Значения выражения примеры с решением. Числовые выражения

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

Вы, как родители, в процессе обучения своего ребенка, не раз столкнетесь с необходимостью помощи в решении домашних задач по математике, алгебре и геометрии. И одно из базовых умений, которое необходимо усвоить — как найти значение выражения. Многие заходят в тупик, ведь сколько лет прошло с того момента, как мы учились в 3-5 классах? Многое уже забылось, а что-то не училось. Сами правила математических действий - просты и вы легко их вспомните. Начнем с самых основ, что такое математическое выражение.

Определение выражения

Математическое выражение - совокупность чисел, знаков действий (=, +,-, *, /), скобок, переменных. Кратко - это формула, значение которой нужно будет найти. Такие формулы как раз встречаются в курсе математики еще со школы, а потом преследуют и студентов, которые выбрали для себя специальности, связанные с точными науками. Математические выражения разделяются на тригонометрические, алгебраические и так далее, не будем забегать в самые «дебри».

  1. Делайте любые вычисления сначала на черновике, а после переписывайте в рабочую тетрадь. Таким образом вы избежите лишних перечеркиваний и грязи;
  2. Пересчитайте общее количество математических действий, которые нужно будет выполнить в выражении. Обратите внимание, что согласно правилам, вначале выполняются действия в скобках, потом деление и умножение и в самом конце вычитание и сложение. Рекомендуем выделить все действия карандашом и поставить цифры над действиями в порядке очередности их выполнения. В этом случае и вам и ребенку будет легче сориентироваться;
  3. Начинайте производить расчеты строго придерживаясь порядка выполнения действий. Пусть ребенок, если расчет простой, старается выполнять его в уме, если же это сложно, то ставьте карандашом цифру, соответствующую порядковому номеру выражения и выполняйте вычисление в письменном виде под формулой;
  4. Как правило, найти значение простого выражения не составляет труда, если все расчеты выполнены в соответствии с правилами и правильным порядком. Большинство сталкиваются с проблемой именно на данном этапе нахождения значения выражения, потому будьте внимательны и не допускайте ошибок;
  5. Запрещайте калькулятор. Сами математические формулы и задачи в жизни вашему ребенка может и не пригодятся, но не в этом цель изучения предмета. Главное - развитие логическое мышления. Если пользоваться калькуляторами, то смысл всего будет потерян;
  6. Ваша задача как родителя - не решать за ребенка задачи, а помогать ему в этом, направлять. Пусть он сам производит все вычисления, а вы следите за тем, чтобы он не допускал ошибок, объясняйте, почему нужно делать так, а не иначе.
  7. После того, как ответ на выражение найден, запишите его после знака «=»;
  8. Откройте последнюю страницу учебника по математике. Обычно, там есть ответы под каждое упражнение в книге. Не мешает свериться, верно ли все посчитано.

Найти значение выражения - с одной стороны, простая процедура, главное вспомнить основные правила, которые мы проходили в школьном курсе математики. Однако, с другой стороны, когда вам нужно помочь малышу справиться с формулами и решением задач, вопрос осложняется. Ведь вы теперь не ученик, а учитель и на ваших плечах лежит воспитание будущего Эйнштейна.

Надеемся, что наша статья помогла вам найти ответ на вопрос, как найти значение выражения, и вы с легкостью раскусите любую формулу!


При изучении темы числовые, буквенные выражения и выражения с переменными необходимо уделить внимание понятию значение выражения . В этой статье мы ответим на вопрос, что такое значение числового выражения, и что называют значением буквенного выражения и выражения с переменными при выбранных значениях переменных. Для разъяснения этих определений приведем примеры.

Навигация по странице.

Что называют значением числового выражения?

Знакомство с числовыми выражениями начинается чуть ли не с первых уроков математики в школе. Практически сразу вводится и понятие «значение числового выражения». Его относят к выражениям, составленным из чисел, соединенных знаками арифметических действий (+, −, ·, :). Дадим соответствующее определение.

Определение.

Значение числового выражения – это число, которое получается после выполнения всех действий в исходном числовом выражении.

Для примера рассмотрим числовое выражение 1+2 . Выполнив , получаем число 3 , оно и является значением числового выражения 1+2 .

Часто в словосочетании «значение числового выражения» слово «числового» опускают, и говорят просто «значение выражения», так как все равно понятно, о значении какого выражения идет речь.

Данное выше определение значения выражения распространяется и на числовые выражения более сложного вида, которые изучаются в старших классах. Здесь нужно заметить, что можно столкнуться с числовыми выражениями, указать значения которых нет возможности. Это связано с тем, что в некоторых выражениях невозможно выполнить записанные действия. Например, поэтому мы не можем указать значение выражения 3:(2−2) . Подобные числовые выражения называют выражениями, не имеющими смысла .

Часто на практике интерес представляет не столько числовое выражение, как его значение. То есть, встает задача, заключающаяся в определении значения данного выражения. При этом обычно говорят, что нужно найти значение выражения . В указанной статье подробно разобран процесс нахождения значения числовых выражений различного вида, и рассмотрена масса примеров с детальными описаниями решений.

Значение буквенного выражения и выражения с переменными

Помимо числовых выражений изучают буквенные выражения, то есть выражения, в записи которых вместе с числами присутствует одна или несколько букв. Буквы в буквенном выражении могут обозначать различные числа, и если буквы заменить этими числами, то буквенное выражение станет числовым.

Определение.

Числа, которыми заменяют буквы в буквенном выражении, называют значениями этих букв , а значение полученного при этом числового выражения называют значением буквенного выражения при данных значениях букв .

Итак, для буквенных выражений говорят не просто о значении буквенного выражения, а о значении буквенного выражения при данных (заданных, указанных и т.п.) значениях букв.

Приведем пример. Возьмем буквенное выражение 2·a+b . Пусть заданы значения букв a и b , например, a=1 и b=6 . Заменив буквы в исходном выражении их значениями, получим числовое выражение вида 2·1+6 , его значение равно 8 . Таким образом, число 8 есть значение буквенного выражения 2·a+b при заданных значениях букв a=1 и b=6 . Если бы были даны другие значения букв, то мы бы получили значение буквенного выражения для этих значений букв. Например, при a=5 и b=1 имеем значение 2·5+1=11 .

В старших классах при изучении алгебры буквам в буквенных выражениях позволяют принимать различные значения, такие буквы называют переменными, а буквенные выражения – выражениями с переменными. Для этих выражений вводится понятие значения выражения с переменными при выбранных значениях переменных. Разберемся, что это такое.

Определение.

Значением выражения с переменными при выбранных значениях переменных называется значение числового выражения, которое получается после подстановки выбранных значений переменных в исходное выражение.

Поясним озвученное определение на примере. Рассмотрим выражение с переменными x и y вида 3·x·y+y . Возьмем x=2 и y=4 , подставим эти значения переменных в исходное выражение, получаем числовое выражение 3·2·4+4 . Вычислим значение этого выражения: 3·2·4+4=24+4=28 . Найденное значение 28 является значением исходного выражения с переменными 3·x·y+y при выбранных значениях переменных x=2 и y=4 .

Если выбрать другие значения переменных, например, x=5 и y=0 , то этим выбранным значениям переменных будет соответствовать значение выражения с переменными, равное 3·5·0+0=0 .

Можно отметить, что иногда для различных выбранных значений переменных могут получаться равные значения выражения. К примеру, для x=9 и y=1 значение выражения 3·x·y+y равно 28 (так как 3·9·1+1=27+1=28 ), а выше мы показали, что такое же значение это выражение с переменными имеет при x=2 и y=4 .

Значения переменных можно выбирать из соответствующих им областей допустимых значений . В противном случае при подстановке в исходное выражение значений этих переменных получится числовое выражение, не имеющее смысла. К примеру, если выбрать x=0 , и подставить это значение в выражение 1/x , то получится числовое выражение 1/0 , которое не имеет смысла, так как деление на нуль не определено.

Остается лишь добавить, что существуют выражения с переменными, значения которых не зависят от значений входящих в них переменных. Например, значение выражения с переменной x вида 2+x−x не зависит от значения этой переменной, оно равно 2 при любом выбранном значении переменной x из области ее допустимых значений, которая в данном случае является множеством всех действительных чисел.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
  2. Затем - деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Числовым выражением является запись чисел в совокупности с арифметическими операциями и скобками. Когда в выражении совместно с числами используются переменные и все выражение составлено со смыслом, то его называют алгебраическим (буквенным) выражением. Если в выражении присутствуют прямые, производные, обратные и другие тригонометрические функции, тогда выражение называют тригонометрическим. Большое количество примеров и задач с применением различных выражений детально изложено в школьном курсе математики.

Основное что нужно помнить:

1. Значением числового выражения будет являться число, полученное при выполнении арифметических действий в этом выражении. Главное последовательно выполнять арифметические действия. Для простоты всей операции, действия можно пронумеровать. Если выражение содержит скобки, то первым делом выполняем действие соответствующее знаку в скобках. Возведение в степень будет следующим этапом. Дальше по приоритету выполняем умножение либо деление и только в самом конце сложение и вычитание.

А теперь найдем значение числового выражения 5+20*(60-45). Для начала «избавляемся» от скобок. Выполняя действие, получим 60-45=15. Теперь мы имеем 5+20*15. Следующее действие умножение 20*15=300. И последним действием будет сложение, выполняем его и получаем конечный результат 5+300=305.

2. При известном угле? Работая с тригонометрическими выражениями, потребуются знания основных тригонометрических формул, которые помогут упростить выражение. Найдем значение выражения cos 12? cos 18?- sin 12? sin 18?. Чтобы упростить данное выражение воспользуемся формулой cos (? +?) = cos? cos? - sin? sin?, тогда получим cos 12? cos 18?- sin 12? sin 18?= cos(12? +18?)= cos30? =v3?2.

3. Выражения с переменными. Нужно помнить, что значение алгебраического выражения напрямую зависит от переменной. Переменные можно обозначать буквами греческого либо латинского алфавита. Когда мы имеем заданные параметры алгебраического выражения, для начала его нужно упростить. После этого необходимо подставить заданные переменные и произвести арифметические операции. В итоге при заданных переменных мы получим число, которое и будет являться значением алгебраического выражения. Рассмотрим такой пример, где нужно найти значение выражения 3(a+y)+2(3a+2y) при a=4 и y=5. Упростим это выражение и получим 3a+3y+6a+4y=9a+7y. Теперь необходимо подставить значение переменных и вычислить, полученный результат и будет являться значением выражения. Итак, мы имеем 9a+7y при a=4 и y=5 получим 36+35=71. Обратите внимание на то, что алгебраические выражения не всегда имеют смысл. Например, такое выражение 15:(b-4) имеет смысл при любом b кроме b =4.