зрения, не связанный с его периферическими границами. Скотомы классифицируют по характеру, интенсивности поражения, форме и локализации.

По интенсивности поражения выделяют абсолютные и относительные скотомы.

Абсолютная скотома - дефект, в пределах которого полностью выпадает зрительная функция.

Относительная скотома характеризуется понижением восприятия в области дефекта.

По характеру выделяют положительные, отрицательные, а также мерцательные скотомы.

Положительные скотомы больной замечает сам в виде серого или темного пятна. Такие скотомы указывают на поражение сетчатки и зрительного нерва.

Отрицательные скотомы больной не ощущает, они обнаруживаются только при объективном исследовании и указывают на повреждение вышележащих структур (хиазмы и далее).

По форме и локализации различают: центральные, парацентральные, кольцевидные и периферические скотомы (рис. 3.8).

Центральные и парацентральные скотомы возникают при заболеваниях макулярной области сетчатки, а также при ретробульбарных поражениях зрительного нерва.

Рис. 3.8. Различные виды абсолютных скотом: а - центральная абсолютная скотома; б - парацентральные и периферические абсолютные скотомы; в - кольцевидная скотома;

Кольцевидные скотомы представляют собой дефект в виде более или менее широкого кольца, окружающего центральный участок поля зрения. Они наиболее характерны для пигментной дистрофии сетчатки.

Периферические скотомы располагаются в различных местах поля зрения, кроме вышеперечисленных. Они возникают при очаговых изменениях в сетчатой и сосудистой оболочках.

По морфологическому субстрату выделяют физиологические и патологические скотомы.

Патологические скотомы появляются вследствие повреждения структур зрительного анализатора (сетчатки, зрительного нерва и т.д.).

Физиологические скотомы обусловлены особенностями строения внутренней оболочки глаза. К таким скотомам относят слепое пятно и ангиоскотомы.

Слепое пятно соответствует месту расположения диска зрительного нерва, область которого лишена фоторецепторов. В норме слепое пятно имеет вид овала, расположенного в височной половине поля зрения между 12? и 18?. Вертикальный размер слепого пятна равен 8-9?, горизонтальный - 5-6?. Обычно 1/3 слепого пятна расположена выше горизонтальной линии, проходящей через центр кампиметра, и 2 / 3 - ниже этой линии.

Субъективные расстройства зрения при скотомах различны и зависят, главным образом, от локализации дефектов. Очень малень-

кие абсолютные центральные скотомы могут сделать невозможным восприятие мелких объектов (например, букв при чтении), в то время как даже сравнительно большие периферические скотомы мало стесняют деятельность.

Сужение периферическихг раниц поля зрения обусловлено дефектами поля зрения, связанными с его границами (рис. 3.9). Выделяют равномерное и неравномерное сужения полей зрения.

Рис. 3.9. Виды концентрического сужения поля зрения: а) равномерное концентрическое сужение поля зрения; б) неравномерное концентрическое сужение поля зрения

Равномерное (концентрическое) сужение характеризуется более или менее одинаковой приближенностью границ поля зрения во всех меридианах к точке фиксации (рис. 3.9 а). В тяжелых случаях от всего поля зрения остается только центральный участок (трубочное, или тубулярное зрение). При этом становится затруднительной ориентировка в пространстве, несмотря на сохранность центрального зрения. Причины: пигментная дистрофия сетчатки, оптический неврит, атрофия и другие поражения зрительного нерва.

Неравномерное сужение поля зрения возникает при неодинаковом приближении границ поля зрения к точке фиксации (рис. 3.9 б). Например, при глаукоме сужение происходит преимущественно с внутренней стороны. Секторальные сужения поля зрения наблюдаются при непроходимостиветвей центральной артерии сетчатки, юкстапапиллярном хориоретините, некоторых атрофиях зрительного нерва, отслойке сетчатки и др.

Гемианопсия - двустороннее выпадение половины поля зрения. Гемианопсии делят на одноименные (гомонимные) и разноименные (гетеронимные). Иногда гемианопсии обнаруживает сам больной, но чаще их выявляют при объективном обследовании. Изменения полей зрения обоих глаз - важнейший симптом в топической диагностике заболеваний головного мозга (рис. 3.10).

Гомонимная гемианопсия - выпадение височной половины поля зрения в одном глазу и носовой - в другом. Она обусловлена ретрохиазмальным поражением зрительного пути на стороне, противоположной дефекту полей зрения. Характер гемианопсии изменяется в зависимости от уровня поражения: она может быть полной (при выпадении всей половины поля зрения) или частичной (квадрантной).

Полная гомонимная гемианопсия наблюдается при поражении одного из зрительных трактов: левосторонняя гемианопсия (выпадение левых половин полей зрения) - при повреждении правого зрительного тракта, правосторонняя - левого зрительного тракта.

Квадрантная гомонимная гемианопсия обусловлена повреждением головного мозга и проявляется выпадением одноименных квадрантов полей зрения. В случае поражения корковых отделов зрительного анализатора дефекты не захватывают центральный участок поля зрения, т.е. зону проекции желтого пятна. Это объясняется тем, что волокна от макулярной области сетчатки уходят в оба полушария головного мозга.

Гетеронимная гемианопсия характеризуется выпадением наружных или внутренних половин полей зрения и обусловлена поражением зрительного пути в области зрительного перекреста.

Рис. 3.10. Изменение поля зрения в зависимости от уровня поражения зрительного пути: а)локализация уровня поражения зрительного пути (обозначены цифрами); б) изменение поля зрения соответственно уровню поражения зрительного пути

Битемпоральная гемианопсия - выпадение наружных половин полей зрения. Развивается при локализации патологического очага в области средней части хиазмы (часто сопровождает опухоли гипофиза).

Биназальная гемианопсия - выпадение носовых половин полей зрения. Обусловлена двусторонним поражением неперекрещенных волокон зрительного пути в области хиазмы (например, при склерозе или аневризмах обеих внутренних сонных артерий).

Светоощущение и адаптация

Светоощущение - способность глаза воспринимать свет и определять различную степень его яркости. За светоощущение отвечают главным образом палочки, так как они гораздо более чувствительны к свету, чем колбочки. Светоощущение отражает функциональное состояние зрительного анализатора и характеризует возможность ориентации в условиях пониженного освещения; нарушение его - один из ранних симптомов многих заболеваний глаза.

При исследовании светоощущения определяют способность сетчатки воспринимать минимальное световое раздражение (порог светоощущения) и способность улавливать наименьшую разницу в яркости освеще- ния (порог различения). Порог светоощущения зависит от уровня предварительной освещенности: он меньше в темноте и увеличивается на свету.

Адаптация - изменение световой чувствительности глаза при колебаниях освещенности. Способность к адаптации позволяет глазу защищать фоторецепторы от перенапряжения и вместе с тем сохранять высокую светочувствительность. Различают световую (при повышении уровня освещенности) и темновую адаптацию (при понижении уровня освещенности).

Световая адаптация, особенно при резком увеличении уровня освещенности, может сопровождаться защитной реакцией зажмуривания глаз. Наиболее интенсивно световая адаптация протекает в течение первых секунд, окончательных значений порог светоощущения достигает к концу первой минуты.

Темновая адаптация происходит медленнее. Зрительные пигменты в условиях пониженного освещения расходуются мало, происходит их постепенное накопление, что повышает чувствительность сетчатки к стимулам пониженной яркости. Световая чувствительность фоторецепторов нарастает быстро в течение 20-30 мин, и только к 50-60 мин достигает максимума.

Определение состояния темновой адаптации проводят при помощи специального прибора - адаптометра. Ориентировочное определение темновой адаптации проводят с помощью таблицы Кравкова-Пуркинье. Таблица представляет собой кусок черного картона размером 20 х 20 см, на котором наклеены 4 квадрата размером 3 х 3 см из голубой, желтой, красной и зеленой бумаги. Врач выключает освещение и предъявляет больному таблицу на расстоянии 40-50 см. Темновая адаптация нормальная, если пациент начинает видеть желтый квадрат через 30-40 с, а голубой - через 40-50 с. Темновая адаптация у пациента снижена, если он увидел желтый квадрат через 30-40 с, а голубой - более чем через 60 с или не увидел его совсем.

Гемералопия - ослабление адаптации глаза к темноте. Гемералопия проявляется резким снижением сумеречного зрения, в то время как дневное зрение обычно сохранено. Выделяют симптоматическую, эссенциальную и врожденную гемералопию.

Симптоматическая гемералопия сопровождает различные офтальмологические заболевания: пигментную абиотрофию сетчатки, сидероз, миопию высокой степени с выраженными изменениями глазного дна.

Эссенциальная гемералопия обусловлена гиповитаминозом A. Ретинол служит субстратом для синтеза родопсина, который нарушается при экзо- и эндогенном дефиците витамина.

Врожденная гемералопия - генетическое заболевание. Офтальмоскопических изменений при этом не выявляют.

БИНОКУЛЯРНОЕ ЗРЕНИЕ

Зрение одним глазом называют монокулярным. Об одновременном зрении говорят тогда, когда при рассматривании предмета двумя глазами не происходит фузии (слияния в коре головного мозга зритель- ных образов, возникающих на сетчатке каждого глаза в отдельности) и возникает диплопия (двоение).

Бинокулярное зрение - способность рассматривать предмет двумя глазами без возникновения диплопии. Бинокулярное зрение формируется к 7-15 годам. При бинокулярном зрении острота зрения примерно на 40% выше, чем при монокулярном зрении. Одним глазом без поворота головы человек способен охватить около 140? пространства,

двумя глазами - около 180?. Но самым важное - то, что бинокулярное зрение позволяет определять относительную удаленность окружающих предметов, то есть осуществлять стереоскопическое зрение.

Если предмет равноудален от оптических центров обоих глаз, то его изображение проецируется на идентичные (корреспондирующие)

участки сетчаток. Полученное изображение передается в один участок коры головного мозга, и изображения воспринимаются как единый образ (рис. 3.11).

В случае если объект удален от одного глаза больше, чем от другого, его изображения проецируются на неидентичные (диспаратные) участки сетчаток и передаются в разные участки коры головного мозга, в результате не происходит фузии и должна возникать диплопия. Однако в процессе функционального развития зрительного анализатора такое двоение воспринимается как нормальное, потому что кроме информации от диспарантных участков к мозгу поступает и информация от корреспондирующих отделов сетчатки. При этом субъективного ощущения диплопии не возникает (в отличие от одновременного зрения, при котором нет корреспондирующих участков сетчатки), а на основании различий между полученными от двух сетчаток изображений происходит стереоскопический анализ пространства.

Условия формирования бинокулярного зрения следующие:

Острота зрения обоих глаз должна быть не ниже 0,3;

Соответствие конвергенции и аккомодации;

Скоординированные движения обоих глазных яблок;

Рис. 3.11. Механизм бинокулярного зрения

Изейкония - одинаковая величина изображений, формирующихся на сетчатках обоих глаз (для этого рефракция обоих глаз не должна отличаться более чем на 2 дптр);

Наличие фузии (фузионного рефлекса) - способность мозга к слиянию изображений от корреспондирующих участков обоих сетчаток.

Способы определения бинокулярного зрения

Проба с промахиванием. Врач и пациент располагаются друг напротив друга на расстоянии 70-80 см, каждый удерживает спицу (карандаш) за кончик. Пациента просят дотронуться кончиком своей спицы до кончика спицы врача в вертикальном положении. Вначале он проделывает это при открытых обоих глазах, затем прикрывая поочередно один глаз. При наличии бинокулярного зрения пациент легко выполняет задачу при открытых обоих глазах и промахивается, если один глаз закрыт.

Опыт Соколова (с «дырой» в ладони). Правой рукой пациент держит перед правым глазом свернутый в трубку лист бумаги, ребро ладони левой руки располагает на боковой поверхности конца трубки. Обоими глазами обследуемый смотрит прямо на какой-либо предмет, расположенный на расстоянии 4-5 м. При бинокулярном зрении пациент видит «дыру» в ладони, сквозь которую видна та же картина, что и через трубку. При монокулярном зрении «дыра» в ладони отсутствует.

Четырехточечный тест используют для более точного определения характера зрения с помощью четырехточечного цветового прибора или проектора знаков.

Итак, мы продолжим наш разговор о проблемах зрения у детей. Вчера мы обсуждали развитие органа зрения внутриутробно и остановились на вопросах, касающихся его развития в первый год жизни. Что же может нарушаться в этот период?

Проблемы развития зрения у детей в раннем возрасте

Если в раннем возрасте будет происходить ограниченное поступление световых лучей на сетчатку из-за проблем с прозрачностью каких-либо отделов оптической системы глаза – тогда зрение может пострадать. Не менее важно и нарушение в фокусировке на предметах, например, при наличии близорукости, либо проблемы с восприятием зрительных образов в целом из-за повреждений зрительных нервов или области зрительных центров в коре головного мозга. В таких случаях зрение может не формироваться до нормальных значений или не развивается совсем. Как же происходит развитие зрения этом периоде? В возрасте одного месяца ребенок может фиксировать взгляд на крупных и ярких предметах – лампочке, яркой картинке с контрастным фоном, крупной игрушке. Затем к возрасту двух-трех месяцев малыш начинает следить глазами за перемещением предметов на небольшом от его глаз расстоянии – это могут быть двигающиеся игрушки на подвесном «мобиле», передвижение по комнате взрослых. Постепенно ребенок начинает учиться рассматривать детали у крупных предметов, присматриваться к мимике родителей, разглядывать свое отражение в зеркалах или следить за движением предметов уже на достаточно больших расстояниях – машины за окном, птички, листики.

После годовалого возраста за счет повышения остроты зрения возникает возможность интересоваться теми предметами, которые могут находиться на достаточно удаленном месте от ребенка. При получении большого количества активных стимулов со стороны зрения, у ребенка возникают выраженные потребности к движениям, чтобы взять и рассмотреть интересующие его объекты. Таким образом, он начинает совершать первые осознанные попытки к тому, чтобы вставать на ножки и делать свои первые в жизни шаги. Поэтому, отмечено, что дети с выраженными нарушениями зрения начинать самостоятельно ходить значительно позже хорошо видящих сверстников. На втором году жизни детишки начинают произносить первые отдельные слова и простые предложения. В развитии таких речевых навыков им помогает накопление большого зрительного опыта по восприятию речи окружающих его взрослых и детей. Младенцы всегда внимательно изучают мимику родителей при произнесении ими звуков и затем они пытаются воспроизводить какие-то подобные им звуки самостоятельно.

Естественно, если по уровню развития зрения у ребенка нет возможности воспринимать артикуляцию в речи родителей, тогда у детей будут формироваться плохие навыки в звуко- или словообразовании. К трем годам у детей при правильной постановке вопросов есть возможность самостоятельного ответа о том, что или как он видит. Поэтому в этом возрасте родители уже могут проконтролировать развитие зрительного анализатора, если обращают внимание ребенка на описание различных объектов в окружающем их мире. К возрасту трех лет детишки должны без ошибок узнавать любые предметы размерами около 10 см с расстояния не менее 5-6 метров, они должны различать летящие в небе самолеты или небольших птиц, сидящих на верхушке деревьев. Естественно, что дети в таком возрасте могут закапризничать или путать правильные ответы, но тогда можно просто предложить ему альтернативы, спросив – что ты видишь, зайчика или кошечку? Ребенок должен выбрать правильный ответ.

Помните, что детям до двух лет нельзя позволять смотреть телевизор и разные передачи-мультики. Смысла происходящего на экране они пока не могут понять, и телевизор ими воспринимается как универсальная, мигающая звуковая игрушка. При этом мышцы глаз малышей в таком возрасте просто физически не готовы к такой зрительной нагрузке и напряжению. Далее, в возрасте четырех-шести лет на глазки ребенка накладываются нагрузки, которые практически соизмеримы со школьными нагрузками – дети занимаются в детском садике, группах подготовки к школе, вырезают, лепят и рисуют. Но именно в этот период важно не перегружать глаза и мышцы глаз, нужно делать частые перерывы в зрительных нагрузках – занятия и статичные творческие уроки не должны превышать 20-30 минут в день и перерывы между ними не должны быть менее 15 минут. В этом возрасте можно смотреть и мультики, но при просмотре их дети должны находиться на максимальном от телевизора расстоянии, исходя из диагонали экрана, но не менее трех метров.

При любой возможности стоит отказаться от использования электронных развивашек и игр с маленькими экранами на телефонах, так как они вынуждают глазки малыша длительно и сильно напрягаться, чтобы глаза моли рассмотреть мелкие детали на экране. Нужно помнить о том, что даже получасовое занятие подобными видами развлечений может давать выраженный спазм в области зрительных мышц на протяжении нескольких часов, а иногда и на несколько дней. Первыми признаками таких спазмов являются боли в глазках и их покраснение, истечение слезы, а также жалобы ребенка на головные боли и на расплывчатость в видении предметов вдали. При постоянных таких серьезных нагрузках и длительном существовании спазмов зрительных мышц может провоцироваться развитие близорукости.

К возрасту шести-семи лет зрение у детей достигает уровня взрослого человека, то есть острота их зрения становится равной «единице». При таком зрении глаза вполне отлично могут различать предметы как вдалеке, так и на достаточно близком расстоянии, и рефракция глаз становится соразмерной или эмметропической. Одним словом – глаза видят стопроцентно. При прохождении световых лучей фокус изображения попадает точно на сетчатку и воспринимается максимально четко. И таким образом, именно в этом возрасте органы зрения, наряду со всем остальным организмом, могут быть полностью готовы к обучению в школе. С той целью, чтобы к началу активных школьных занятий все отделы зрительной системы малыша были отлично подготовлены к предстоящей им нагрузке, и ничего в дальнейшем не мешало работе органа зрения, важно с самого раннего возраста проводить регулярный профилактический осмотр в кабинете врача-офтальмолога и своевременная коррекция возможных нарушений зрения.

Выявление заболеваний глаз с раннего возраста

Важно регулярное обследование глаз ребенка у врача, и впервые зрение проверяют еще в родильном доме, когда можно выявить основные признаки многих из врожденных заболеваний глаз. Одним из них является врожденная катаракта – это помутнение хрусталика, который в норме должен быть абсолютно прозрачным. Катаракта проявляется в виде сероватого свечения в зоне зрачка, при этом зрачок сам выглядит не черным, а имеет серый цвет. Обычно лечение этого заболевания осуществляется хирургически, путем удаления помутневшего хрусталика. Если этого не делать, при длительном существование помех в прохождении лучей света в зону сетчатки глаза приводит к формированию резкой задержки в развитии зрения. После проведения подобной операции ребенку нужно будет ношение специальных очков или контактных линз, заменяющих хрусталик. Но некоторые из видов катаракты нельзя оперировать в раннем детском возрасте, и при таких условиях будут проводиться периодические курсы стимулирующей терапии. При таком лечении на глаза будут воздействовать световым или лазерным излучением, магнитными и электрическими полями, проводить занятия по специальным компьютерным программам, назначать необходимые лекарственные препараты, что позволит оттянуть период хирургической коррекции до более старшего возраста ребенка, когда будет возможность для проведения имплантации искусственной линзы-хрусталика.

Очень похожими изменениями с катарактой могут проявиться и другие, более серьезные поражения глаз ребенка. Одной из самых серьезных патологий будет являться ретинобластома – злокачественное поражение сетчатки опухолью. На ранних стадиях на опухоль возможно воздействие лучевыми методами. Особые конструкции лучевых аппликаторов – пластин с нанесенными на них радиоактивными материалами, пришивают непосредственно к области склеры в месте проецирования опухоли. Место пришивания будет определяться при проведении операции и просвечивании склеры особым прибором, похожим на фонарик – диафаноскопом. Там, где выявляется тень от опухоли, подшивается аппликатор. Радиоактивные материалы разрушают ткани опухоли сквозь склеру. Однако, в поздних стадиях опухоли, когда может возникать угроза распространения тканей опухоли за территорию глаза, прибегают только к единственному пути – удалению пораженного глазного яблока.

Это далеко не все заболевания глаз, выявляемые при первых осмотрах у офтальмолога, и завтра мы продолжим с вами обсуждение вариантов развития и лечения многих из врожденных и ранних приобретенных поражений зрения у детей.

Развитие и возрастные особенности органа зрения

Орган зрения в филогенезе проделал путь от отдельных эктодермального происхождения светочувствительных клеток (у кишечнополостных) до сложно устроенных парных глаз у млекопитающих. У позвоночных животных глаза развиваются сложно: из боковых выростов мозга образуется светочувствительная оболочка - сетчатка. Сред­няя и наружная оболочки глазного яблока, стекловидное тело формируются из мезо­дермы (среднего зародышевого листка), хрусталик - из эктодермы.

Из тонкой наружной стенки бокала развивается пигментная часть (слой) сетчатки. Зри­тельные (фоторецепторные, светочувствительные) клетки находятся в более толстом внутреннем слое бокала. У рыб дифференцировка зрительных клеток на палочковидные (палочки) и колбочковидные (колбочки) выражена слабо, у рептилий имеются одни колбочки, у млекопитающих в сетчатке находятся преимущественно палочки; у водных и ночных животных колбочки в сетчатке отсутствуют. В составе средней (сосудистой) оболочки уже у рыб начинает формироваться ресничное тело, усложняющееся в своем развитии у птиц и млекопитающих.

Мышца в радужке и в ресничном телœе впервые появляются у амфибий. Наружная оболочка глазного яблока у низших позвоночных состоит преимущественно из хряще­вой ткани (у рыб, амфибий, большинства ящерообразных). У млекопитающих она построена только из волокнистой (фиброзной) ткани.

Хрусталик у рыб, амфибий округлый. Аккомодация достигается вследствие перемещения хрусталика и сокращения особой передвигающей хрусталик мышцы. У рептилий и птиц хрусталик способен не только перемешаться, но и изменять свою кривизну. У млекопитающих хрусталик за­нимает постоянное место, аккомодация осуществляется вследствие изменения кривиз­ны хрусталика. Стекловидное тело, имеющее вначале волокнистую структуру, посте­пенно становится прозрачным.

Одновременно с усложнением строения глазного яблока развиваются вспомога­тельные органы глаза. Первыми появляются шесть глазодвигательных мьшц, преобра­зующихся из миотомов трех пар головных сомитов. Веки начинают формироваться у рыб в виде одной кольцевидной кожной складки. У наземных позвоночных животных образуются верхние и нижние веки, а у большинства из них у медиального угла гла­за имеется также мигательная перепонка (третье веко). У обезьян и человека остатки этой перепонки сохраняются в виде полулунной складки конъюнктивы. У наземных позвоночных животных развивается слезная желœеза, формируется слезный аппарат.

Глазное яблоко у человека также развивается из нескольких источников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг); главная линза глаза - хрусталик – непосредственно из эктодермы; сосудистая и фиброзная оболочки – из мезенхимы. На ранней стадии развития зародыша (конец 1-го, начало 2-го месяца внутриутробной жизни) на боковых стенках первичного мозгового пузыря (prosencephalon ) появляется небольшое парное выпячивание – глазные пузыри. Концевые отделы их расширяются, растут в сторону эктодермы, а соединяющие с мозгом ножки суживаются и в дальнейшем превращаются в зрительные нервы. В процессе развития стенка глазного пузыря впячивается внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и трансформируется в наружную пигментную часть (слой), а из внутренней стенки образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосœенсорный слой). На стадии формирования глазного бокала и дифференцировки его стенок, на 2-м месяце внутриутробного развития, прилежащая к глазному бокалу спереди эктодерма вначале утолщается, а затем образуется хрусталиковая ямка, превращающаяся в хрусталиковый пузырек. Отделившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хрусталик.

На 2-м месяце внутриутробной жизни в глазной бокал через образовавшуюся на нижней его стороне щель проникают мезенхимные клетки. Эти клетки образуют внутри бокала кровеносную сосудистую сеть в формирующемся здесь стекловидном телœе и вокруг растущего хрусталика. Из прилежащих к глазному бокалу мезенхимных клеток образуется сосудистая оболочка, а из наружных слоев - фиброзная оболочка. Передняя часть фиброзной оболочки становится прозрачной и превращается в роговицу. У плода 6-8 мес кровеносные сосуды, находящиеся в капсуле хрусталика и в стекловидном телœе, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачковая мембрана).

Верхние и нижние веки начинают формироваться на 3-м месяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная желœеза развива­ется из выростов конъюнктивального эпителия, появляющихся на 3-м месяце внутриутробной жизни в латеральной части формирующегося верхнего века.

Глазное яблоко у новорожденного относительно большое, его переднезадний размер 17,5 мм, масса - 2,3 ᴦ. Зрительная ось глазного яблока проходит латеранее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребен­ка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам - в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется; хрусталик почти круглый, радиусы его передней и задней кри­визны примерно равны. Особенно быстро растет хрусталик в течение 1-го года жиз­ни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка равен 2,5 мм. По мере увеличения возраста ребенка тол­щина радужки увеличивается, количество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы реализуются довольно быстро. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий. К 20 годам жизни диаметр его возрастает почти вдвое.

Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. По этой причине движение глаза возможно сразу после рождения, однако координация этих движений наступает со 2-го месяца жизни ребенка.

Слезная желœеза у новорожденного имеет небольшие размеры, выводные канальцы желœезы тонкие. Функция слезоотделœения появляется на 2-м месяце жизни ребенка. Влагалище глазного яблока у новорожденного и детей грудного возраста тонкое, жи­ровое тело глазницы развито слабо. У людей пожилого и старческого возраста жиро­вое тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, в связи с этим глаз кажется большим, чем у взрослого человека.

У новорожденных размеры глазного яблока меньше, чем у взрослых (диаметр глазного яблока – 17,3 мм, а у взрослого– 24,3 мм). В связи с этим лучи света, идущие от удаленных предметов, сходятся за сетчаткой, т. е. новорожденным характерна естественная дальнозоркость. К ранней зрительной реакции ребенка можно отнести ориентировочный рефлекс на световое раздражение, или на мелькающий предмет. Ребенок реагирует на световое раздражение или приближающийся предмет поворотом головы, туловища. В 3–6 недель ребенок способен фиксировать взгляд. До 2 лет глазное яблоко увеличивается на 40 %, к 5 годам – на 70 % первоначального объема, а к 12–14 годам оно достигает величины глазного яблока взрослого.

Зрительный анализатор к моменту рождения ребенка незрелый. Развитие сетчатки заканчивается к 12 мес жизни. Миелинизация зрительных нервов и зрительных нервных путей начинается в конце внутриутробного периода развития и завершается на 3–4 мес жизни ребенка. Созревание коркового отдела анализатора заканчивается только к 7 годам.

Слезная жидкость имеет важное защитное значение, т. к. увлажняет переднюю поверхность роговицы и конъюнктиву. При рождении она секретируется в небольшом количестве, а к 1,5–2 мес во время плача наблюдается усиление образования слезной жидкости. У новорожденного зрачки узкие из-за недоразвития мышцы радужки глаза.

В первые дни жизни ребенка отсутствует координация движений глаз (глаза двигаются независимо друг от друга). Через 2–3 нед она появляется. Зрительное сосредоточение – фиксация взгляда на предмете появляется через 3–4 нед после рождения. Продолжительность этой реакции глаз составляет только лишь 1–2 мин. По мере роста и развития ребенка совершенствуется координация движений глаз, фиксация взгляда становится более длительной.

Возрастные особенности цветовосприятия . Новорожденный ребенок не дифференцирует цвета в связи с незрелостью колбочек сетчатки глаза. Кроме того, их меньше, чем палочек. Судя по выработке у ребенка условных рефлексов, дифференциация цветов начинается с 5–6 мес. Именно к 6 мес жизни ребенка развивается центральная часть сетчатки, где сконцентрированы колбочки. Однако осознанное восприятие цветов формируется позже. Правильно называть цвета дети могут в возрасте 2,5–3 года. В 3 года ребенок различает соотношения яркости цветов (темнее, бледнее окрашенный предмет). Для развития дифференцировки цветов родителям желательно демонстрировать цветные игрушки. К 4 годам ребенок воспринимает все цвета. Способность различать цвета значительно возрастает к 10–12 годам.

Возрастные особенности оптической системы глаза. Хрусталик у детей очень эластичен, поэтому он обладает большей способностью изменять свою кривизну, чем у взрослых. Однако, начиная с 10 лет, эластичность хрусталика снижается и уменьшается объем аккомодации – принятие хрусталиком наиболее выпуклой формы после максимального уплощения, или наоборот, принятие хрусталиком максимального уплощения после наиболее выпуклой формы. В этой связи изменяется положение ближайшей точки ясного видения. Ближайшая точка ясного видения (наименьшее расстояние от глаза, на котором предмет отчетливо виден) с возрастом отодвигается: в 10 лет она находится на расстоянии 7 см, в 15 лет – 8 см, 20 – 9 см, в 22 лет –10 см, в 25 лет– 12 см, в 30 лет – 14 см и т. д. Таким образом, с возрастом, чтобы лучше видеть, надо предмет удалять от глаз.

В 6 – 7 лет сформировано бинокулярное зрение. В этот период значительно расширяются границы поля зрения.

Острота зрения у детей разного возраста

У новорожденных острота зрения очень низкая. К 6 мес она увеличивается и составляет 0,1, в 12 мес – 0,2, а в возрасте 5 –6 лет равна 0,8–1,0. У подростков острота зрения повышается до 0,9–1,0. В первые месяцы жизни ребенка острота зрения очень низкая, в трехлетнем возрасте только у 5 % детей она соответствует норме, у семилетних – у 55 %, в девятилетнем – у 66 %, у 12 – 13-летних – 90 %, у подростков 14 –16 лет – острота зрения, как у взрослого.

Поле зрения у детей уже, чем у взрослых, но к 6–8 годам оно быстро расширяется и продолжается этот процесс до 20 лет. Восприятие пространства (пространственное зрение) у ребенка формируется с 3-месячного возраста в связи с созреванием сетчатки и коркового отдела зрительного анализатора. Восприятие формы предмета (объемное зрение) начинает формироваться с 5- месячного возраста. Форму предмета ребенок определяет на глаз в возрасте 5–6 лет.

В раннем возрасте, между 6–9-м мес, у ребенка начинает развиваться стереоскопическое восприятие пространства (он воспринимает глубину, отдаленность расположения предметов).

У большинства шестилетних детей развита острота зрительного восприятия и полностью дифференцированы все отделы зрительного анализатора. К 6 годам острота зрения приближается к норме.

У слепых детей периферические, проводящие или центральные структуры зрительной системы морфологически и функционально не дифференцированы.

Глаза детей раннего возраста характеризуются небольшой дальнозоркостью (1–3 диоптрии), вследствие шарообразной формы глазного яблока и укороченной передне-задней оси глаза (таблица 7). К 7–12 годам дальнозоркость (гиперметропия) исчезает и глаза становятся эмметропическими, в результате увеличения передне-задней оси глаза. Однако у 30–40 % детей, вследствие значительного увеличения передне-заднего размера глазных яблок и, соответственно удаления сетчатки от преломляющих сред глаза (хрусталика), развивается близорукость.