Сборка инфракрасной паяльной станции. Инфракрасная паяльная станция своими руками

При ремонте материнских плат связанных с заменой BGA компонентов не обойтись без инфракрасной паяльной станции! Китайские станции качеством не блещут, а качественные ИК паяльные станции стоят не дешево. Выход - собрать самому паяльную станцию. Стоимость компонентов для сборки станции не превышает 10 тысяч рублей. Не смотря на дешевизну - самодельная ИК станция надежно себя зарекомендовала в ремонте материнских плат. Контроллер обеспечивает точное соблюдение термопрофиля, что является важным фактором во время замены BGA компонентов.

Описание конструкции

Станция состоит из контроллера управления, нижнего подогрева, верхнего нагревателя.

Контроллер двухканальный. К первому каналу можно подключить термопару или платиновый терморезистор. Ко второму каналу подключается только термопара. 2 канала имеют автоматический и ручной режим работы. Автоматический режим работы обеспечивает поддержание температуры 10-255 градусов через обратную связь с термопар или платинового терморезистора (в первом канале). В ручном режиме мощность в каждом канале можно регулировать в диапазоне 0-99%. В памяти контроллера заложено 14 термопрофилей для пайки BGA. 7 для свинецсодержащего припоя и 7 для безсвинцового припоя. Термопрофили указаны ниже. При желании их можно изменить (исходник в архиве).

Для безсвинцового припоя максимальная температура термопрофиля: - 8 термопрофиль - 225C о, 9 - 230C о, 10 - 235C о, 11 - 240C о, 12 - 245C о, 13 - 250C о, 14 - 255C о

Если верхний нагреватель, не успевает прогревать согласно термопрофилю, то контроллер становится на паузу и ждет пока не будет достигнута нужная температура. Это сделано для того, чтобы адаптировать контроллер для слабых нагревателей, которые прогревают долго и не успевают за термопрофилем.

Контроллер так же можно использовать в качестве регулятора температуры, например, во время сушки или запекания паяльной маски (в духовке, в которую помещена термопара), или прочих случаях, где требуется точное поддержание температуры.

Принципиальная схема контроллера

Далее приведены фото контроллера. Блок питания использовал от ноутбука, которое переделал на напряжение 12 Вольт. В качестве гнезда для термопар использовал usb гнездо с кусочками текстолита, которое припаяно к передней панели, смотрим фото. Охлаждение активное, я использовал термотрубку от охлаждения ноутбука. К термотрубке феном припаял медную пластину, на которую будут установлены элементы для охлаждения. Можно использовать охлаждение процессора от системного блока, но тогда габариты устройства увеличатся.

Нижний подогрев изготовлен из галогенового обогревателя на 3 лампы общей мощностью 1,2 кВт. Из обогревателя демонтируется основание со светоотражателем и защитной сеткой. Корпус для нижнего подогрева я изготовил из изогнутой листовой жести(конька оцинкованного), который вырезал ножницами по металлу. Так же в конструкцию добавлен порог алюминиевый(стык), для удобства установки на него швеллера алюминиевого. На швеллер через стойки устанавливается материнская плата. Нижний подогрев можно подключить к контроллеру. Я поступил другим способом чтобы не заморачиваться с второй термопарой, - в нижний подогрев встроил диммер на 600 Вт, только на симистор установил радиатор побольше. С регулировкой 1,2 кВт он прекрасно справляется. Примерное положение диммера я запомнил, при котором стабильно держится требуемая температура на материнской плате. Для небольших плат (например видеокарт) можно использовать канцелярские прищепки, прикрученные к DIN рейке. Пример на фото.

Качественный верхний нагреватель из подручных средств, к сожалению невозможно изготовить. Я проводил эксперименты с галогеновыми лампами, кварцевыми трубками со спиралями, так же экспериментировал с ИК лампой. Но лучше всего себя зарекомендовал керамический нагреватель фирмы ELSTEIN серии SHTS (с позолотой). Подобные нагреватели используются в дорогих ИК станциях. Я использовал ELSTEIN SHTS/100 800W и ELSTEIN SHTS/4 300W. Нагреватели греют очень хорошо, и практически не светят. Спектр ИК излучения очень подходит для замены BGA компонентов. Нагреватели из Китая не рекомендую, хоть внешне они и похожи на ELSTEIN.


Тепловое пятно нагревателя ELSTEIN SHTS/100 800W. Размер нагревателя 96х96 мм. Расстояние между нагревателем и платой 5см.

Круг El1 диаметр 4 см (перепад температуры 5 градусов от центра до края окружности).

Круг El2 диаметр 5 см (перепад температуры 10 градусов от центра до края окружности).

Круг El3 диаметр 6 см (перепад температуры 15 градусов от центра до края окружности).


Тепловое пятно нагревателя ELSTEIN SHTS/4 300W. Размер нагревателя 60х60 мм. Расстояние между нагревателем и платой 5см.

Круг El1 диаметр 2,5 см (перепад температуры 5 градусов от центра до края окружности). Подходит для большинства чипов.

Круг El2 диаметр 3 см (перепад температуры 10 градусов от центра до края окружности).

Круг El3 диаметр 4,5 см (перепад температуры 15 градусов от центра до края окружности).

Как видим оба нагревателя подходят для замены BGA компонентов. Но ELSTEIN SHTS/100 800W имеет преимущество перед вторым нагревателем. Это гораздо большее равномерное тепловое пятно. Круг диаметром 4 см у которого перепад температуры не более 5C о. Практически показатель как у Термопро с 3D отражателем (у которого однородное квадратное тепловое пятно 4х4см с перепадом температуры не более 5C о)

Ниже приведены фото конструкции верхнего нагревателя и станины, которую изготовил из того что было в строительном магазине. Конструкция получилась удачной, регулируется по высоте и длине, нагреватель крутится вокруг своей оси, его легко установить над любым участком платы.

Термопара крепится к штативу. Ее легко навести на любой участок платы. Конструкция на фото. Гибкий металлический рукав я использовал от USB фонарика из магазина, где все по одной цене. В металлический рукав я вставил термопару без внешней изоляции при помощи проволоки.

Настройка контроллера

Для настройки канала верхней термопары R3 устанавливаем в среднее положение. Помещаем термопару контроллера и термопару образцового термометра на нагретую поверхность (например галогеновую лампу, где обе термопары соединены вместе и на них нанесена термопаста), и калибруем резистором R6 показания максимального значения температуры 250 градусов. Потом даем лампе остыть до комнатной температуры и калибруем резистором R3 нижнее показание температуры. Данную процедуру нужно повторить несколько раз, пока не будет совпадать нижнее и максимальное значение температур с реальными показателями. Такую же процедуру повторяем с каналом нижней термопары при помощи резисторов R11 и R14 соответственно. Аналогично калибруется первый канал при использовании платинового терморезистора резисторами R21 и R27 соответственно. Если не планируется использовать платиновый терморезистор, то ОУ U2 можно из схемы исключить со всей обвязкой, а 11 вывод микроконтроллера подключить на +5В.

Управление контроллером и изменение параметров, а так же процесс съема и установки чипа показан на видео. Верхний нагреватель я устанавливаю на высоте 5-6 см от поверхности платы. Если в момент исполнения термопрофиля происходит выбег температуры от заданного значения больше чем на 3 градуса - понижаем мощность верхнего нагревателя. Выбег на несколько градусов в конце термопрофиля(после отключения верхнего нагревателя) не страшен. Это сказывается инерционность керамики. Поэтому я выбираю нужный термопрофиль на 5 градусов меньше, чем мне надо. На данном нижнем подогреве температура немного отличается над зоной нагревателя, и в теневой зоне (разница около 10-15 градусов). Поэтому плату на нижний нагреватель желательно установить так, чтобы чип находился над зоной нагревателя (но это не критично). Перед съемом чипа при помощи зонда нужно убедиться(аккуратным нажатием на каждый угол чипа) что шары под чипом поплыли. При монтаже используем только качественный флюс, иначе неправильный выбор флюса может все испортить. Так же при монтаже чипа BGA рекомендуется накрыть кристалл прямоугольником из алюминиевой фольги с размером стороны равной примерно ½ от стороны BGA, чтобы снизить температуру в центре, которая всегда выше, чем температура около термопары (смотрим выше фото тепловых пятен ИК нагревателей ELSTEIN).

Внешний вентилятор программно не задействован, хотя на схеме он и указан. В дальнейшем планируется в исходник внести изменения и задействовать внешний вентилятор.

Инфракрасная паяльная станция - это устройство для пайки микросхем в корпусе BGA. Если прочитанное ничего вам не говорит, вряд-ли вам стоит заходить под кат. Там ардуины, графики, программирование, амперметры, саморезы и синяя изолента.

Предыстория первая.

Моя профессиональная деятельность некоторым образом связана с электроникой. Поэтому родственники и знакомые постоянно норовят притащить мне какую-нибудь не совсем исправную электронную штуку со словами «ну посмотри, может тут какой проводок отпаялся».
В тот раз такой штукой оказался 17" ноутбук eMachines G630. При нажатии на кнопку питания зажигался индикатор, шумел вентилятор, но дисплей был безжизненным, не было звуковых сигналов и активности жесткого диска. Вскрытие показало, что ноутбук построен на платформе AMD, а северный мост имеет маркировку 216-0752001. Беглое гугление показало, что у чипа весьма плохая репутация в части надежности, зато проблемы с ним легко диагностируются. Нужно лишь его прогреть. Выставил на паяльном фене 400 градусов и подул на чип секунд 20. Ноутбук запустился и показал картинку.
Диагноз поставлен. Казалось бы, дело за малым - перепаять чип. Вот тут меня ожидало первое откровение. После обзвона сервис-центров выяснилось, что минимальная сумма, за которую в Минске можно поменять чип - 80 долларов. 40 долларов за чип и 40 долларов за работу. Для ноутбука общей стоимостью хорошо если 150 долларов это было весьма не бюджетно. Дружественный сервис по знакомству предложил перепаять чип по себестоимости - за 20 долларов. Итоговый ценник снизился до 60 долларов. Верхняя граница психологически приемлемой цены. Чип был благополучно перепаян, ноутбук собран, отдан и я о нем благополучно забыл.

Предыстория вторая.

Через несколько месяцев после окончания первой предыстории мне позвонил родственник со словами «Ты же любишь разную электронику. Забери ноутбук на запчасти. Бесплатно. Или просто выкину в мусор. Сказали, вроде материнская плата. Отвал чипа. Ремонтировать экономически нецелесообразно». Так я стал обладателем ноутбука Lenovo G555 без жесткого диска, но со всем остальным, включая блок питания. Включение показало те же симптомы, что и в первой предыстории: кулер крутится, лампочки горят, больше признаков жизни нет. Вскрытие показало старого знакомого 216-0752001 со следами манипуляций.


После прогрева чипа ноутбук запустился как ни в чем не бывало, как и в первом случае.

Размышления.

Так я оказался владельцем ноутбука с неисправным северным мостом. Разобрать его на запчасти или попытаться починить? Если второе, то снова паять его на стороне, пусть даже за 60 долларов, а не за 80? Или купить собственную инфракрасную паяльную станцию? А может собрать своими руками? Хватит ли у меня сил и знаний?
После некоторых размышлений было решено попытаться починить, причем починить самостоятельно. Даже если попытка не увенчается успехом, разобрать его на запчасти это никак не помешает. А инфракрасная станция будет полезным подспорьем во многих работах, требующих предварительного подогрева.

Техническое задание.

Изучив цены на готовые промышленные инфракрасные станции (от $1000 до плюс бесконечности), перелопатив кучу топиков на профильных форумах и роликов на Youtube, окончательно сформировал техническое задание:

1. Буду изготавливать собственную паяльную станцию.

2. Бюджет конструкции - не более 80 долларов (две перепайки в сервис-центре без материалов).

Дополнительно в оффлайне были куплены:

Линейные галогенные лампы R7S J254 1500W - 9 шт.


Линейные галогенные лампы R7S J118 500W- 3 шт.


Патроны R7S - 12 шт.


Из хлама в гараже на свет божий были извлечены:

Док-станция от какого-то допотопного лэптопа Compaq - 1 шт.


Штатив от советского фотоувеличителя - 1 шт.


В домашнем складе были найдены силовые и сигнальные провода, Arduino Nano, клемники WAGO.

Нижний нагреватель.

Вооружаемся болгаркой и отрезаем от док-станции все лишнее.


К листу металла прикрепляем патроны.


Соединяем патроны по схеме 3s3p, устанавливаем лампы, прячем в корпус.


Поиск материала для отражателя занял продолжительное время. Использовать фольгу не хотелось из-за подозрения в ее недолговечности. Использовать более толстый листовой металл не получалось из-за сложностей с его обработкой. Опрос знакомых сотрудников промышленных предприятий и обход пунктов скупки цветмета результатов не дал.

В конце концов удалось найти листовой алюминий чуть толще фольги, идеально подходящий для меня.


Теперь я точно знаю, где такие листы искать - у полиграфистов. Они их крепят к барабанам в своих машинах, то ли для переноса краски, то ли еще для чего-то. Если кто в курсе, расскажите в комментариях.

Нижний нагреватель с установленным отражателем и решеткой. Вместо решетки правильнее использовать , но стоит он совершенно не бюджетно, как и все с наклейкой «Professional».


Светит красивым оранжевым светом. Глаза при этом не выжигает, смотреть на свет можно совершенно спокойно.


Потребляет порядка 2.3 кВт.


Верхний нагреватель

Идея конструкции та же самая. Патроны привернуты саморезами к крышке от компьютерного блока питания. К ней же прикреплен согнутый из алюминиевого листа отражатель. Три пятисотваттные галогенки соединены последовательно.


Тоже светит оранжевым.


Потребляет порядка 250 ватт.


Схема управления

Инфракрасная станция - суть автомат с двумя датчиками (термопара платы и термопара чипа) и двумя исполнительными механизмами (реле нижнего нагревателя и реле верхнего нагревателя).

Было решено, вся логика регулирования мощности нагрева будет реализована на ПК. Arduino будет только мостом между станцией и ПК. Получил с ПК параметры ШИМ-регулирования нагревателей - выставил их - отдал температуру термопар в ПК, и так по кругу.

Arduino ожидает на последовательном порту сообщения типа SETxxx*yyy*, где xxx - мощность верхнего нагревателя в процентах, yyy - мощность нижнего нагревателя в процентах. Если полученное сообщение соответствует шаблону, выставляются ШИМ-коэффициенты для нагревателей и возвращается сообщение OKaaabbbcccddd, где aaa и bbb - установленная мощность верхнего и нижнего нагревателей, ccc и ddd - температура, полученная с верхней и нижней термопары.

«Настоящий» аппаратный ШИМ микроконтроллера с частотой дискретизации несколько килогерц в нашем случае неприменим, так как твердотельное реле не может отключиться в произвольный момент времени, а только при прохождении переменного напряжения через 0. Было решено реализовать собственный алгоритм ШИМ с частотой порядка 5 герц. Лампы при этом полностью гаснуть не успевают, хоть и заметно мерцают. При этом минимальным коэффициентом заполнения, при котором еще есть шансы захватить один период сетевого напряжения, оказывается 10%, чего вполне достаточно.

При написании скетча была поставлена задача отказаться от задания задержек фунцией delay(), так как есть подозрение, что в момент задержек возможна потеря данных с последовательного порта. Алгоритм получился следующий: в бесконечном цикле проверяется наличие данных из последовательного порта и значение счетчиков времени программного ШИМ. Если есть данные из последовательного порта, обрабатываем их, если счетчик времени достиг значений переключения ШИМ, проводим действия по включению-выключению нагревателей.

#include int b1=0; int b2=0; int b3=0; int p_top, p_bottom; int t_top, t_bottom; int state_top, state_bottom; char buf; unsigned long prev_top, prev_bottom; int pin_bottom = 11; int pin_top = 13; int tick = 200; unsigned long prev_t; int thermoDO = 4; int thermoCLK = 5; int thermoCS_b = 6; int thermoCS_t = 7; MAX6675 thermocouple_b(thermoCLK, thermoCS_b, thermoDO); MAX6675 thermocouple_t(thermoCLK, thermoCS_t, thermoDO); void setup() { Serial.begin(9600); pinMode(pin_top, OUTPUT); digitalWrite(pin_top, 0); pinMode(pin_bottom, OUTPUT); digitalWrite(pin_bottom, 0); t_top = 10; t_bottom = 10; p_top = 0; p_bottom = 0; state_top = LOW; state_bottom = LOW; prev_top = millis(); prev_bottom = millis(); } void loop() { if (Serial.available() > 0) { b3 = b2; b2 = b1; b1 = Serial.read(); if ((b1 == "T") && (b2 == "E") && (b3 == "S")) { p_top = Serial.parseInt(); if (p_top < 0) p_top = 0; if (p_top > 100) p_top = 100; p_bottom = Serial.parseInt(); if (p_bottom < 0) p_bottom = 0; if (p_bottom > 100) p_bottom = 100; t_bottom = thermocouple_b.readCelsius(); t_top = thermocouple_t.readCelsius(); sprintf (buf, "OK%03d%03d%03d%03d\r\n", p_top, p_bottom, t_top, t_bottom); Serial.print(buf); } } if ((state_top == LOW) && ((millis()-prev_top) >= tick * (100-p_top) / 100)) { state_top = HIGH; prev_top = millis(); } if ((state_top == HIGH) && ((millis()-prev_top) >= tick * p_top / 100)) { state_top = LOW; prev_top = millis(); } digitalWrite(pin_top, state_top); if ((state_bottom == LOW) && ((millis()-prev_bottom) >= tick * (100-p_bottom) / 100)) { state_bottom = HIGH; prev_bottom = millis(); } if ((state_bottom == HIGH) && ((millis()-prev_bottom) >= tick * p_bottom / 100)) { state_bottom = LOW; prev_bottom = millis(); } digitalWrite(pin_bottom, state_bottom); }

Приложение для компьютера.

Написано на языке Object Pascal в среде Delphi. Отображает состояние нагревателей, рисует график температуры и имеет встроенный примитивный язык моделирования, больше по философии напоминающий какой-нибудь Verilog, нежели к примеру Pascal. «Программа» состоит из набора пар «условие - действие». К примеру «при достижении нижней термопарой температуры 120 градусов установить мощность нижнего нагревателя 10%, а верхнего - 80%». Таким набором условий реализуется требуемый термопрофиль - скорость нагрева, температура удержания и т. п.


В приложении раз в секунду тикает таймер. По тику таймера функция отправляет в контроллер текущие установки мощности, назад получает текущие значения температур, отрисовывает их в окне параметров и на графике, вызывает процедуру проверки логических состояний, после чего засыпает до следующего тика.

Сборка и пробный запуск.

Схему управления собрал на макетке. Не эстетично, зато дешево, быстро и практично.


Окончательно собранное и готовое к запуску устройство.


Прогон на тестовой плате выявил следующие наблюдения:

1. Мощь нижнего нагревателя невероятна. График температуры тонкой ноутбучной платы свечой взлетает вверх. Даже при 10% мощности плата уверенно греется до требуемых 140-160 градусов.

2. С мощностью верхнего нагревателя похуже. Догреть чип даже до температуры «низ+50 градусов» получается только на 100% мощности. То ли придется впоследствии переделывать, то ли пускай остается как защита от соблазна недогревать низ.

Покупка чипа на Aliexpress.

В продаже есть два вида мостов 216-0752001. Одни заявлены как новые и стоят от 20 долларов за штуку. Другие указаны как «бывшие в употреблении» и стоят 5-10 долларов за штуку.
Среди ремонтников много мнений относительно б/у чипов. От категорически отрицательных («бугага, приходи ко мне, у меня как раз под столом горка бэушных мостов насобиралась после перепайки, я тебе их недорого продам») до осторожно нейтральных («сажаю иногда, вроде нормально работают, возвраты если и бывают, то не намного чаще новых»).
Поскольку ремонт у меня ультрабюждетный, то было решено сажать чип бывший в употреблении. А чтобы перестраховаться на случай дрогнувшей руки или неисправного экземпляра, был найден лот «2 штуки за 14 долларов».


Демонтаж чипа

Устанавливаем плату на нижний подогрев, крепим одну термопару к чипу, вторую к плате подальше от чипа. Для уменьшения теплопотерь накрываем плату фольгой, за исключением окошка под чип. Ставим верхний нагреватель над чипом. Так как чип уже пересаживался, загружаем самостоятельно придуманный профиль для свинцового припоя (нагрев платы до 150 градусов, догрев чипа до 190 градусов).

Все готово для старта.


После достижения платой температуры 150 градусов автоматически включился верхний нагреватель. Внизу под платой видна разогретая нить накаливания нижней галогенки.


В районе 190 градусов чип «поплыл». Поскольку вакуумный пинцет в бюджет не уместился, цепляем его тонкой отверткой и переворачиваем.


График температур в процессе демонтажа:


На графике хорошо виден момент включения верхнего нагревателя, качество стабилизации температуры платы (желтая крупно волнистая линия) и температуры чипа (красная мелкая рябь). Красный длинный «зубец» вниз - падение термопары с чипа после его переворота.

Запаивание нового чипа

Ввиду ответственности процесса было не до фотосъемки и изготовления скриншотов. В принципе все то же самое: проходимся по пятакам паяльником, мажем флюсом, устанавливаем чип, устанавливаем термопары, отрабатываем профиль пайки, легким пошатыванием убеждаемся, что чип «поплыл».

Чип после установки:


Видно, что сел более-менее ровно, цвет не поменялся, текстолит не погнуло. Прогноз на жизнь - благоприятный.

Затаив дыхание включаем:


Да! Материнская плата запустилась. Я перепаял первый в жизни BGA. К тому же с первого раза успешно.

Ориентировочно смета затрат:

Лампа J254: $1.5*9=$13.5
Лампа J118: $1.5*3=$4.5
Патрон r7s: $1.0*12=$12.0
Термопара: $1.5*2=$3.0
MAX6675: $2.5*2=5.0
Реле: $4*2=$8.0
Чипы: $7*2=$14.0

Итого: $60 минус оставшийся запасной чип.

Ноутбук был собран, в него добавлен найденный в столе жесткий диск на 40 гигабайт, установлена операционная система. Для предотвращения в будущем подобных инцидентов с помощью k10stat напряжение питания ядра процессора понижено до 0.9В. Теперь при самом жестком использовании температура процессора не поднимается выше 55 градусов.
+288 +568

Не так давно был изготовлен аппарат, предназначенный в основном для монтажа-демонтажа чипов в корпусах BGA, именуемый в народе инфракрасной паяльной станцией. Однако результаты работы этого устройства не отличались стабильностью.

видео первого варианта

Иногда возникали досадные случаи вздувания чипов и заметного коробления плат, несмотря на то, что термопрофиль процесса выдерживался довольно точно, в соответствии с рекомендациями уважаемой фирмы Intel, которые можно прочесть в этом документе http://www.intel.com/content/www/xr/en/processors/packaging-chapter-09-databook.html .

Это заставило более глубоко изучить теорию и практику создания подобных устройств. Напомню, что в данной конструкции в качестве нагревателей верха и низа применены дешевые китайские галогеновые лампы для прожекторов. Кое-кто считает, что сделать хорошую паяльную станцию на галогенках вообще невозможно, ибо у них слишком коротковолновый спектр излучения, а такое излучение не проникает достаточно глубоко в текстолит и греет его через поверхность. К тому же прогревающий эффект зависит от различий цвета и поглощающей способности разных деталей, что может привести к локальным перегревам. Да еще источник излучения состоит как бы из отдельных полос, что тоже снижает равномерность прогрева. Фирменный керамический нагреватель свободен от всех этих недостатков, а кварцевый от большинства из них, и только на них якобы можно сделать нормальную станцию. Такое мнение не лишено оснований, указанные недостатки конечно имеют место, но опыт работы многих людей показывает, что они вполне преодолимы. К тому же керамика и кварц тоже небезгрешны, они обладают намного бОльшей тепловой инерцией, чем лампы, что значительно осложняет управление термопрофилем в реальном времени с помощью ПИДа из-за задержки сигнала в петле. Цитата из одной статьи по ТАУ гласит, что «для объектов с t0>0.5 tи (где t0 – транспортная задержка сигнала, tи – постоянная времени объекта(примечание автора)), даже ПИД-регуляторы не могут обеспечить достаточно хорошего качества регулирования. В крайнем случае можно применить ПИД-регулятор с коэффициентом Td=0, но для таких сложных объектов лучшие качественные показатели обеспечиваются системами автоматического управления (САУ) с моделью». Именно поэтому многие отказываются от ПИД-управления и переходят к простой диаграмме мощностей, несмотря на значительную потерю в точности. Да и опыты на равномерность нагрева, сделанные путем прожаривания обычной бумаги до получения темного отпечатка, проведенные некоторыми участниками форума, свидетельствуют о том, что равномерность нагрева даже фирменным керамическим нагревателем далеко не идеальна. И это при немалой цене. В общем выбор был сделан в пользу галогенок, но конструкция была доработана так, чтобы минимизировать влияние их врожденных недостатков.

Как известно, мощность ИК излучения с единицы площади поверхности пропорциональна четвертой степени температуры (закон Стефана-Больцмана), а длина волны, на которую приходится максимум спектра, обратно пропорциональна температуре. Галогенка в штатном режиме имеет температуру спирали 2500…3000К, максимум излучения на 1мкм. Но посмотрите на график:

Даже при такой температуре максимум очень пологий, в спектре содержатся в том числе и длинные волны, причем амплитуда их ненамного меньше максимума. При снижении температуры спирали путем последовательного соединения ламп и /или диммирования спектр становится еще более плоским, и вредная коротковолновая часть с волнами короче 2.5мкм составляет в общей мощности довольно малый процент.

Таким образом, галогеновая лампа, работающая с недокалом, по свойствам излучения мало отличается от промышленного кварцевого облучателя. Так может еще более понизить температуру спирали, до невидимого излучения? Нет, тут подстерегают другие грабли, мощность излучения с единицы площади поверхности резко падает (пропорционально четвертой степени температуры), а поверхность излучения спирали в галогенке очень мала. Мы просто не сможем обеспечить нужную плотность потока мощности. К тому же кварцевое стекло трубок ламп не пропускает волны длиннее 4мкм.

Отсюда следует важный вывод: для создания хорошего ИК излучателя из галогенок необходимо сосредоточить максимально возможную исходную мощность ламп на минимальной площади, расположив их вплотную, частоколом, а требуемую не слишком большую реальную мощность получать путем последовательного соединения и/или диммирования, то есть работы ламп с недокалом. Эксперименты с первым вариантом станции показали, что удельной мощности низа 8 Вт/кв.см с головой хватает не только для разогрева платы с любыми допустимыми скоростями, а и для выпаивания всяких разъемов и сокетов вообще без верха, одним низом, защитив остальную часть платы фольгой. Для верха необходимо хотя бы 10-12 Вт/кв.см. При расчете мощности следует учитывать, что лампы накаливания являются нелинейным элементом, при последовательном соединении двух одинаковых ламп мощность каждой составит не четверть номинала, как следует из закона Ома, а треть, при трех лампах – 1/6 часть номинала, при четырех – 1/8. С мощностью разобрались. А как же быть с полосатостью? Опять обратимся к теории http://www.all-fizika.com/article/index.php?id_article=835 .Уважаемый товарищ Фейдман рассчитал, что при расстоянии от ламп до облучаемой поверхности, бОльшем, чем 4/3 расстояния между осями ламп, неравномерность становится ничтожно малой и ней можно пренебречь. Тест с прожариванием бумаги это подтверждает, никакой полосатости не наблюдается. В итоге в качестве нижнего нагревателя выбрано 12 ламп длиной 254мм по 1.5кВт каждая, размещены вплотную друг к другу частоколом, соединены по 3 шт. последовательно (4 группы).


Общая мощность при полном открытии управляющего симистора составила около 3кВт, цвет свечения оранжевый, как у всем известных нагревателей UFO. Во время работы на полную мощность включается очень редко, обычно светит красным, а в режиме поддержания вообще почти невидимым. Конфигурация верха – 6 ламп 118мм по 300Вт (есть лампы такой же длины пятисотки, но они заметно толще и плохо влезли бы в мой корпус, у кого корпус больше, можно смело ставить их). На фото видна выдвижная сменная диафрагма, она специально задвинута не до конца для наглядности.



Естественно, лампы расположены частоколом. Соединение – по две последовательно (3 группы), общая мощность около 600Вт. Эти лампы я заматировал, с целью повысить равномерность, наверное зря, отдача немного снизилась. Потом уже, прочитав статью Фейдмана, я понял, что этого можно было не делать. Но мне хватает отдачи. Для сравнения решил все же попробовать соорудить на скорую руку макет кварцевого нагревателя, просунув в отрезанную от лампы трубку спираль для электроплиты. Да, конечно светится более красным, но инерционность просто жуткая, постоянная времени десятки секунд! Точно воспроизвести термопрофиль с таким неповоротливым «исполнительным механизмом» было бы сложно. Кстати, для промышленных кварцевых нагревателей тоже заявлены довольно большие постоянные времени, не говоря уже о керамических.

Итак, с нагревателями разобрались. Теперь об еще одном очень важном моменте, правильном измерении температуры. Когда я только начинал проект и выбрал в качестве датчиков терморезисторы Pt100 типа PT106051, думал, что у меня с этим проблем вообще не будет. Термопары принципиально не хотел, компенсация холодного спая, инструментальные усилители с обвязкой из высокоточных резисторов… Pt100 позволяет без всего этого обойтись без ущерба для точности. Схемотехника радикально упрощается, никакой настройки и калибровки не требуется. Маленькие размеры датчиков сулили малое время отклика. Однако не все оказалось так просто. Во-первых, несмотря на то, что датчики имеют размер 1.7х2.4мм, это все же больше, чем капелька спая термопары. Первоначально конструкция крепежа была такая:


Думал, что пластинчатая пружина сверху, кроме того, что будет прижимать датчик к плате, еще и затенит его от прямого излучения, чтобы он нагревался только платой. Оказалось, что затеняется и сама плата в этом месте (а может еще и отводится тепло через пружину, не знаю), и датчик показывает на 5…8градусов ниже, чем на самом деле. Изменил конструкцию:


Пробовал ставить датчик прямо на чип при выпаивании, все как по учебнику, начинает плыть при 217градусах для безсвинца. Однако это еще не все. Главной проблемой первого варианта верха было слишком маленькое рабочее окно. Из-за отвода тепла в стороны от нагреваемого места на плате распределение температур имеет следующий вид:


Центр чипа будет по любому горячее, чем термодатчик, установленный сбоку от него. А термопрофили Интела, прописанные в вышеупомянутом документе, измерены датчиком, размещенным прямо среди шаров в специальном отверстии (см. рисунок на стр. 9-5 документа). В этом вся и проблема, датчик, расположенный сбоку, да еще на краю облучаемой области, показывает значительно меньше, чем реальная температура в центре чипа. Чтобы минимизировать эту разницу, окно облучателя должно перекрывать область чипа с запасом, иметь размеры не менее 60х60мм, так чтобы датчик, стоящий сбоку, облучался по возможности так же как чип, а не попадал на край области. Расстояние от облучателя до платы не должно быть слишком большим. Но даже с этими мерами некоторая разница остается. Для того, чтобы станция работала правильно, необходимо эту разницу (градиент) измерить и ввести как поправку в программу управления. Для этого надо провести пробный цикл демонтажа, периодически пробуя покачивать чип. Можно считать, что на безсвинцовом припое чип начинает шевелиться при 217градусах (датчик при этом показывает меньше). После этого всегда стараться устанавливать верхний нагреватель на одной и той же высоте, на которой проводились измерения (я у себя риску нарисовал). В новом варианте моей станции крепление верхнего датчика заменено на традиционный «колодец-журавль» (гибкий рукав себя не оправдал, был неудобен).



«Шея» журавля сделана из медной трубки диаметром 3мм, которую при необходимости можно легко согнуть руками как угодно для обхода неудобно расположенных деталей на плате, вылет регулируется винтовым зажимом. Прижимная пружина закреплена так, что в рабочем положении прижимает датчик к плате, и в то же время удерживает «журавля» в верхнем положении, когда нужно, без всяких дополнительных фиксаторов, чисто за счет кинематики. Датчик температуры низа перенесен на нижнюю часть платы.



Дело в том, что текстолит, как оказалось, имеет очень неважную теплопроводность, примерно как сухое дерево (по данным википедии). При нагреве платы только низом со скоростью 2градуса в секунду разность температур верхней и нижней стороны платы достигает 15…20градусов (измерил лично). К примеру, если мы задаем режим стабилизации температуры платы по датчику, расположенному сверху, ПИД конечно стабилизирует температуру датчика, но при этом температура нижней стороны платы постоянно гуляет в довольно больших пределах, что не есть хорошо. Датчик закреплен на рычаге, состоящем из двух половин, соединенных шарниром (подобно руке с локтем), что позволяет легко установить его в любое свободное место на плате. Если возникают сомнения, туда ли попал датчик, всегда можно приложить плату, затем снять и посмотреть отпечаток термопасты, оставленный датчиком. Прижим осуществляется за счет упругих свойств самого рычага, этого вполне достаточно.

Теперь о ПИДе. Для тех, кто не знает, что это такое, советую прочесть вот эту статью, где все разжевано очень понятным языком:

Если в конструкции механической части учтены указанные выше рекомендации, Вы без труда настроите как верхний, так и нижний ПИД на практически идеальную работу, руководствуясь методикой ув. Тима Вескотта. Но есть одно Но. Как ни парадоксально, но в силу принципа измерения и некоторых конструктивных особенностей идеально работающий ПИД отнюдь не обеспечивает хорошую работу паяльной станции в целом. ПИД управляет температурой датчика и понятия не имеет, какую температуру имеет плата или чип в 10мм от него. А здесь уже все зависит от градиентов, величины и направления потоков тепла, и определять температуру можно только косвенно. Пирометры тоже не панацея, во-первых их показания сильно зависят от вида измеряемой поверхности, во-вторых все известные мне недорогие пиродатчики требуется размещать далеко от верхнего нагревателя, чтобы избежать прямого нагрева, и оснащать оптикой, так как без нее получается слишком большое поле зрения. По точности они уступают традиционным термопарам и RTD. Всегда следует учитывать тот факт, что верхний нагреватель греет локальную область, и тепло расходится от нее кругами во все стороны иногда до самых краев платы (если та небольшая). Если просто сделать 2 независимых ПИДа для верха и низа, возникает неприятный эффект: тепло от верха достигает нижнего датчика и повышает его температуру выше уставки. ПИД, естественно, на это реагирует полным отключением нижнего нагревателя, а верхний без подогрева снизу просто не в состоянии нормально прогреть шары, не перегрев верхушку чипа. В итоге брак. Я у себя решил эту проблему следующим образом: после разогрева платы ПИДом до необходимой температуры нижний ПИД отключается и переводит лампы в режим фиксированной мощности, а датчик используется только для индикации температуры. Величина этой фиксированной мощности измерена заранее и забита в программу. Путем нескольких тестовых нагревов с разными фиксированными мощностями я построил график зависимости установившейся температуры от мощности, данные из которого и занес в свой контроллер. Конечно, при изменении температуры в помещении и напряжения сети температура может медленно уползать от заданной, но сеть у меня хорошая, и на практике уползание не превышает десяти градусов, что для низа приемлемо. Была мысль после выхода на «полку» термопрофиля некоторое время стабилизировать температуру ПИДом, при этом запоминать среднюю мощность нагревателя и фиксировать уже на ней. Но для получения достоверной величины это время получается довольно большим, да и программа усложняется. Оставил пока так, может быть сделаю в следующей версии. Кстати, о самой температуре низа. На мой взгляд, температура разогрева всей платы должна быть как можно выше для облегчения работы верха и уменьшения эффекта «кругов на воде». Главное гарантированно не расплавить припой, чтоб детали снизу не поотпадали, если есть что-то нежное снизу (пластиковые разъемы например), их нужно защитить фольгой. У меня сейчас при безсвинцовом процессе плата разогревается до 175градусов, при свинцовом 140.

Теперь о верхе. Здесь требуется максимальная точность и недопустимо даже небольшое перерегулирование. Также недопустимы «гонки за уставкой», когда из-за большого и/или долгого рассогласования нагреватель длительное время работает на полную мощность. Многие применяют разбивку конечного (самого горячего) участка термопрофиля на много мелких шагов (каждый последующий шаг не начинается до тех пор, пока не «устаканится» предыдущий). Это очень эффективный способ. Я же просто уменьшил до минимума дифференциальную составляющую в верхнем ПИДе, чтобы регулятор «не делал резких движений» мощностью, этого оказалось достаточно. Скорость нагрева на конечной фазе не стОит делать слишком большой, достаточно где-то 0.3…0.5градусов в секунду, иначе возрастет разница чип-датчик (вышеупомянутый градиент).

Теперь об еще одном важном моменте – поддержках. Стандартный стеклотекстолит FR-4 имеет температуру размягчения 125градусов (так называемая температура стеклования). Выше нее его можно гнуть руками почти как пластилин, а при остывании он запоминает новую форму. Соответственно при нагреве плата провисает, и после охлаждения (если нет поддержек или они неправильно установлены) принимает форму вертолетного винта. Поддержек должно быть как можно больше, примерно через каждые 7..8см. Наиболее распространены две основные конструкции крепежа платы на столе: «свободная», это когда плата с помощью стоек, вставленных в штатные крепежные отверстия, просто свободно лежит на сетке или стекле, и «жесткая», где плата зажимается с боков, а промежуточные поддержки выполняют вспомогательную роль, просто не дают ей провисать. Первая конструкция прогрессивней, но для нее трудно найти жесткую непрогибающуюся сетку или ИК-прозрачное стекло. На моей станции стол подвижный, поэтому пришлось применить вторую конструкцию. Опасения, что плата будет выгибаться из-за теплового расширения, не оправдались. При обычном для паялки перепаде температур в 200градусов расширение даже самой большой десктопной материнки не превышает 0.5мм, поэтому если зажимать плату не слишком плотно, ничего никуда не выгибается. К тому же участки платы, оказавшиеся за пределами рабочего окна низа (а оно у меня 210х120мм), остаются жесткими и играют роль рамки, которая часто применяется в промышленных паяльных печах для борьбы с короблением. Для борьбы с прогибом вниз изготовил съемные поддержки с подвижными слайдерами, их легко передвинуть на место, не занятое деталями.



Думаю со временем добавить еще и поперечины, образовав что-то наподобие крупной решетки. Чтобы можно было закрепить сложные непрямоугольные платы (ноутбучные и т.п.), сделал дополнительные съемные «лапы» крепления.



Все эти меры вместе достаточно эффективны, «вертолет» практически не наблюдается.

Во время работы выяснилось, что в процессе очистки пятаков на выпаянном чипе последний все время хочет куда-то убежать, удерживать его очень неудобно. Раскопал в загашнике обрезки стеклотекстолита толщиной 2мм и, не мудрствуя лукаво, сделал вот такую мышеловку:



Обратите внимание, что прижимной уголок закреплен шарнирно одним винтом, что позволяет ему самоустанавливаться, равномерно распределяя нагрузку на чип, а также без проблем закреплять неквадратные (прямоугольные) чипы.

Ну что ж, это пожалуй все. Все вышесказанные выводы сделаны исключительно из личных наблюдений, всевозможных экспериментов и изучения литературы. Ни в коем случае нельзя их считать догмой или истиной в последней инстанции. Любые замечания и дополнения приветствуются. В настоящее время мой аппарат работает стабильно в полностью автоматическом режиме, брака практически не бывает. Думаю, что, прочитав эту статью, Вам будет намного легче изготовить свой вариант аппарата, поскольку многие вопросы станут яснее.


  • Антистатическое исполнение
  • Надежная фиксация платы
  • Технические характеристики AOYUE 710

    • Напряжение 220-240В
    • Частота 50Гц
    • Мощность 600Вт
    • Температурный диапазон:
      • инфракрасная лампа - 100-450ºC
      • преднагреватель - 100-500ºC
    • Нагревательный элемент:
    • Мощность:
      • инфракрасная пушка - 200 Вт
      • преднагреватель - 650 Вт
      • стойка - 12 В
    • Габариты станции: 220 × 70 × 250 мм
    • Габариты стойки: 140 × 55 × 180 мм
    • Вес 10 кг

    Комплектация AOYUE 710

    • Основной модуль AOYUE 710
    • Инфракрасная пушка (1 шт.)
    • Стенд для охлаждения (1 шт.)
    • Кабель питания (2 шт.)
    • Инструкция (1 шт.)

    Инфракрасная паяльная станция 3-в-1

    AOYUE 720

    Паяльная станция AOYUE 720 - комплексное решение по восстановлению плат мобильных телефонов, компьютеров, телекоммуникационного оборудования c BGA, microBGA, QFP, PLSS, SOIC и другими компонентами. AOYUE 720 используется для высококачественного монтажа и демонтажа BGAs, uBGAs, SMDs, SMT соединений без перегрева.

    AOYUE 720 - многофункциональная система 3-в-1, включающая в себя инфракрасную галогенную лампу, инфракрасный преднагреватель и контактный паяльник.

    В этой паяльной станции сочетается одновременно совершенство профессиональной ремонтной системы с простотой ручного инструмента.

    • Возможность пайки без применения свинца .
    • Технология инфракрасной пайки . Преимущества:
      • формирование нагрева посредством концентрации инфракрасного излучения вместо традиционного конвекционного подогрева потоком горячего воздуха
      • эффективное решение основной проблемы при работе с термофеном - возможность смещения компонентов в процессе роботы
      • равномерность локального инфракрасного нагрева имеющее значение при работе з BGA
      • предотвращение случайного сдувания компонентов с печатной платы
      • отсутствие потребности в покупке разнообразных сменных насадок для фена под конкретную микросхему
      • возможность работы со сложнопрофильными компонентами.
    • Антистатическое исполнение станции дает возможность работать с компонентами, чувствительными к статическому электричеству.
    • Эргономичный дизайн позволяет легко управлять оборудованием с помощью цифровой панели, что делает работу более безопасной, а результаты более точными.
    • Встроенный экран и очки для пайки защищают от вредных световых лучей.
    • Надежная фиксация платы на рабочем столике позволяет избежать ее провисания и искривления.
    • Регулировка высоты держателя позволяет точно установить и зафиксировать диаметр и положение пятна нагрева. Это особенно важно при восстановлении крупных BGA-микросхем.
    • Смещение окружающих компонентов исключено, благодаря локализации места нагрева и отсутствию механического воздействия воздушного потока.
    • Совместное использование преднагревателя и паяльной станции обеспечивает соответствие режима пайки термопрофилю конкретной микросхемы и предотвращает перегрев последней.
    • Локальный инфракрасный нагреватель направляется и удерживается пользователем на протяжении всего времени пайки.
    • Станция управляется микропроцессором .
    • Программируемое время пайки, по истечении которого процесс автоматически завершается. Цифровая индикация времени пайки.
    • Цифровая и программируемая индикация температуры пайки, преднагревателя и инфракрасной пушки. Установлен температурный диапазон для настройки и контроля температуры.
    • Кнопка «Reset» позволяет сбросить установленные параметры и возвращает к предыдущим установкам.
    • Контроль температуры в месте пайки с помощью датчика.
    • Бесконтактный инфракрасный температурный контроль во время пайки или демонтажа.
    • Возможность настройки температуры преднагреватиля для равномерного прогрева платы большего размера для исключения термодеформаций.
    • Температурный датчик в телескопической трубке: легко позиционируется и служит обратной связью для ПИД (пропорционально-интегрально-дифференциального) регулятора температуры.

    Технические характеристики AOYUE 720

    • Напряжение 220-240В
    • Частота 50Гц
    • Мощность 600Вт
    • Температурный диапазон:
      • паяльник - 200-480ºC
      • инфракрасная лампа - 0-480ºC
      • преднагреватель - 100-500ºC
    • Нагревательный элемент:
      • паяльник - керамический
      • инфракрасная пушка - инфракрасная галогенная лампа
      • преднагреватель - кварцевый инфракрасный
    • Мощность:
      • паяльник - 70Вт
      • инфракрасная лампа - 165Вт
      • преднагреватель - 400Вт
    • Потребляемое напряжение:
      • паяльник - 24 В
      • инфракрасная лампа - 15 В
      • преднагреватель - 220
    • Площадь области нагрева 140 × 140 мм
    • Площадь ремонтного столика 260 × 190 мм
    • Габариты: 390 × 270 × 92 мм

    Комплектация AOYUE 720

    • Основной модуль AOYUE 720
    • Металлический держатель ИК-пушки (1 шт.)
    • ИК пушка (1 шт.)
    • ИК лампа (1 шт.)
    • Стенд для охлаждения (1 шт.)
    • Педальный переключатель (1 шт.)
    • Держатель печатных плат (1 шт.)
    • Паяльник и держатель паяльника
    • Сварочные защитные очки (1 шт.)
    • Жала для паяльника LF2B, LFK
    • Шестигранный ключ (1 шт.)
    • Механический вакуумный пинцет 939 (1 шт.)
    • Пинцет для микросхем (1 шт.)
    • Паяльный флюс (1 шт.)
    • Кабель питания (1 шт.)
    • Инструкция (1 шт.)

    ACHI Инфракрасные паяльные станции

    ACHI IR 6000 и IR PRO-SC

    В России представлены несколькими фирмами инфракрасные паяльные станции произведенные китайской фабрикой ACHI, это модели IR 6000 и IR PRO-SC.
    Данные ИК паяльные станции были разработаны с учетом современных требований, которые предъявляются к процессу поверхностного монтажа BGA компонентов.

    Данные ремонтные станции в первую очередь предназначены для монтажа, и демонтажа ИС (интегральных микросхем), чипов, микро чипов, выполненных в корпусе типа BGA, с поверхностно - монтируемых печатных плат ноутбуков, компьютеров, серверов, промышленных компьютеров, игровых приставок, мониторов.
    ИК станции ACHI - это оптимальное соотношение цены качества и функционала на рынке России.
    Главные и основные преимущества ремонтных станций ACHI:

    Станцию можно использовать для поверхностного монтажа, демонтажа различных типов компонентов: BGA, FCBGA, MLF, LFBGA, CGA, CCGA, PBGA, CSP, QFN, PGA, ?BGA.
    . Ремонтная станция легко управляется, хорошо подойдет для профессионалов, и для начинающих специалистов.
    . Предустановки (профили) программы управления для свинцовой и бессвинцовой пайки чипов BGA.
    . Память на 10 термопрофилей, каждый профиль состоит из из шестнадцати сегментов.
    . В комплекте поставки ИК станции идет все нужное для работы программное обеспечение, которое позволяет прямо на мониторе компьютера управлять и следить за процессом ремонта и сохранять большое количество термопрофилей, Высокоточные чувствительные термо сенсоры в реальном времени точно отслеживают за температурами в рабочих зонах.
    . Благодаря компактному дизайну, данную станцию можно разместить в небольшой по площади мастерской.
    . Специальные держатели и направляющие позволяют легко закреплять печатные платы разного размера.
    . Максимальная рабочая температура до 400°С - позволяет осуществлять бессвинцовую пайку BGA микросхем.

    Паяльная станция
    ACHI IR 6000

    Паяльная станция
    ACHI IR PRO-SC

    Термо воздушная станция

    QUICK855PG


    Преимущества паяльной станции QUICK855PG

    1. На демонтаж чипа уходит всего 10 секунд времени.
    2. Есть блокировки кнопок от случайных нажатий.
    3. Высокая скорость и хорошее качество демонтажа.
    4. память на 10 термопрофилей.
    5. Вакуумный пинцет.
    6. Большой ЖК дисплей для удобного мониторинга значений и параметров температуры, воздушного потока, продолжительности работы нагрева.
    8. Цифровая калибровка температуры.
    9. Электромагнитное реле и педаль регулировки.
    10. Точность температурного сенсора обеспечивает поддержание температуры с отклонением ±2?.
    11. Низкое энергопотребление, автоматический переход в режим сна.
    12. Время продолжительности работы в диапазоне 1 - 999 сек.

    Термовоздушная паяльная станция QUICK855T


    1. Керамический нагревательный элемент. Высокие скорость и качество пайки.
    2. Контроль температуры с помощью термопары K типа. Термодатчик. ЖК-дисплей.
    3. Используется в комплекте с моделью QUICK855PG для SMD и BGA компонентов.
    4. Рукоятка проста и удобна в использовании.
    5. Компоненты помещаются на посадочное место для предварительного нагрева.
    6. Два переключателя для регулировки мощности и температуры. Индикация температуры в процессе плавки.
    7. Встроенный термрметр для контроля температуры нагрева компонентов.
    8. Наличие внешнего вентилятора для охлаждения.

    Технические характеристики QUICK855PG:

    Технические характеристики

    QUICK855PG

    QUICK855T


    Инфракрасная паяльная станция

    BGA QUICK IR2005



    Данное универсальное решение, паяльной ремонтной станции IR2005 от производителя QUICK является очень компактным, и высокоточным для осуществления инфракрасной пайки, монтажа и демонтажа, а также контактной пайки и демонтажа при помощи паяльной станции с индукционным нагревом. Станция является законченным решением решение, как для производственных нужд, так и для ремонта современной электроники и устройств с высокой плотностью монтажа элементов на печатной плате (компьютеры, мобильные телефоны, периферия).
    Станция имеет как и многие другие, 10 термопрофилей, любой из которых при возникновении необходимости можно перепрограммировать, за счет чего будет сэкономлено время на монтаж и демонтаж различных типов компонентов.

    Станция имеет систему управления апертурой верхнего ИК излучателя, что позволяет точно устанавливать площадь основного прогрева, т.е. осуществлять прогрев только нужного компонента или группы компонентов, при этом остальные компоненты интенсивному разогреву не подвергаются, это предупреждает их возможную деградацию. Станция пригодна для высокотемпературной пайки (например, для пайки без использования свинца), а также для работы с платами, обладающими большой теплоемкостью.

    Основные функции:

    Программируемая система управления параметрами пайки, память на 10 режимов, пароль
    . Два инфракрасных излучателя: нижний (135?250mm) и верхний (60?60mm) с регулируемой по осям X и Y апертурой 20~60mm
    . Высокая мощность ИК излучателей: верхний 120W?6=720W, нижний 400W?2=800W
    . Нагрев на длинах волн 2-8µm
    . Максимальный размер печатной платы для монтажа: 300mm?300mm
    . Микропроцессорное управление и ультрамалоинерционные нагреватели обеспечивают максимальную термостабильность
    . Инфракрасный температурный датчик: 0…300°C
    . Лазерный светодиодный указатель для подсветки точки в центре рабочей зоны
    . Встроенный модуль контактной пайки и выпаивания с микропроцессорным управлением и паяльником с индукционным нагревом, мощностью 60W
    . Универсальная рамка-держатель для миниатюрных и сложнопрофильных плат, в комплекте
    . Программное обеспечение IRSoft, в комплекте
    . Вентиляторы верхнего и нижнего охлаждения, в комплекте
    . Устройство прецизионной установки микросхем PL2005 (опция)
    . Камера RPC2005 для визуальной инспекции пайки с разрешением 480 линий, PAL, и светодиодной подсветкой с регулируемой яркостью (опция)

    QUICK BGA2015


    Преимущества
    1. Комплекс состоит из инфракрасной ремонтной паяльной станции IR2015 для BGA.
    2. Система позиционирования и установки микросхем PL2015
    Двухцветные оптические линзы. Наличие прокладки между шариковым выводом из припоя и платой.
    3. Камера визуализации RPC2015
    Камера для визуальной калибровки и инспекционной пайки позволяет следить за прцессом с разных углов.
    4. Програмное обеспечение IRsoft
    Производится запись, контроль и анализ всего рабочего процесса с выводом диаграмм на компьютер.

    Технические характеристики

    Инфракрасная ремонтная паяльная станция

    Модель IR2015
    Общая мощность 2800 Вт (макс.)
    Мощность нижнего ИК излучателя 500 Вт*4=2000 Вт
    400 Вт*4=1600 Вт (светодиодная подсветка)
    Мощность верхнего ИК излучателя 180 Вт*4=720 Вт (светодиодная подсветка; нагрев на длине волн 2-8μm)
    Размеры верхнего ИК излучателя 60*60 мм
    Размеры нижнего ИК излучателя 267*280 мм
    Апертура верхнего ИК излучателя 20-60 мм (регулирование по осям X, Y)
    Вакуумный насос 12 В/300 мА, 0.05 МПа(макс.)
    Вентилятор верхнего охлаждения 12 В/300 мА, 15CFM
    Лазерный светодиодный указатель 3 В/30 мА
    Двигатель 24 В DC/100 мА
    Рама-держатель с эластичным креплением для плат 93мм
    Макс. размер печатной платы 420 мм*500 мм
    LCD дисплей 65.7*23.5 мм 16*2 знаков
    Связь с компьютером Через интерфейс RS-232C
    Инфракрасный температурный датчик 0-300℃(Диапазон измерения)
    Термопара K типа Опция

    Система позиционирования и установки микросхем PL

    Камера визуализации RPC

    Основные составные части системы
    Инфракрасная система пайки

    Используется инфракрасная сенсорная технология для задания и контроля процесса пайки. Имеется инфракрасный температурный датчик, ЖК дисплей для вывода температур.

    Верхний ИК излучатель

    Верхний ИК излучатель мощностью 720 Вт производит нагрев на длинах волн 2-8μm, что препятствует перегреву электронных компонентов. Нет необходимости в использовании насадок.

    Нижний ИК излучатель

    Нижний ИК излучатель мощностью 1600 Вт осуществляет инфракрасную пайку компонентов в 4 ряда. Большие размеры нижнего излучателя предохраняют печатную плату от неравномерного нагрева и деформации.

    Система светодиодной подсветки

    Верхняя светодиодная подсветка красным светом. Нижняя светодиодная подсветка белым светом. Лазерный светодиодный указатель для подсветки точки в центре зоны.

    Система позиционирования печатных плат

    Позиционирование по осям X, Y, Z.
    Позиционер с вращением на 360°.

    Рама -держатель печатных плат

    Предлагается универсальная рама-держатель с эластичным креплением для плат.
    Предлагаются держатели с захватом снизу для плат различных форм и размеров.

    Немного истории о компании Ersa.

    История немецкой компании Ersa началась в 1921 году с получения Эрнстом Саксом (Ernst Sachs) патента на электрический паяльник молоткового типа, известного сейчас как паяльник-"топорик". 200-ваттный паяльник и менее мощные паяльники для пайки оловянными припоями небольшой компании Ersa довольно быстро стали расходиться по всей Европе и применялись преимущественно на промышленных предприятиях. После второй мировой войны и участия в международной выставке в Ганновере в 1949 году Производство стало расти. В 1961 году компания Ersa предлагала первые машины-автоматы для пайки на немецком рынке, а в 1968 году предложила собственную разработку автомата для пайки оловянно-свинцовыми припоями. К 1971 году начались разработки по механическому регулированию температуры жала электрических паяльников.

    В 1973 году, совместно с другими предприятиями, компания Ersa организовала выставку "Productronica" в Мюнхене. Теперь это крупнейшая специализированная выставка в мире в области электроники и электронной промышленности.
    В 1974 году на рынке стали востребованы паяльные станции с электронным управлением, в 1986 году компания Ersa приступает к созданию машин для пайки оплавлением припоя, а в следующем, 1987 году, Ersa представила первую паяльную станцию с микропроцессорным управлением. В дальнейшем это позволило объединять станции в единый агрегат и управлять им автоматически с компьютера.

    В 1993 году компания Ersa вошла в промышленную группу Kurtz. В 1997 году была представлена машина для инфракрасной пайки IR 500 Rework Station. Затем её заменила более новая IR 650 Rework Station. С 1999 года компания предлагает систему визуальной диагностики пайки и неразрушающего контроля - ERSASCOPE, завоевавшую различные призы на выставках электроники. Продолжается развитие селективных автоматов для пайки. К автомату VERSAFLOW (разработка 1995 года) в добавился автомат MULTIFLOW.

    В 2004 году представлен термопинцет Chip Tool для микрокомпонентов поверхностного монтажа (SMD). Chip Tool позволяет припаивать и выпаивать SMD-компоненты типоразмеров 0201 и 0401!
    Продолжаются разработки паяльного оборудования для пайки бессвинцовыми припоями. Автоматическая линия VERSAFLOW Ultimate сочетает в себе 2 машины для селективной пайки и машину для инфракрасной бессвинцовой пайки.

    РЕМОНТНЫЕ ЦЕНТРЫ

    ERSA PL/IR 550A

    С ПРЕЦИЗИОННЫМ ВИДЕОПОЗИЦИОНИРОВАНИЕМ BGA



    Одно из главных и принципиальных преимуществ данной паяльно ремонтной станции ERSA IR500A это возможность апгрейда, то есть расширения функциональных возможностей.

    Технологии можификации корпусов современных микросхем развивается, и изменяется, уже сегодня microBGA с шагом меннее 1,27мм далеко не экзотика.
    Соответственно, чем меньше расстояние шага выводов микросхемы, тем сложнее обеспечивать тонный монтаж, и точность установки микросхемы. Ручная установка (с помощью меток либо рамки) установка более легких BGA с пластиковым корпусом, имеющих свойство самопозиционирования при пайке, исключена для микросхем со столь малым шагом расположения выводов, то же самое с тяжелыми керамическими BGA чипами. Как раз в таких ситуациях незаменим видеопозиционер станции PL550A.

    Суть процедуры видео позиционирования такова. Микросхема располагается на площадке, где она в конечном итоге должна быть смонтирована, далее она поднимается механизмом с вакуумной присоской над платой. В появившийся между платой и микросхемой зазор вводится головка камеры, и с помощью зеркальной оптической системы на мониторе видны одновременно изображение контактной площадки платы и контакты выводов BGA чипа. Позиционирование микросхемы на участок пайки производится с помощью серво приводов, таким образом можно добиться идеального совмещения изображений выводов с контактной площадкой. Далее микросхема автоматически опускается на место своего монтажа на плате. Следующий этап это сама пайка. Кстати в новой версии автоматического установщика PL550AU есть важное отличие: это конструкция держателя плат, который заранее приспособлен для установки дополнительного модуля системы видеоконтроля RPC.

    Ремонтная станция PL550AU можно с успехом использовать в любом составе комплекта оборудования предназначенного для работы с BGA / fine pitch (QFP). Но особенно удобно ей пользоваться в тандеме с ремонтно-паяльной станцией ERSA марки IR550A, удобно тем, что перемещение платы, на которых уже точно позиционированы компоненты, производиться легко и плавно (с помощью специальной рамки держателя перемещающейся на подшипниках), тем самым исключается вероятность смещения установленных компонентов во время транспортировки платы в область рабочей зоны (зона нагрева).

    Цена данной установки видео позиционирования PL550AU - лучшая на всем мировом рынке, по сравнению с изделиями топового уровня, функциональная мощность этого ремонтного центра в купе с IR550A просто не имеют аналогов данного ценового диапазона.

    Обзор составлен на основе статей из интернета. Собран, обработан и опубликован на сайте

    При ремонте материнских плат связанных с заменой BGA компонентов не обойтись без инфракрасной паяльной станции! Китайские станции качеством не блещут, а качественные ИК паяльные станции стоят не дешево. Выход - собрать самому паяльную станцию. Стоимость компонентов для сборки станции не превышает 10 тысяч рублей. Не смотря на дешевизну - самодельная ИК станция надежно себя зарекомендовала в ремонте материнских плат. Контроллер обеспечивает точное соблюдение термопрофиля, что является важным фактором во время замены BGA компонентов.

    Описание конструкции

    Станция состоит из контроллера управления, нижнего подогрева, верхнего нагревателя.

    Контроллер двухканальный. К первому каналу можно подключить термопару или платиновый терморезистор. Ко второму каналу подключается только термопара. 2 канала имеют автоматический и ручной режим работы. Автоматический режим работы обеспечивает поддержание температуры 10-255 градусов через обратную связь с термопар или платинового терморезистора (в первом канале). В ручном режиме мощность в каждом канале можно регулировать в диапазоне 0-99%. В памяти контроллера заложено 14 термопрофилей для пайки BGA. 7 для свинецсодержащего припоя и 7 для безсвинцового припоя. Термопрофили указаны ниже. При желании их можно изменить (исходник в архиве).

    Для безсвинцового припоя максимальная температура термопрофиля: - 8 термопрофиль - 225C о, 9 - 230C о, 10 - 235C о, 11 - 240C о, 12 - 245C о, 13 - 250C о, 14 - 255C о

    Если верхний нагреватель, не успевает прогревать согласно термопрофилю, то контроллер становится на паузу и ждет пока не будет достигнута нужная температура. Это сделано для того, чтобы адаптировать контроллер для слабых нагревателей, которые прогревают долго и не успевают за термопрофилем.

    Контроллер так же можно использовать в качестве регулятора температуры, например, во время сушки или запекания паяльной маски (в духовке, в которую помещена термопара), или прочих случаях, где требуется точное поддержание температуры.

    Принципиальная схема контроллера

    Далее приведены фото контроллера. Блок питания использовал от ноутбука, которое переделал на напряжение 12 Вольт. В качестве гнезда для термопар использовал usb гнездо с кусочками текстолита, которое припаяно к передней панели, смотрим фото. Охлаждение активное, я использовал термотрубку от охлаждения ноутбука. К термотрубке феном припаял медную пластину, на которую будут установлены элементы для охлаждения. Можно использовать охлаждение процессора от системного блока, но тогда габариты устройства увеличатся.

    Нижний подогрев изготовлен из галогенового обогревателя на 3 лампы общей мощностью 1,2 кВт. Из обогревателя демонтируется основание со светоотражателем и защитной сеткой. Корпус для нижнего подогрева я изготовил из изогнутой листовой жести(конька оцинкованного), который вырезал ножницами по металлу. Так же в конструкцию добавлен порог алюминиевый(стык), для удобства установки на него швеллера алюминиевого. На швеллер через стойки устанавливается материнская плата. Нижний подогрев можно подключить к контроллеру. Я поступил другим способом чтобы не заморачиваться с второй термопарой, - в нижний подогрев встроил диммер на 600 Вт, только на симистор установил радиатор побольше. С регулировкой 1,2 кВт он прекрасно справляется. Примерное положение диммера я запомнил, при котором стабильно держится требуемая температура на материнской плате. Для небольших плат (например видеокарт) можно использовать канцелярские прищепки, прикрученные к DIN рейке. Пример на фото.

    Качественный верхний нагреватель из подручных средств, к сожалению невозможно изготовить. Я проводил эксперименты с галогеновыми лампами, кварцевыми трубками со спиралями, так же экспериментировал с ИК лампой. Но лучше всего себя зарекомендовал керамический нагреватель фирмы ELSTEIN серии SHTS (с позолотой). Подобные нагреватели используются в дорогих ИК станциях. Я использовал ELSTEIN SHTS/100 800W и ELSTEIN SHTS/4 300W. Нагреватели греют очень хорошо, и практически не светят. Спектр ИК излучения очень подходит для замены BGA компонентов. Нагреватели из Китая не рекомендую, хоть внешне они и похожи на ELSTEIN.


    Тепловое пятно нагревателя ELSTEIN SHTS/100 800W. Размер нагревателя 96х96 мм. Расстояние между нагревателем и платой 5см.

    Круг El1 диаметр 4 см (перепад температуры 5 градусов от центра до края окружности).

    Круг El2 диаметр 5 см (перепад температуры 10 градусов от центра до края окружности).

    Круг El3 диаметр 6 см (перепад температуры 15 градусов от центра до края окружности).


    Тепловое пятно нагревателя ELSTEIN SHTS/4 300W. Размер нагревателя 60х60 мм. Расстояние между нагревателем и платой 5см.

    Круг El1 диаметр 2,5 см (перепад температуры 5 градусов от центра до края окружности). Подходит для большинства чипов.

    Круг El2 диаметр 3 см (перепад температуры 10 градусов от центра до края окружности).

    Круг El3 диаметр 4,5 см (перепад температуры 15 градусов от центра до края окружности).

    Как видим оба нагревателя подходят для замены BGA компонентов. Но ELSTEIN SHTS/100 800W имеет преимущество перед вторым нагревателем. Это гораздо большее равномерное тепловое пятно. Круг диаметром 4 см у которого перепад температуры не более 5C о. Практически показатель как у Термопро с 3D отражателем (у которого однородное квадратное тепловое пятно 4х4см с перепадом температуры не более 5C о)

    Ниже приведены фото конструкции верхнего нагревателя и станины, которую изготовил из того что было в строительном магазине. Конструкция получилась удачной, регулируется по высоте и длине, нагреватель крутится вокруг своей оси, его легко установить над любым участком платы.

    Термопара крепится к штативу. Ее легко навести на любой участок платы. Конструкция на фото. Гибкий металлический рукав я использовал от USB фонарика из магазина, где все по одной цене. В металлический рукав я вставил термопару без внешней изоляции при помощи проволоки.

    Настройка контроллера

    Для настройки канала верхней термопары R3 устанавливаем в среднее положение. Помещаем термопару контроллера и термопару образцового термометра на нагретую поверхность (например галогеновую лампу, где обе термопары соединены вместе и на них нанесена термопаста), и калибруем резистором R6 показания максимального значения температуры 250 градусов. Потом даем лампе остыть до комнатной температуры и калибруем резистором R3 нижнее показание температуры. Данную процедуру нужно повторить несколько раз, пока не будет совпадать нижнее и максимальное значение температур с реальными показателями. Такую же процедуру повторяем с каналом нижней термопары при помощи резисторов R11 и R14 соответственно. Аналогично калибруется первый канал при использовании платинового терморезистора резисторами R21 и R27 соответственно. Если не планируется использовать платиновый терморезистор, то ОУ U2 можно из схемы исключить со всей обвязкой, а 11 вывод микроконтроллера подключить на +5В.

    Управление контроллером и изменение параметров, а так же процесс съема и установки чипа показан на видео. Верхний нагреватель я устанавливаю на высоте 5-6 см от поверхности платы. Если в момент исполнения термопрофиля происходит выбег температуры от заданного значения больше чем на 3 градуса - понижаем мощность верхнего нагревателя. Выбег на несколько градусов в конце термопрофиля(после отключения верхнего нагревателя) не страшен. Это сказывается инерционность керамики. Поэтому я выбираю нужный термопрофиль на 5 градусов меньше, чем мне надо. На данном нижнем подогреве температура немного отличается над зоной нагревателя, и в теневой зоне (разница около 10-15 градусов). Поэтому плату на нижний нагреватель желательно установить так, чтобы чип находился над зоной нагревателя (но это не критично). Перед съемом чипа при помощи зонда нужно убедиться(аккуратным нажатием на каждый угол чипа) что шары под чипом поплыли. При монтаже используем только качественный флюс, иначе неправильный выбор флюса может все испортить. Так же при монтаже чипа BGA рекомендуется накрыть кристалл прямоугольником из алюминиевой фольги с размером стороны равной примерно ½ от стороны BGA, чтобы снизить температуру в центре, которая всегда выше, чем температура около термопары (смотрим выше фото тепловых пятен ИК нагревателей ELSTEIN).

    Внешний вентилятор программно не задействован, хотя на схеме он и указан. В дальнейшем планируется в исходник внести изменения и задействовать внешний вентилятор.

    Ниже вы можете скачать архив с печатной платой в формате LAY, исходным кодом, прошивкой

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    E1 Энкодер EC11 1 С кнопкой Поиск в Чип и Дип В блокнот
    U1, U2 Операционный усилитель

    LM358

    2 Поиск в Чип и Дип В блокнот
    U3 Линейный регулятор

    LM7805

    1 Устанавливается на радиатор Поиск в Чип и Дип В блокнот
    U4 МК PIC 8-бит

    PIC16F876

    1 PIC16F876A Поиск в Чип и Дип В блокнот
    U5, U6 Оптопара

    PC817

    2 Поиск в Чип и Дип В блокнот
    LCD1 LCD-дисплей WH2004A-YYH-CT 1 20x4 на основе KS0066 (HD44780) с англо-русским словарем Поиск в Чип и Дип В блокнот
    Q1, Q2 MOSFET-транзистор

    TK20A60U

    2 2SK3568 Поиск в Чип и Дип В блокнот
    Q3, Q4, Q5 MOSFET-транзистор

    IRLML0030

    3 Или любой N-Channel MOSFET Поиск в Чип и Дип В блокнот
    Z1 Кварц 16 МГц 1 Поиск в Чип и Дип В блокнот
    VD1 Выпрямительный диод

    LL4148

    1 Поиск в Чип и Дип В блокнот
    VD2, VD3 Диодный мост KBU1010 2 Поиск в Чип и Дип В блокнот
    VD4, VD5 Стабилитрон 24 В 2 Поиск в Чип и Дип В блокнот
    R1 Платиновый терморезистор PT100 1 Поиск в Чип и Дип В блокнот
    R2, R10 Резистор

    470 Ом

    2 Поиск в Чип и Дип В блокнот
    R3, R11 Подстроечный резистор 1 МОм 2 Поиск в Чип и Дип В блокнот
    R4, R12 Резистор

    1 МОм

    2 Поиск в Чип и Дип В блокнот
    R5, R13, R26 Резистор