Эффект доплера применим к звуковым волнам. Области применения эффекта Доплера. Как вычислить частоту принимаемой волны

λ, воспринимаемой наблюдателем при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Доплера эффекта проще всего объяснить на следующем примере. Пусть неподвижный источник в однородной среде без дисперсии испускает волны с периодом Т 0 = λ 0 /υ, где λ 0 - длина волны, υ - фазовая скорость волны в данной среде. Неподвижный наблюдатель будет принимать излучение с таким же периодом Т 0 и той же длиной волны λ 0 . Если же источник S движется с некоторой скоростью V s в сторону наблюдателя Р (приёмника), то длина принимаемой наблюдателем волны уменьшится на величину смещения источника за период Т 0 , то есть λ = λ 0 -V S T 0 , а частота ω соответственно увеличится: ω = ω 0 /(1 - V s /υ). Принимаемая частота увеличивается, если источник неподвижен, а наблюдатель приближается к нему. При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же формулой, но с изменённым знаком скорости.

В общем случае, когда и источник, и приёмник движутся относительно неподвижной среды с нерелятивистскими скоростями V S и V P под произвольными углами θ S и θ Р (рис.), принимаемая частота равна (1):

Максимальное увеличение частоты происходит при движении источника и приёмника навстречу друг другу (θ S = 0, θ Р = π), а уменьшение - при взаимном удалении источника и наблюдателя (θ S = π, θ Р = 0). Если же источник и приёмник движутся с одинаковыми по величине и направлению скоростями, Доплера эффекта отсутствует.

При скоростях движения, сравнимых со скоростью света с в вакууме, необходимо принять во внимание релятивистский эффект замедления времени (смотри Относительности теория); в результате для неподвижного наблюдателя (V P = 0) принимаемая частота излучения (2)

где β = V S /с. В этом случае смещение частоты имеет место и при θ S = π/2 (так называемый поперечный Доплера эффект). Для электромагнитных волн в вакууме в любой системе отсчёта υ = с и в формуле (2) под V S нужно понимать относительную скорость источника.

В средах с дисперсией, когда фазовая скорость υ зависит от частоты ω, соотношения (1), (2) могут допускать несколько значений ω для заданных ω 0 и V S то есть в точку наблюдения под одним и тем же углом могут приходить волны с разными частотами (так называемый сложный Доплера эффект). Дополнительные особенности возникают при движении источника со скоростью V S > υ, когда на поверхности конуса углов, удовлетворяющих условию cosθ S = υ/V S , знаменатель в формуле (2) обращается в нуль, - имеет место так называемый аномальный Доплера эффект. В этом случае внутри указанного конуса частота растёт с увеличением угла θ S , тогда как при нормальном Доплера эффекте под большими углами θ S излучаются меньшие частоты.

Разновидностью Доплера эффекта является так называемый двойной Доплера эффект - смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если ω 0 и υ 0 - частота и фазовая скорость волны, падающей на плоскую границу, то частоты ω i вторичных (отражённых и прошедших) волн, распространяющихся со скоростями υ i , определяются как (3)

где θ 0 , θ i - углы между волновым вектором соответствующей волны и нормальной составляющей скорости V движения отражающей поверхности. Формула (3) справедлива и в том случае, когда отражение происходит от движущейся границы изменения состояния макроскопически неподвижной среды (например, волны ионизации в газе). Из неё следует, в частности, что при отражении от границы, движущейся навстречу волне, частота повышается, причём эффект тем больше, чем меньше разница скоростей границы и отражённой волны.

Для нестационарных сред изменение частоты распространяющихся волн может происходить даже для неподвижных излучателя и приемника - так называемый параметрический эффект Доплера.

Доплера эффект назван в честь К. Доплера, который впервые теоретически обосновал его в акустике и оптике (1842). Первое экспериментальное подтверждение Доплера эффекта в акустике относится к 1845. А. Физо (1848) ввёл понятие доплеровского смещения спектральных линий, которое было обнаружено позднее (1867) в спектрах некоторых звёзд и туманностей. Поперечный Доплера эффект был обнаружен американскими физиками Г. Айвсом и Д. Стилуэллом в 1938. Обобщение Доплера эффекта на случай нестационарных сред принадлежит В. А. Михельсону (1899); на возможность сложного Доплера эффекта в средах с дисперсией и аномального Доплера эффекта при V > υ впервые указали В. Л. Гинзбург и И. М. Франк (1942).

Доплера эффект позволяет измерять скорости движения источников излучения и рассеивающих волны объектов и находит широкое практическое применение. В астрофизике Доплера эффект используется для определения скорости движения звёзд, а также скорости вращения небесных тел. Измерения доплеровского красного смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной. Доплеровское уширение спектральных линий излучения атомов и ионов даёт способ измерения их температуры. В радио- и гидролокации Доплера эффект используется для измерения скорости движущихся целей, для определения их на фоне неподвижных отражателей и т. п.

Лит.: Франкфурт У. И., Френк А. М. Оптика движущихся тел. М., 1972; Угаров В. А. Специальная теория относительности. 2-е изд. М., 1977; Франк И. М. Эйнштейн и оптика // Успехи физических наук. 1979. Т. 129. Вып. 4; Гинзбург В. Л. Теоретическая физика и астрофизика: Дополнительные главы. 2-е изд. М., 1981; Ландсберг Г. С. Оптика. 6-е изд. М., 2003.

Вследствие чего понятию и было присвоено имя австрийского физика.

Данные изменения должны регистрироваться приемником и вызываться движением непосредственного источника волн или движением самого приемника.

Доплером теоретически была обоснована непосредственная зависимость частоты колебаний, которые воспринимаются конкретным наблюдателем, от направления и скорости движения этого наблюдателя по соотношению к источнику колебаний.

Рассматривается два варианта эффекта Доплера:

  1. Оптический – эффект, наблюдаемый при распространении электромагнитных волн.
  2. Акустический – наблюдается во время распространения звуковых волн.

Во время распространения электромагнитных волн берется во внимание относительное движение приемника и источника в вакууме. А при распространении звука учитывается не только среда, но и движение источника и приемника звуковых волн относительно этой среды.

Если же в определенной среде производится движение заряженных частиц с релятивистской скоростью, лабораторная система должна в этом случае регистрировать так называемое черенковское излучение . Это явление также непосредственно связано с эффектом Доплера.

Эффект Доплера в повседневной жизни человека

Эффект Доплера является основанием для радиолокационных лазерных методов, при помощи которых на Земле измеряются скорости самых разных объектов (самолетов, автомобилей и пр.). Кроме того, понятие может использоваться во время определения температур раскаленных газов.

В современных научных разработках и исследованиях принципы эффекта Доплера также занимают далеко не последнее место. Его могут активно использовать:

  • В области изучения различных явлений Вселенной;
  • В сфере современной навигации;
  • В разных направлениях медицины – принцип используют во многих современных приборах, с помощью которых осуществляют ультразвуковую диагностику сердца и сосудов.

Пронаблюдать же эффект Доплера в повседневной жизни достаточно просто, зная его основной принцип. Учитывая то, что на слух мы воспринимаем частоту звуковых колебаний в виде высоты звука, то можно смоделировать или отследить конкретную ситуацию. Например, когда проезжающий мимо вас поезд или автомобиль будет издавать громкий звук, то во время приближения этот звук будет выше. Когда транспорт поравняется с вами, звук значительно понизится, а при удалении объекта – будет звучать гораздо ниже.

Существуют специальные доплеровские радары, которые способны измерять изменение частот сигналов, отраженных от объекта. При помощи таких приборов можно максимально точно определять скорость самых разных объектов – кораблей, летательных аппаратов, автомобилей. Таким же образом вычисляется скорость речных, морских течений, гидрометеоров и других природных явлений.

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа - ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Эффе́кт До́плера - изменение частоты и длины волн , регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

,

где - частота, с которой источник испускает волны, - скорость распространения волн в среде, - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

где - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

где - скорость света , - скорость источника относительно приёмника (наблюдателя), - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается - .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Как наблюдать эффект Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

  • Доплеровский радар - радар , который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений , а также других объектов.
  • Астрономия
    • По смещению линий спектра определяют лучевую скорость движения звёзд , галактик и других небесных тел. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость . Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости - к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300 000 км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра определяют температуру звёзд
  • Неинвазивное измерение скорости потока. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси , каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).
  • Охранные сигнализации. Для обнаружения движущихся объектов
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.

Искусство и культура

  • В 6-ой серии 1-го сезона американского комедийного телесериала «The Big Bang Theory » доктор Шелдон Купер идёт на Хэллоуин , для которого надел костюм, символизирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он - зебра .

Примечания

См. также

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Доплера" в других словарях:

    эффект Доплера - доплеровский эффект Изменение частоты, возникающее при перемещении передатчика относительно приемника или наоборот. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва … Справочник технического переводчика

    эффект Доплера - Doplerio reiškinys statusas T sritis fizika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. эффект Доплера, m; явление Доплера, n pranc. effet Doppler, m … Fizikos terminų žodynas

    эффект Доплера - Doppler io efektas statusas T sritis automatika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. доплеровский эффект, m; эффект Доплера, m pranc. effet Doppler, m ryšiai: sinonimas – Doplerio efektas … Automatikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamosios spinduliuotės dažnio pokytis, atsirandantis dėl reliatyviojo judesio tarp pirminio ar antrinio šaltinio ir stebėtojo. atitikmenys: angl. Doppler effect vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Воспринимаемая частота волны зависит от относительной скорости ее источника.

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817-1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Christian Johann Doppler, 1803-53

Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета.

Эффект Доплера – это физическое явление, состоящее в изменении частоты волн в зависимости от движения источника этих волн относительно наблюдателя. При приближении источника частота излучаемых им волн увеличивается, а длина уменьшается. При удалении источника волн от наблюдателя их частота уменьшается, а длина волны увеличивается.

Например, в случае звуковых волн при удалении источника высота звука понизится, а при приближении тон звука станет более высоким. Так, по изменению высоты тона можно определить, приближается или удаляется поезд, автомобиль со звуковым спецсигналом и т.д. Электромагнитные волны также демонстрируют эффект Доплера. Наблюдатель в случае удаления источника заметит смещение спектра в «красную» сторону, т.е. в сторону более длинных волн, а при приближении – в «фиолетовую», т.е. в сторону более коротких волн.

Эффект Доплера оказался крайне полезным открытием. Благодаря ему было обнаружено расширение Вселенной (спектры галактик смещены в красную сторону, следовательно, они от нас удаляются); разработан метод диагностики сердечно-сосудистой системы через определение скорости кровотока; созданы различные радары, в том числе и те, которые используются ГИБДД.

Самый популярный пример распространения эффекта Доплера: машина с сиреной. Когда она едет к тебе или от тебя, ты слышишь один звук, а когда проезжает мимо, то совершенной другой - более низкий. Эффект Доплера связан не только со звуковыми волнами, но и любыми другими. С помощью эффекта Доплера можно определить скорость чего-либо, будь это машина или небесные тела, при условии, что мы знаем параметры (частоту и длину волны). Все, что связано с телефонными сетями, вай-фаем, охранными сигнализациями - везде можно наблюдать эффект Доплера.

Или возьмем светофор - у него есть красный, желтый и зеленый цвета. В зависимости от того, с какой скоростью мы движемся, эти цвета могут меняться, но не между собой, а смещаться в сторону фиолетового: желтый будет уходить в зеленый, а зеленый в синий.

Ну почему же? Если мы движемся от источника света и смотрим назад (или светофор уезжает от нас), то цвета сдвинутся в сторону красного.

И, наверное, стоит уточнить, что скорость, на которой красный можно перепутать с зеленым, намного выше той, с которой можно ездить по дорогам.

Ответить

Прокомментировать

Суть эффекта Допплера заключается в том, что если источник звука приближается к наблюдателю или отдаляется от него, то частота звука, испускаемого им, с точки зрения наблюдателя изменяется. Так, например, изменяется звук двигателя машины, которая проезжает мимо вас. Он выше пока она приближается к вам и резко становится ниже, когда она пролетает мимо вас и начинает удаляться. Изменение частоты тем сильнее, чем выше скорость движения источника звука.

К слову, этот эффект справедлив не только для звука, но и, скажем, для света. Просто для звука он нагляднее - его можно наблюдать на относительно небольших скоростях. У видимого света настолько большая частота, что небольшие изменения за счёт эффекта Допплера невооружённым глазом незаметны. Однако, в некоторых случая эффект Допплера следует учитывать даже в радиосвязи.

Если не углубляться в строгие определения и попытаться объяснить эффект, что называется, на пальцах, то всё достаточно просто. Звук (как и свет или радиосигнал) - это волна. Для наглядности, давайте будем считать, что частота принимаемой волны зависит от того, как часто мы принимаем "гребни" схематической волны (). Если источник и приёмник будут неподвижны (да, относительно друг друга), то мы будем принимать "гребни" с той же частотой, с какой их излучает приёмник. Если же источник и приёмник начнут сближаться, то мы начнём принимать тем чаще, чем выше скорость сближения - скорости будут складываться. В итоге частота звука на приёмнике будет выше. Если же источник начнёт удаляться от приёмника, то каждому следующему "гребню" понадобится чуть больше времени, чтобы достигнуть приёмника - мы начнём принимать "гребни" чуть реже, чем их излучает источник. Частота звука на приёмнике будет ниже.

Это объяснение в известной степени схематично, но общий принцип оно отражает.

Если коротко - изменение наблюдаемой частоты и длины волны в том случае, если источник и приемник движутся относительно друг друга. Связан с конечностью скорости распространения волн. Если источник с приемником сближаются - частота растет (пик волны регистрируется чаще); удаляются друг от друга - частота падает (пик волны регистрируется реже). Оычная иллюстрация эффекта - сирена спецслужб. Если скорая к вам подъезжает - сирена визжит, отъезжает - басовито гудит. Отдельный случай - распространение электромагнитной волны в ваккууме - там добавяется еще релятивистская составляющая и допплеровский эффект проявляется и в том случае, когда приемник и источник неподвижны относительно друг друга, что объясняется свойствами времени.

Попробую ответить наиболее простым способом:
Представте, что вы стоите на месте и каждую секунду запускаете волну (например голосом), которая радиально распространяется от вас со скоростью 100 м/с.