Пульпа кардиальный рефлекс. Интраоперационные осложнения. Сопряженные рефлексы сердечно-сосудистой системы

8.10. СОПРЯЖЕННЫЕ РЕФЛЕКСЫ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Это понятие ввел в физиологию В. Н. Черниговский. Сопряжен-ные (межсистемные) рефлексы - рефлекторные влияния на сер-дечно-сосудистую систему с рефлексогенных зон других органов или с сердечно-сосудистой системы на другие системы организма. Они не принимают прямого участия в регуляции системного АД. Примером сопряженных рефлексов могут служить следующие реф-лексы.

Рефлекс Данини - Ашнера (глазо-сердечный рефлекс) - это снижение частоты сердечных сокращений (ЧСС), возникающее при надавливании на боковую поверхность глаз.

Рефлекс Гольца - уменьшение ЧСС или даже полная останов-ка сердца при раздражении механорецепторов органов брюшной полости или брюшины, что учитывается при хирургических вме-шательствах в брюшной полости. В опыте Гольца поколачивание по желудку и кишечнику лягушки ведет к остановке сердца.

Рефлекс Тома - Ру - брадикардия при сильном давлении или ударе в эпигастральную область. Удар «под ложечку» (ниже мече-видного отростка грудины - область солнечного сплетения) у че-ловека может привести к остановке сердца, кратковременной по-тере сознания и даже к смерти. У боксеров такой удар является запрещенным. Рефлексы Гольца и Тома - Ру осуществляются с по-мощью блуждающего нерва и, по-видимому, имеют общую рефлек-согенную зону.

Рефлекс с механо- и терморецепторов кожи при их раз-дражении заключается в торможении или стимуляции сердечной деятельности. Степень их выраженности может быть весьма силь-ной. Известны, например, случаи летального исхода вследствие остановки сердца при нырянии в холодную воду (резкое охлажде-ние кожи живота).

Рефлекс с проприорецепторов возникает при физической нагрузке и выражается в увеличении ЧСС вследствие уменьшения: тонуса блуждающих нервов. Этот рефлекс является приспособи-[ тельным - обеспечивает улучшение снабжения работающих мышц кислородом и питательными веществами, удаление метаболитов. Условные рефлексы на изменение сердечной деятельности также относят к сопряженным рефлексам, например, предстарто-вое состояние, которое сопровождается ярковыраженными эмоци-ями и выбросом адреналина в кровь.

8.11. ЛИМФАТИЧЕСКАЯ СИСТЕМА

Лимфатическая система - это совокупность лимфатических сосудов и расположенных по их ходу лимфатических узлов, обес-печивающая всасывание межклеточной жидкости, веществ и воз-врат их в кровяное русло. Лимфатическая система поддерживает баланс различных веществ и жидкости в организме.

Лимфатические сосуды начинаются капиллярами, представ-ляющими собой обширную разветвленную сеть мелких тонкостен-ных сосудов, неравномерно представленную в разных участках тела " (например, в мозге их нет, в мышцах мало). Начинается лимфати-ческая система с тончайших, закрытых с одного конца терминаль-ных лимфатических капилляров. Стенки их обладают высокой про-ницаемостью, вместе с тканевой жидкостью внутрь легко проходят молекулы белка и другие крупные частицы. В структурно-функци-ональном отношении лимфатические сосуды аналогичны венам и также снабжены клапанами, препятствующими обратному току лимфы. Участки между двумя клапанами (клапанные сегменты), в последующем названные лимфангионами (АНзНп), обеспечивают насосную функцию лимфатической системы (Р. С. Орлов). Лимфа-тические сосуды впадают в венозную систему. В частности, груд-ной проток впадает в угол, образованный левыми (наружной ярем-ной и подключичной) венами, в месте их слияния.

Лимфатические узлы, располагающиеся на пути лимфатиче-ских сосудов, благодаря наличию в них гладкомышечных элемен-тов способны сокращаться. Содержащиеся в лимфе бактерии фаго-

цитируются клетками лимфатических узлов. При этом в лимфати-ческих узлах развивается воспалительный процесс, они увеличи-ваются в размерах, становятся болезненными. Функции лимфатической системы.

    Дренажная функция заключается в удалении из интерсти-ция продуктов обмена и избытка воды, профильтровавшейся из кровеносных капилляров и не полностью реабсорбировавшейся. В случае прекращения лимфотока развиваются отек тканей и дис-трофические их нарушения.

    Защитная функция заключается в обеспечении транспорта антигенов и антител, в переносе из лимфоидных органов плазмати-ческих клеток для обеспечения гуморального иммунитета - в фор-мировании иммунного ответа на антиген, в кооперации различных иммунокомпетентных клеток (лимфоцитов, макрофагов), в реали-зации клеточного иммунитета.

    Возврат белков и электролитов в кровь (за сутки возвра-щается в кровь около 40 г белка).

    Транспорт из пищеварительной системы в кровь продук-тов гидролиза пищевых веществ (в основном липидов).

    Кроветворная функция заключается в том, что в лимфоид-ной ткани продолжаются начинающиеся в костном мозге процессы дифференцировки и образования новых лимфоцитов.

Лимфа представляет собой прозрачную жидкость слегка жел-товатого цвета, солоноватого вкуса, с приторным запахом. Она состо-ит из лимфоплазмы и форменных элементов, в основном лимфоцитов. По химическому составу лимфоплазма близка к плазме крови.

Лимфа образуется в результате фильтрации жидкости из ка-пилляров в интерстиций, отсюда она диффундирует в лимфатиче-ские капилляры. Белки, хиломикроны и другие частицы попадают в полость лимфатического капилляра с помощью пиноцитоза. Ско-рость фильтрации во всех кровеносных капиллярах (кроме почеч-ных клубочков) составляет 14 мл/мин, что составляет 20 л в сут-ки; скорость обратного всасывания - около 12,5 мл/мин, т. е. 18 л в сутки. Следовательно, в лимфатические капилляры попадает око-ло 2 л в жидкости в сутки. В лимфатических сосудах взрослого че-ловека весом 70 кг натощак содержится 2-3 л лимфы.

Непосредственной движущей силой лимфы, как и крови, в любом участке сосудистого русла является градиент гидроста-тического давления. Клапанный аппарат лимфатических сосудов препятствует обратному току лимфы. В работающих органах лим-фоток возрастает. Градиент гидростатического давления в лимфа-тической системе создается несколькими факторами. 1. Основным из них является сократительная активность лимфатических

сосудов и узлов. В лимфангионе имеются мышцесодержащая часть и участок со слабым развитием мышечных элементов (область при-крепления клапанов). Для функций лимфатических сосудов харак-терны фазные ритмические сокращения (10-20 в мин), медленные волны (2-5 в мин) и тонус. 2. Присасывающее действие грудной клетки (как и для движения крови по венам). 3. Сокращение ске- летных мышц, пульсация близлежащих крупных артериальных со-судов, повышение внутрибрюшного давления.

Регуляция сократительной активности лимфангионов осуществляется с помощью нервного, гуморального и миогенного механизмов. Миогенная регуляция лимфангионов осуществляет-ся благодаря автоматии гладких мышц, при этом увеличение их растяжения приводит к возрастанию силы сокращения и оказыва-ет активирующее влияние на соседние лимфангионы. Нервная регуляция сократительной деятельности лимфангионов, по дан-ным Р. С. Орлова и сотр. (1982), осуществляется с помощью интра-мурального нервного аппарата и симпатической нервной системы, которая активирует а-адренорецепторы, что ведет к учащению фаз-ных сокращений. Катехоламины вызывают разнонаправленные реакции лимфатических микрососудов. Эффект зависит от дозы пре-парата, по-видимому, по той же причине, что и в кровеносных сосу-дах. Холинэргические влияния неоднозначны, но, как правило, низ-кие концентрации ацетилхолина уменьшают частоту спонтанных фазных сокращений пейсмекеров лимфангионов. Гормональная регуляция сокращений лимфангионов изучена недостаточно. Из-вестно, например, что вазопрессин усиливает лимфоток, оксито-цин тормозит его.

Глава 9 ПИЩЕВАРИТЕЛЬНАЯ СИСТЕМА

9.1. ПОНЯТИЯ. ХАРАКТЕРИСТИКА ГЛАДКОЙ МЫШЦЫ

Большая часть гладких мышц организма находится в составе органов пищеварительной системы.

Пищеварительная система представляет собой извитую трубку, начинающуюся ротовым и заканчивающуюся анальным отверстием, с примыкающими к ней слюнными железами, печенью и поджелудочной железой. Выделяют также понятие пищевари-тельный тракт, в который входят ротовой отдел, глотка, пище-

вод, желудок, тонкая и толстая кишки (кишечник). Желудок и ки-шечник составляют желудочно-кишечный тракт (ЖКТ).

Стенка пищеварительного тракта имеет однотипное строение и включает в себя слизистую, подслизистую, мышечную и серозную оболочки. Пищеварительный тракт сообщается с внешним миром. Однако стенка пищеварительного тракта надежно защищает внут-реннюю среду организма от попадания микробов и инородных час-тиц из внешней среды.

Пищеварение - это совокупность процессов, обеспечивающих расщепление белков, жиров и углеводов пищи в пищеварительном тракте до сравнительно простых соединений - питательных ве-ществ. Питательные вещества - это вода, минеральные соли, витамины и продукты расщепления белков, жиров и углеводов пищи в пищеварительном тракте на соединения, лишенные видоспеци-фичности, но сохраняющие энергетическую и пластическую цен-ность, способные всасываться в кровь и лимфу и ассимилировать-ся организмом (А. А. Кромин). Источником питательных веществ является пища. Значение пищеварительной системы - обеспе-чение клеток и тканей организма исходными пластическим и энер-гетическим материалами, используемыми в процессе метаболизма.

Чтобы питательные вещества попали в организм, пища должна быть подвергнута физической обработке (размельчение, перемеши-вание, набухание и растворение), химической обработке - гидро-лизу. Гидролиз - это процесс расщепления полимеров (деполиме-ризация) - белков, жиров и углеводов под влиянием гидролитических ферментов пищеварительных желез до мономеров. Железы пищева-рительного тракта продуцируют три группы гидролитических фер-ментов: протеазы (расщепляют белки до аминокислот), липазы (расщепляют жиры и липиды до моноглицеридов и жирных-кислот) и карбогидразы (расщепляют углеводы до моносахаридов). Имен-но эти продукты расщепления пищи (переваривания) и являются питательными веществами живого организма.

Гладкая мышца. Стенками многих внутренних органов явля-ются гладкие (неисчерченные) мышцы (желудок, кишечник, пище-вод, желчный пузырь и др.). Их активность не управляется про-извольно. Поэтому гладкие мышцы и мышцу сердца называют непроизвольной. Медленные, часто ритмические сокращения глад-комышечных стенок внутренних органов обеспечивают перемеще-ние содержимого этих органов. Тоническое сокращение стенок со-судов поддерживает оптимальный уровень кровяного давления и кровоснабжение органов и тканей, отток лимфы от скелетных мышц и внутренних органов. Гладкие мышцы построены из веретенооб-разных одноядерных мышечных клеток, толщина которых состав-

ляет 2-10 мкм, длина - от 50 до 400 мкм. Волокна связаны между собой нексусами, которые хорошо проводят возбуждение, поэто-му гладкая мышца функционирует как синцитий - функцио-нальное образование, в котором возбуждение способно непосред-ственно передаваться с одной клетки на другую. Этим свойством гладкая мышца отличается от скелетной и сходна с сердечной. Од-нако для возникновения ПД необходимо возбуждение определен-ного числа мышечных волокон, возбуждения одного мышечного во-локна недостаточно. Таким образом, функциональной единицей гладкой мышцы является не отдельная клетка, как в скелетной мышце, а мышечный пучок.

Многие гладкомышечные волокна обладают автоматией. Потен-циал покоя в гладкомышечных клетках составляет 30-70 мВ. Дли-тельность пикоподобных ПД составляет 5-80 мс, ПД с плато, ха-рактерных для гладких мышц матки, уретры и некоторых сосудов, длятся от 30 до 500 мс. Главную роль в генерации ПД гладких мышц играет Са 2+ .

Процесс сокращения гладкомышечных волокон соверша-ется по тому же механизму скольжения нитей актина и миозина, что и в скелетных мышцах. Однако у гладкомышечных клеток сла- бо выражен саркоплазматический ретикулум. В этой связи триггером для мышечного сокращения служит поступление ионов Са 2+ в клетку из межклеточной среды в процессе генерации ПД. Ионы Са 2+ воздействуют на белок кальмодулин, который активи-рует киназы легких цепей миозина. Это обеспечивает перенос фос-фатной группы на миозин и сразу вызывает срабатывание попереч-ных мостиков, т.е. сокращение. Тропонин-тропомиозиновая система в гладкой мышце, по-видимому, отсутствует. Сила сокра- щений гладких мышц меньше силы сокращений скелетных мышц. Скорость сокращения гладких мышц невелика - на 1-2 поряд-ка ниже, чем у скелетных мышц.

Характерными свойствами гладкой мышцы являются автома-шин и пластичность (гладкая мышца способна быть расслаблен-ной в укороченном и в растянутом состояниях). Благодаря плас-тичности гладкой мышцы давление в полых внутренних органах может мало изменяться при значительном их наполнении.

9.2. ФУНКЦИИ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ. СОСТОЯНИЕ ГОЛОДА И НАСЫЩЕНИЯ

Пищеварительная система выполняет пищеварительные и не-пищеварительные функции.

Пищеварительные функции.

    Моторная (двигательная) функция - это сократительная деятельность пищеварительного тракта, обеспечивающая измель-чение пищи, ее перемешивание с пищеварительными секретами и перемещение пищевого содержимого в дистальном направлении.

    Секреция - синтез секреторной клеткой специфического продукта - секрета и выделение его из клетки. Секрет пищевари-тельных желез обеспечивает переваривание пищи.

    Всасывание - транспорт питательных веществ во внутрен-нюю среду организма.

Непищеварительные функции пищеварительной сис-темы.

    Защитная функция осуществляется с помощью нескольких механизмов. ]. Слизистые оболочки пищеварительного тракта.пре-пятствуют проникновению во внутреннюю среду организма непере-варенной пищи, инородных веществ и бактерий (барьерная функция). 2. Пищеварительные соки обладают бактерицидным и бактериостати-ческим действием. 3. Местная иммунная системе пищеварительного тракта (миндалины глоточного кольца, лимфатические фолликулы в стенке кишки, пейеровы бляшки, плазматические клетки слизистой оболочки желудка и кишечника, червеобразный отросток) блоки-рует действие патогенных микроорганизмов. 4. Пищеварительный тракт вырабатывает естественные антитела при контакте с обли-гатной кишечной микрофлорой.

    Метаболическая функция заключается в кругообороте эндогенных веществ между кровью и пищеварительным трактом, обеспечивающим возможность их повторного использования в про-цессах обмена веществ или пищеварительной деятельности. В ус-ловиях физиологического голода эндогенные белки периодически выделяются из крови в полость желудочно-кишечного тракта в со-ставе пищеварительных соков, где они подвергаются гидролизу, а образующиеся при этом аминокислоты всасываются в кровь и вклю-чаются в метаболизм. Значительное количество воды и растворен-ных в ней неорганических солей циркулирует между кровью и пи-щеварительным трактом.

    Экскреторная (выделительная) функция заключается в выведении из крови с секретами желез в полость пищеварительно-го тракта продуктов обмена (например, мочевины, аммиака) и раз-личных чужеродных веществ, поступивших в кровоток (соли тя-желых металлов, лекарственные вещества, изотопы, красители), вводимых в организм с диагностическими целями.

    Эндокринная функция заключается в секреции гормонов пищеварительной системы, основными из которых являются: ин-

сулин, глюкагон, гастрин, серотонин, холецистокинин, секретин, вазоактивный интестинальный пептид, мотилин.

Состояние голода. Ощущение голода возникает после эвакуа-ции химуса из желудка и двенадцатиперстной кишки, мышечная стен-ка которых приобретает повышенный тонус и усиливается импуль-сация от механорецепторов пустых органов {сенсорная стадия состояния голода). При снижении питательных веществ в крови на-чинается метаболическая стадия состояния голода. Недостаток питательных веществ в крови («голодная» кровь) воспринимается хеморецепторами сосудистого русла и непосредственно гипоталаму-сом, избирательно чувствительными к недостатку в крови опреде-ленных питательных веществ. При этом формируется пищевая мо- тивация (вызванное доминирующей пищевой потребностью побуждение организма для пищевого поведения - поиск, добывание и поедание пищи). Раздражение электрическим током гипоталами-ческого центра голода у животных вызывает гиперфагию - непре-рывное поедание пищи, а его разрушение - афагию (отказ от пищи). Центр голода латерального гипоталамуса находится в реципрокных (взаимотормозящих) отношениях с центром насыщения вентроме-диального гипоталамуса. При стимуляции этого центра наблюдает-ся афагия, а при его разрушении - гиперфагия.

Состояние насыщения. После приема достаточного количе-ства пищи для удовлетворения пищевой потребности наступает стадия сенсорного насыщения, которая сопровождается положи-тельной эмоцией. Стадия истинного насыщения наступает зна-чительно позднее - через 1,5-2 ч с момента приема пищи, когда в кровь начинают поступать питательные вещества.

9.3. ПИЩЕВАРЕНИЕ В ПОЛОСТИ РТА. АКТ ГЛОТАНИЯ

В полости рта происходит механическая и химическая обработ-
ка пищи. »

А. Механическая обработка пищи в ротовой полости осуще-ствляется с помощью жевания.

Процесс жевания произвольный. Эфферентные импульсы пере-даются по кортикобульбарному пути к моторному ядру жеватель-ного центра в продолговатом мозге и далее - по центробежным волокнам тройничного, лицевого и подъязычного нервов к жева-тельным мышцам, вызывая их ритмическую сократительную ак-тивность. Процесс жевания в условиях эксперимента может осуществляться непроизвольно (автоматические движения). Децеребрированные животные совершают ритмические жеватель-

ные движения, когда им в рот кладут пищу. Тщательное измельче-ние пищи в процессе жевания до частиц диаметром в несколько миллиметров играет весьма важную роль.

    Оно значительно облегчает последующее переваривание и всасывание.

    Жевание стимулирует слюноотделение, что формирует вкусовые ощущения и переваривание углеводов.

    Жевание оказывает рефлекторное стимулирующее вли-яние на секреторную и моторную деятельность желудочно-кишечного тракта.

    Жевание обеспечивает формирование пищевого комка, пригодного для глотания и переваривания.

Б. Химическая обработка пищи в ротовой полости осуще-ствляется с помощью слюны, которая вырабатывается в околоуш-ных, подчелюстной, подъязычной слюнных железах, а также в же-лезах языка и неба. За сутки выделяется 0,5-2,0 л слюны. Слюна различных желез несколько различается. Смешанная слюна на 99,5% состоит из воды, имеет рН 5,8-7,4. Одну треть сухого остатка составляют минеральные компоненты слюны, две трети -органические вещества: белки, аминокислоты, азотсодержащие со-единения небелковой природы (мочевина, аммиак, креатинин, кре-атин). Вязкость и ослизняющие свойства слюны обусловлены на-личием мукополисахаридов (муцина). Слюна выполняет несколько функций.

    Обеспечивает физическую обработку пищи: 1) смачива-ние пищи и тем самым способствует ее измельчению и гомогени-зации при жевании; 2) растворение веществ, без которого вкусо-вая рецепция невозможна; 3) ослизнение пищи в процессе жевания, что необходимо для формирования пищевого комка и его проглатывания.

    Химическая обработка пищи - переваривание углеводов - осуществляется ферментами слюны: а-амилазой (расщепляет крах-мал и гликоген до мальтозы и глюкозы) и а-глюкозидазой (мальтаза гидролизует мальтозу до моносахаридов). Ввиду кратковременности пребывания пищи в ротовой полости (15-20 с) основное гидролити-ческое действие (карбогидраз слюны) реализуется в желудке.

    Слюна выполняет также защитную функцию. Муроми-даза (лизоцим) слюны обладает бактерицидным действием; проте-иназы, напоминающие по субстратной специфичности трипсин, дезинфицируют содержимое полости рта. Нуклеазы слюны участву-ют в деградации нуклеиновых кислот вирусов.

В. Регуляция секреции слюнных желез осуществляется посредством условных и безусловный рефлексов. Отделение

слюны начинается через несколько секунд после приема пищи. В процессе приема пищи возбуждаются тактильные, температур-ные и вкусовые рецепторы слизистой оболочки рта. Потоки аффе-рентных импульсов поступают по чувствительным волокнам трой-ничного, лицевого, языкоглоточного и блуждающего нервов в бульбарный отдел слюноотделительного центра, который представ-лен верхним и нижним слюноотделительными ядрами. Афферент- ные импульсы поступают также и в вышележащие отделы ЦНС, в том числе и в корковый отдел вкусового анализатора. Возбужде-ние парасимпатических нервов (барабанная струна иннервиру-ет подчелюстную и подъязычную железы, языкоглоточный нерв ин-нервирует околоушную железу) вызывает обильную секрецию жидкой слюны с высокой концентрацией солей и низким содержа-нием муцина. Возбуждение симпатических нервов (прегангли-онарные нейроны, локализуются в области II-V грудных сегмен-тов спинного мозга) вызывает выделение небольшого количества густой слюны с высокой концентрацией ферментов и муцина. В ре-зультате жевания пищевой комок подготавливается к глотанию.

Г. Акт глотания состоит из трех фаз.

В первую (ротовую) фазу глотания пищевой комок с помо-щью языка переводится за передние дужки глоточного кольца, при этом жевание прекращается. Эта фаза произвольная. Гортань с помощью сокращения челюстно-подъязычной мышцы поднмается.

Вторая (глоточная) фаза глотания непроизвольная, возни-кает вследствие раздражения пищевым комком механорецепторов слизистой оболочки корня языка, передних дужек и мягкого неба. При фармакологическом выключении перечисленных рецепторов глотание становится невозможным. Акт глотания нельзя вызвать, если в полости рта нет пищи, воды или слюны. Вторая фаза акта глотания заканчивается поступлением пищевого комка из глотки в пищевод. Длительность первых двух фаз акта глотания около 1 с.

Третья (пищеводная) фаза акта глотания также непроиз-вольная, обеспечивает поступление пищевого комка в желудок. После поступления пищевого комка в начальную часть пищевода в ней возникает первичная в проксимо-дистальном направлении пе-ристальтическая волна, обеспечивающая продвижение пищевого комка по пищеводу. Сокращение циркулярных исчерченных мышц выше пищевого комка и их расслабление ниже пищевого комка со-здает проксимо-дистальный градиент давления. В грудном отделе исчерченная мускулатура пищевода сменяется гладкой, однако перистальтическая волна распространяется по всей длине пищево-да. Длительность прохождения воды по пищеводу составляет 1 с, слизистой массы - 5 с, твердой пищи - 9-10 с.

Д. Регуляция моторной функции пищевода осуществляет-ся в основном блуждающим нервом. Причем исчерченные мыш-цы верхней части пищевода управляются его Отчет

2009. Смирнов В.М., Дубровский В.И. Физиология физического воспитания и спорта : Учебник. -М.: Владос-Пресс, 2002 ... Гигиенические основы физической культуры и спорта Основная: 1. Вайнбаум Я.С. Гигиена физического воспитания и спорта : Учеб. пособ...

Актуальность . Многие хирурги и анестезиологи встречаются при проведении стоматологических и нейрохирургических операций (например, при травмах в средней трети лица, при удаление вестибулярной шваномы и т.д.) с возникновением (из-за тригемино-кардиального рефлекса) интраоперационной брадикардии и гипотензии, которые ведут к гипоперфузии головного мозга и развитию ишемических очагов в нем.

Тройнично-кардиальный рефлекс (trigemincardiac reflex, TCR) – снижение частоты сердечных сокращений и падение артериального давления более чем на 20% от базовых значений при хирургических манипуляциях в области ветвей тройничного нерва (Schaller, et al., 2007).

Разделяют центральный и переферический тип тройнично-кардиального рефлекса, анатомической границей между которыми является тройничный (Гассеров) узел. Центральный тип развивается при хирургических манипуляциях у основания черепа. Переферический тип в свою очередь подразделяется на офтальмо-кардиальный рефлекс (ophthalmocardiac reflex – OCR) и верхненижнечелюстной кардиальный рефлекс (maxillomandibulocardiac reflex – MCR), такое деление в основном обусловлено зоной хирургических интересов различных специалистов.

Нарушение сердечной деятельности, артериальная гипотензия, апное и гастроэзофагальный рефлюкс как проявление тройнично-кардиального рефлекса (trigemincardiac reflex, TCR) впервые описано Kratschmer в 1870 г. (Kratschmer, 1870) при раздражении слизистой носа у экспериментальных животных. Позднее в 1908 г., Aschner и Dagnini описали глазнично-кардиальный рефлекс (oculocardiac reflex). Но большинство клиницистов рассматривают глазнично-кардиальный рефлекс, как первоначально описанный переферический подтип тройнично-кардиального рефлекса (Blanc, et al., 1983). Однако с уверенностью можно сказать, что еще в 1854 году Н.И. Пирогов предопределил и анатомически обосновал развитие рефлекса. Подробное описание вегетативной иннервации глазного комплекса он изложил в своем труде – «Топографическая анатомия, иллюстрированная разрезами, проведенными через замороженное тело человека в трех направлениях». В 1977 Kumada et al. (Kumada, et al., 1977) описали подобные рефлексы при электрической стимуляции тройничного комплекса у лабораторных животных. В 1999 г. анестезиологом Schaller et al. (Schaller, et al., 1999) первоначально описан центральный тип тройнично-кардиального рефлекса, после раздражения центральной части тройничного нерва во время операции в области мостомозжечкового угла и ствола головного мозга. Именно тогда Schaller объединил концепцию центрального и переферического афферентного раздражения тройничного нерва, которая признается по настоящее время, хотя подробные анатомические обоснования изложены в труде Н.И. Пирогова.

Стимуляция любой ветви тройничного нерва вызывает афферентный поток сигналов (т.е. от периферии к центру) через тройничный узел к чувствительному ядру тройничного нерва, пересекая эфферентные пути от моторного ядра блуждающего нерва. Эфферентные пути содержат волокна, иннервирующие миокард, что в свою очередь замыкает рефлекторную дугу (Lang, et al.,1991, Schaller, 2004).


Клинические проявления тройнично-кардиального рефлекса связаны с высоким риском развития жизнеугрожающих состояний, таких как брадикардия и кульминацией брадикардии – асистолии, а также развития асистолии без предшествующей брадикардии или апноэ (Campbell, et al., 1994, Schaller, 2004).

Общими предпосылками для развития рефлекса являются гиперкапния, гипоксия, «поверхностная» анестезия, молодой возраст, а также длительное воздействие внешних раздражителей на нервное волокно. Наличие большого количества внешних раздражителей, таких как механическая компрессия, химические интраоперационные растворы (H2O2 3%), длительный прием обезболивающих препаратов способствуют дополнительной сенсибилизации нервного волокна и развитию кардиальных проявлений рефлекса (Schaller, et al., 2009, Spiriev, et al., 2011) [ : статья «Тройнично-кардиальный рефлекс в хирургии травм средней зоны лица» Шевченко Ю.Л., Епифанов С.А., Балин В.Н., Апостолиди К.Г., Мазаева Б.А. Национальный медико-хирургический Центр им. Н.Н. Пирогова, 2013].


© Laesus De Liro

(r. cardiocardialis) вегетативный Р: изменение деятельности сердца или его отделов при изменении давления в полостях сердца (напр., падение давления в левом желудочке вызывает рефлекторное учащение и усиление его сокращений).

  • - часть сложных слов, указывающая на отношение к сердцу...
  • - 1. Относящийся к сердцу или воздействующий на него. 2...

    Медицинские термины

  • - изменения сердечно-сосудистой системы у больных хронич. тонзиллитом, обусловленные воздействием бактериальных токсинов, патол. рефлексами, аллергией. Проявления: колющие боли в сердце, сердцебиение, одышка, систолич...

    Естествознание. Энциклопедический словарь

  • - см. Карди-...

    Медицинская энциклопедия

  • - 1) сердечный, относящийся к сердцу; 2) относящийся к кардиальному отверстию...

    Большой медицинский словарь

  • - см. Карди-...

    Большой медицинский словарь

  • - К., вводимый в полость правого предсердия или ушка; входит в состав клапанной дренажной системы, применяемой при хирургическом лечении гидроцефалии...

    Большой медицинский словарь

  • - моторно-висцеральный P.: изменение ритма сердечных сокращений при раздражении или сокращении скелетной мускулатуры...

    Большой медицинский словарь

  • - гипоталамический синдром с преобладанием нарушений сердечной деятельности, напр. аритмий, лабильности артериального давления, кардиалгии...

    Большой медицинский словарь

  • - изменения сердечно-сосудистой системы у больных хроническим тонзиллитом, обусловленные воздействием бактериальных токсинов, патологическими рефлексами, аллергией...

    Большой энциклопедический словарь

  • - - первая часть сложных слов, пишется...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - ...
  • - ...

    Орфографический словарь-справочник

  • - ...
  • - тонз"илло-карди"...

    Русский орфографический словарь

  • - прил., кол-во синонимов: 1 тонзиллокардиальный...

    Словарь синонимов

"рефлекс кардио-кардиальный" в книгах

74. Рефлекс

Из книги Мэрилин Монро. Тайна смерти. Уникальное расследование автора Реймон Уильям

74. Рефлекс Рефлекс оставался прежним. Находясь на неизведанной земле, следует вначале обрести уверенность. Загадка смерти Мэрилин Монро не была исключением из этого правила.Хотя версия об участии братьев Кеннеди оказалась ложной и ушла в небытие, предстояло решить, что

II. Рефлекс

Из книги О начале человеческой истории (Проблемы палеопсихологии) [изд. 1974, сокр.] автора Поршнев Борис Фёдорович

II. Рефлекс Возможно, иного читателя удивит приглашение углубиться в недра физиологии высшей нервной деятельности, когда его заинтересовала лишь тема о начале человеческой истории. Однако раз мы вознамерились преследовать по пятам «душу», «тайну» которой припрятывают в

Рефлекс сна

Из книги Право на сон и условные рефлексы: колыбельные песни в советской культуре 1930–1950-х годов автора Богданов Константин Анатольевич

Рефлекс сна В истории отечественной науки специализированное изучение состояния сна и сновидений связывается с именем Марии Михайловны Манасеиной-Коркуновой (1843–1903), автора фундаментального для своего времени труда «Сон как треть жизни, или Физиология, патология,

Аспирин Кардио

автора Ризо Елена Александровна

Аспирин Кардио Международное название. Ацетилсалициловая кислота.Антиагрегант.Лекарственная форма. Таблетки, покрытые кишечнорастворимой оболочкой белого цвета.Состав. Ацетилсалициловая кислота 100 мг. Вспомогательные вещества: целлюлоза, порошок 10 мг, крахмал

Омелар Кардио

Из книги Универсальный карманный справочник медицинских препаратов автора Ризо Елена Александровна

Омелар Кардио Международное название. Амлодипин.Блокатор кальциевых каналов.Лекарственная форма. Таблетки.Состав. Амлодипин (в форме безилата).Показания. Артериальная гипертензия (в виде моно- и комбинированной терапии), стабильная и вазоспастическая

Кардио...

БСЭ

Кардио... Кардио... (от греч. kard?a - сердце), часть сложных слов, указывающая на отношение к сердцу, например кардиограмма, кардиография.

Кардио-тонзиллярный синдром

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Рефлекс

Из книги Большая Советская Энциклопедия (РЕ) автора БСЭ

Кардио-сессия со скакалкой

Из книги У меня фигурка SEXY [Эффективный фитнес и уход за телом] автора Бурбо Лиз

Кардио-сессия со скакалкой Начальный уровень Сначала обучите себя подпрыгивать на месте без скакалки, чтобы определить экономичную высоту подскоков. Секрет долгих прыжков заключается во вращении скакалки только одними кистями. Вы должны помнить об этом. В противном

Чем можно заменить «кардио»?

Из книги автора

Чем можно заменить «кардио»? Интенсивный путь или интервальный тренингУ традиционной аэробной нагрузки есть не только экстенсивный вариант, но и интенсивный. Даже высокоинтенсивный. При этом продолжительность кардиосессий существенно сокращается, но выполняются они,

КАРДИО-программа «Комбинация бега и ходьбы»

Из книги Фитнес после 40 автора Томпсон Ванесса

КАРДИО-программа «Комбинация бега и ходьбы» Очень многие женщины занимаются кто ходьбой, кто бегом. Однако наиболее эффективной считается тренировка, сочетающая и то и другое. Таким образом, меняя интенсивность аэробных нагрузок, мы сжигаем большее количество калорий.

Глава 13 КРАСИВОЕ ТЕЛО, ИЛИ КАРДИО-ФИТНЕС

Из книги Женские секреты со всего света автора Танака Элиза

Глава 13 КРАСИВОЕ ТЕЛО, ИЛИ КАРДИО-ФИТНЕС Чтобы иметь красивую фигуру, придется подружиться с фитнесом, вот и поговорим о кардио-одном из лучших способов избавиться от лишних складочек. Многие женщины, усиленно занимающиеся на тренажерах, буквально выжимая футболки от

Ага-рефлекс

Из книги Достигатор на халяву автора Курамшина Алиса

Ага-рефлекс Ага-рефлекс – это когда вы почему-то знаете, что всё так, несмотря на то, что доводов особых нет.Этот рефлекс можно описать так: небольшая личная «эврика», открытие давно забытого, появление света в конце туннеля. Самый яркий пример: когда вы поняли смысл

ОСНОВЫ МАХ-ОТ-КАРДИО

Из книги Силовой тренинг Мах-ОТ. Полный образовательный курс автора Делиа Пол

ОСНОВЫ МАХ-ОТ-КАРДИО Пол ДелиаПрезидент Эй-Эс-Ти Спортс СайенсБольше года тому назад я начал проводить эксперименты, которые закончились созданием совершенно новой, уникальной методики аэробного тренинга. Эта прогрессивная, жесткая и невероятно эффективная методика,

Кардио!

Из книги Палеодиета – живое питание для здоровья автора Вулф Робб

Кардио! Почти невозможно говорить о физических упражнениях, не коснувшись кардиофитнеса. Обычно разговор начинается с этой темы и ею же заканчивается! Долгие годы считалось, что кардиофитнес – все, что нам нужно для здоровья. Это были «годы бегунов», когда здоровье

Барорецепторный рефлекс. Барорецепторы представляю і собой рецепторы, воспринимающие растяжение стенки артерий, и расположены в каротидных синусах и дуге аорты. Афферентные импульсы от рецепторов каротидных синусов поступают в головной мозг по нервам каротидных синусов, которые являются ветвями языкоглоточных (ίΧ пара черепных нервов), а от барорецепторов дуги аоргы - по аортальным нервам, которые являются ветвями блуждающих нервов (X пара черепных нервов).

Эфферентное же плечо барорецепторного рефлекса образуется симпатическими и парасимпатическими волокнами. При повышении среднего артериального давления в области каротидных синусов и дуги аорты уменьшается нервная активность в эфферентных симпатических волокнах и увеличивается активность в эфферентных парасимпатических волокнах. В результате уменьшается вазомоторный тонус в резистивных и емкостных сосудах всего тела, понижается частота сердечных сокращений, увеличивается время предсердно-желудочкового проведения и уменьшается сократимость предсердий и желудочков При падении давления наблюдается противоположный эффект. Синхронное действие симпатического и парасимпатического отделов отмечается лишь в физиологических условиях, когда артериальное давление колеблется вблизи нормального диапазона давлений. Если артериальное давление резко снижается до аномального уровня, то рефлекторная регуляция осуществляется исключительно за счет эфферентной симпатической активности (поскольку тонус блуждающего нерва практически исчезает), и наоборот, если артериальное давление резко повышается до аномально высокого уровня, симпатический тонус полностью угнетается, а рефлекторная регуляция осуществляется только за счет изменений эфферентной активности вагуса

Рефлекс Бейнбриджа. Увеличение объема циркулирующей крови, приводящее к расширению устья полых вен и предсердий, приводит к увеличению частоты сердечных сокращений, несмотря на сопутствующее увеличение артериального давления. Афферентная импульсация при этом рефлексе передается по блуждающим нервам.

Хеморецепторный рефлекс Периферические артериальные хеморецепторы реагируют на снижение р0 2 и pH артериальной крови и на повышение рС0 2 . Хеморецепторы расположены в дуге аоргы и каротидных телах, окружающих каротидные синусы. Стимуляция артериальных хеморецепторов вызывает гипервен гиляцию легких, БРАДИКАРДИЮ и сужение сосудов. Однако амплитуда сердечно-сосудистых реакций зависит от сопутствующих изменений легочной вентиляции- если стимуляция хеморецепторов вызывает умеренную степень гипервентиляции, то реакцией сердца скорее всего будет брадикардия. Наоборот, при сильной гипервентиляции, вызванной стимуляцией хеморецепторов, частота сердечных сокращений обычно возрастает.

Крайним примером такой рефлекторной реакции является ситуация, когда невозможно повышение вентиляции легких на стимуляцию хеморецепторов. Так, у больных, находящихся на искусственной вентиляции летких, стимуляция каротидных хеморецепторов вызывает резкое повышение активности блуждающего нерва, приводящее к выраженной брадикардии и нарушению предсердно-желудочкового проведения.

Легочные рефлексы. Благодаря наличию барорецепторов в легочной артерии наполнение воздухом легких вызывает рефлекторное увеличение частоты сердцебиений, которое устраняется денервацией обоих легких; афферентные и эфферентные пути этого рефлекса находятся в блуждающих нервах.

Растяжение легочных вен приводит к рефлекторному учащению пульса; эфферентный путь рефлекса лежит в симпатических нервах.

С хеморецепторов легочной ткани включается легочный депрессорный хеморефлекс (снижение систолического давления и брадикардия).

Окулокардиальный рефлекс Ашнера. Сдавливание глазных яблок вызывает глубокое замедление частоты сердцебиения.

Строго говоря, раздражение различных областей и участков тела может менять ритм сердечных сокращений. Импульсы, возникающие во всех висцеральных афферентных приборах, т.е. во всех тканях (за исключением кожи), приводят к брадикардии. Раздражение внутренних органов может вызвать резчайшее, иногда драматическое угнетение частоты сердцебиений. Так, например, остановку сердца может вызвать раздражение нервных окончаний в верхних дыхательных путях. Брадикардию вызывают надавливание пальцами на область каротидных синусов, введение иглы в плечевую артерию при вертикальном положении пациента может вызвать аналогичный эффект, желудочно-кишечный тракт снабжен большим количеством афферентных нервных окончаний и рецепторов, волокна которых достигают продолговатого мозга в составе блуждающего нерва, в результате тошнота и рвота обычно сопровождаются замедлением сердечных сокращений независимо от того, вызваны ли они механическим раздражением корня языка, глотки или же воздействием токсических агентов. Болевые раздражения скелетных мышц вызывают брадикардию.

Рефлекторная регуляция деятельности сердца

Осуществляется при участии центров блуждающих и симпатических нервов (вторая ступень иерархии) и центров гипоталамической области (первая ступень иерархии). Рефлекторные реакции могут как тормозить (замедлять и ослаблять), так и возбуждать (ускорять и усиливать) сердечные сокращения.

Рефлекторные изменения работы сердца возникают при раздра­жении различных рецепторов. Эти рецепторы возбуждаются при изменении давления крови в сосудах или при воздействии гуморальных (хи­мических) раздражителей. Участки, где сосредоточены такие рецеп­торы, получили название сосудистых рефлексогенных зон .

Наиболее значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает урежение сердечных сокращений. Эти нервные окончания представляют собой барорецепторы. Естественным их раздражите­лем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где они расположены. Поток афферентных нервных импульсов от этих рецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще возникают афферентные импульсы.

Обнаружены также рецепторы в самом сердце: эндокарде, мио­карде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов.

В правом предсердии и в устьях полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в по­лости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов к группе нейронов ретикулярной формации ство­ла мозга, получивших название «сердечно-сосудистый центр». Аф­ферентная стимуляция этих нейронов приводит к активации нейронов симпатического отдела автономной нервной системы и вызывает рефлек­торное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов

Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишеч­нику лягушки вызывает остановку или замедление сокращений сердца. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (урежение сердцебиений на 10-20 в минуту при надавливании на глазные яблоки).

Рефлекторное учащение и усиление сердечной деятельности на­блюдаются при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при мышечной работе.

Изменения сердечной деятельности при этом вызываются импульсами, посту­пающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов.

Собственные рефлексы:

  • Циона-Людвига

1. Увеличение артериального давления.

2. Раздражение барорецепторов высокого давления рецепторной зоны дуги аорты.

3. Увеличение частоты импульсации в афферентных нервных волокнах, идущих в составе депрессорного нерва (веточка вагуса).

4. Активация депрессорной зоны сосудодвигательного центра в передних отделах продолговатого мозга у нижнего угла ромбовидной ямки (гигантоклеточное ретикулярное ядро, ретикулярное вентральное ядро, каудальное и оральное ядра моста, заднее ядро Х нерва).

5. Активация ядер блуждающего нерва (парасимпатической нервной системы) через медиатор ацетилхолина на м-хр приводит к снижению частоты работы сердца (подавление активности аденилатциклазы и открытие К каналов в кардиомиоцитах СА узла), уменьшению скорости распространения возбуждений по проводящей системе сердца, силы сокращений предсердий и желудочков.

6. Уменьшение ударного и минутного объемов крови.

7. Снижение артериального давления

  • Прессорный рефлекс Геринга

1. Снижение артериального давления (например, в результате кровотечения).

2. Раздражение барорецепторов каротидного синуса сонных артерий.

3. Изменение частоты возбуждений, идущих от этой рецепторной зоны по нервным волокнам в составе языкоглоточного нерва (нерв Геринга) в сосудодвигательный центр.

4. Активация прессорной зоны сосудодвигательного центра, расположенного в заднебоковых отделах продолговатого мозга на уровне нижнего угла ромбовидной ямки (ядро одиночного пути, латеральное и парамедианное ретикулярное ядро, хеморецепторная зона дыхательного центра). Нейроны этой зоны имеют эфферентный выход на симпатические центры:Th-5 - для сердца (и Th1,-L2 – для сосудов).

Активация центров симпатической нервной системы вызывает с помощью медиатора норадреналина и β1 -адренорецепоров положительный хроно-, ино-, дромотропный эффекты.

6. Увеличение ударного и минутного объемов крови.

7. Увеличение артериального давления.

  • Рефлекс Парина

Формируется в ответ на изменение давления крови в артериях малого круга.

1. При увеличении давления крови раздражаются барорецептры артерий малого круга кровообращения.

2. Увеличенная частота импульсов по афферентным волокнам в составе блуждающего нерва поступает в депрессорный отдел сосудодвигательного центра продолговатого мозга.

3. Нейроны этой зоны имеют эфферентный выход на парасимпатические нейроны заднего ядра Х нерва для сердца (IX и VII нерва для некоторых сосудов головы) и оказывают тормозной эффект на спинальные симпатические нейpoны, иннервирующие сердце и сосуды.

4. Снижение частоты и силы сокращения сердца.

5. Уменьшение ударного и минутного объема крови.

6. Снижение давления крови в артериях малого круга кровообращения.

  • Вазокардиальный рефлекс Бейнбриджа

1. Рецепторы предсердий возбуждаются при растяжении миокарда: А-­ рецепторы при сокращении мускулатуры предсердий, В-рецепто-ры при ее пассивном растяжении (увеличении внутрипредсердного давления).

2. Импульсы от рецепторов предсердий поступают по чувствительным волокнам блуждающих нервов к циркуляторным центрам продолговатого мозга и другим отделам ЦНС.

3. Сигналы от А-рецепторов (в отличие от В-рецепторов), по всей вероятности, повышают симпатический тонус. Именно возбуждением этих рецепторов объясняют тахикардию, часто (но не всегда) возникающую в эксперименте при очень сильном растяжении предсердий, обусловленном быстрым введением в кровоток большого объема жидкости (рефлекс Бейнбриджа).

  • рефлекс Генри-Гауэра , который представляет собой увеличение диуреза в ответ на растяжение стенки левого предсердия. задержка выделения антидиуретического гормона при повышении притока крови к правым отделам сердца в условиях длительного пребывания человека в горизонтальном положении; проявляется повышением диуреза.

Сопряженные рефлексы:

  • Рефлекс Гольца (проявляется в форме брадикардии (до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости)
  • Рефлекс Данини-Ашнера (соматовисцеральный) - проявляется в виде брадикардии при надавливании на глазные яблоки (увеличение пульса на 10-12)