История развития квадратных уравнений. Реферат: Квадратные уравнения и уравнения высших порядков

Министерство образования Российской Федерации

Муниципальное общеобразовательное учреждение

"Средняя общеобразовательная школа №22"

Квадратные уравнения и уравнения высших порядков

Выполнили:

Ученики 8 "Б" класса

Кузнецов Евгений и Руди Алексей

Руководитель:

Зенина Алевтина Дмитриевна

преподаватель математики

Введение

1.1 Уравнения в Древнем Вавилоне

1.2 Уравнения арабов

1.3 Уравнения в Индии

Глава 2. Теория квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

2.2 Формулы четного коэффициента при х

2.3 Теорема Виета

2.4 Квадратные уравнения частного характера

2.5 Теорема Виета для многочленов (уравнений) высших степеней

2.6 Уравнения, сводимые к квадратным (биквадратные)

2.7 Исследование биквадратных уравнений

2.8 Формулы Кордано

2.9 Симметричные уравнения третьей степени

2.10 Возвратные уравнения

2.11 Схема Горнера

Заключение

Список используемой литературы

Приложение 1

Приложение 2

Приложение 3

Введение

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

В этом реферате хотелось бы отобразить формулы и способы решения различных уравнений. Для этого приводятся уравнения, которые не изучаются в школьной программе. В основном это уравнения частного характера и уравнения высших степеней. Чтобы раскрыть эту тему приводятся доказательства этих формул.

Задачи нашего реферата:

Улучшить навыки решения уравнений

Наработать новые способы решения уравнений

Выучить некоторые новые способы и формулы для решения этих уравнений.

Объект исследования - элементарная алгебра Предмет исследования уравнения. Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Глава 1. История квадратных уравнений и уравнений высших порядков

1.1 Уравнения в Древнем Вавилоне

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведённых над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучается общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земельными работами военного характера, а также с развитием астрономии и самой математики. Как было сказано ранее, квадратные уравнения умели решать около 2000 лет до нашей эры вавилонянами. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются как неполные, так и полные квадратные уравнения.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решением, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общие методы решения квадратного уравнения.

1.2 Уравнения арабов

Некоторые способы решения уравнений как квадратных, так и уравнений высших степеней были выведены арабами. Так известный арабский математик Ал-Хорезми в своей книге «Ал - джабар» описал многие способы решения различных уравнений. Их особенность была в том, что Ал-Хорезми применял сложные радикалы для нахождения корней (решений) уравнений. Необходимость в решении таких уравнений была нужна в вопросах о разделе наследства.

1.3 Уравнения в Индии

Квадратные уравнения решали и в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме:

aх² + bx= c, где a > 0

В этом уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.

Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

Глава 2. Квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

Квадратным уравнением называют уравнения вида

где коэффициенты a, b, c – любые действительные числа, причём a ≠ 0.

Квадратное уравнение называют приведённым, если его старший коэффициент равен 1.

Пример :

x 2 + 2x + 6 = 0.

Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1.

Пример :

2x 2 + 8x + 3 = 0.

Полное квадратное уравнение - квадратное уравнение, в котором присутствуют все три слагаемых, иными словами, это уравнение, у которого коэффициенты b и c отличны от нуля.

Пример :

3x 2 + 4x + 2 = 0.

Неполное квадратное уравнение – это квадратное уравнение, у которого хотя бы один коэффициент b, c равен нулю.

Таким образом, выделяют три вида неполных квадратных уравнений:

1) ax² = 0 (имеет два совпадающих корня x = 0).

2) ax² + bx = 0 (имеет два корня x 1 = 0 и x 2 = -)

Пример :

x 1 = 0, x 2 = -5.

Ответ : x 1 =0, x 2 = -5.

Если –<0 - уравнение не имеет корней.

Пример :

Ответ : уравнение не имеет корней.

Если –> 0, то x 1,2 = ±

Пример :


Ответ : х 1,2 =±

Любое квадратное уравнение можно решить через дискриминант (b² - 4ac). Обычно выражение b² - 4ac обозначают буквой D и называют дискриминантом квадратного уравнение ax² +bx + c = 0 (или дискриминантом квадратного трёх члена ax² + bx + c)

Пример :

х 2 +14x – 23 = 0

D = b 2 – 4ac = 144 + 92 = 256

x 2 =

Ответ : x 1 = 1, x 2 = - 15.

В зависимости от дискриминанта уравнение может иметь или не иметь решение.

1) Если D < 0, то не имеет решения.

2) Если D = 0, то уравнение имеет два совпадающих решения x 1,2 =

3) Если D > 0, то имеет два решения, находящиеся по формуле:

x 1,2 =

2.2 Формулы четного коэффициента при х

Мы привыкли к тому, что корни квадратного уравнения

ax² + bx + c = 0 находятся по формуле

x 1,2 =

Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что эту формулу можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.

В самом деле, пусть у квадратного уравнения ax² + bx + c = 0 коэффициент bимеет вид b = 2k. Подставив в нашу формулу число 2k вместо b, получим:

Итак, корни квадратного уравнения ax² + 2kx + c = 0 можно вычислять по формуле:

x 1,2 =

Пример :

5х 2 - 2х + 1 = 0


Преимущество этой формулы в том, что в квадрат возводится не число b, а его половина, вычитается из этого квадрата не 4ac, а просто ac и, наконец, в том, что в знаменателе содержится не 2a, а просто a.

В случае если квадратное уравнение приведенное, то наша формула будет выглядеть так:

Пример :

х 2 – 4х + 3 = 0

Ответ : х 1 = 3, х 2 = 1.

2.3 Теорема Виета

Очень любопытное свойство корней квадратного уравнения обнаружил французский математик Франсуа Виет. Это свойство назвали теорема Виета:

Чтобы числа x 1 и x 2 являлись корнями уравнения:

ax² + bx + c = 0

необходимо и достаточно выполнения равенства


x 1 + x 2 = -b/aи x 1 x 2 = c/a

Теорема Виета позволяет судить о знаках и абсолютной величине квадратного уравнения

x² + bx + c = 0

1. Если b>0, c>0 то оба корня отрицательны.

2. Если b<0, c>0 то оба корня положительны.

3. Если b>0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине больше положительного.

4. Если b<0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине меньше положительного.

2.4 Квадратные уравнения частного характера

1) Если a + b + c = 0 в уравнении ax² + bx + c = 0, то

х 1 =1, а х 2 = .

Доказательство :

В уравнении ax² + bx + c = 0, его корни

x 1,2 = (1).

Представим b из равенства a + b + c = 0

Подставим это выражение в формулу (1):


=

Если рассмотрим по отдельности два корня уравнения, получим:

1) х 1 =

2) х 2 =

Отсюда следует: х 1 =1, а х 2 = .

1. Пример :

2х² - 3х + 1 = 0

a = 2, b = -3, c = 1.

a + b + c = 0, следовательно

2. Пример :

418х² - 1254х + 836 = 0

Этот пример очень тяжело решить через дискриминант, но, зная выше приведенную формулу его с легкостью можно решить.

a = 418, b = -1254, c = 836.

х 1 = 1 х 2 = 2


2) Если a - b + c = 0, в уравнении ax² + bx + c = 0, то:

х 1 =-1, а х 2 =- .

Доказательство :

Рассмотрим уравнение ax² + bx + c = 0, из него следует, что:

x 1,2 = (2).

Представим b из равенства a - b + c = 0

b = a + c, подставим в формулу (2):

=

Получаем два выражения:

1) х 1 =

2) х 2 =

Эта формула похожа на предыдущую, но она тоже важна, т.к. часто встречаются примеры такого типа.

1) Пример :

2х² + 3х + 1 = 0

a = 2, b = 3, c = 1.


a - b + c = 0, следовательно

2) Пример :

Ответ : x 1 = -1; х 2 = -

3) Метод “переброски

Корни квадратных уравнений y² + by + аc = 0 и ax² + bx + c = 0 связанны соотношениями:

х 1 = и х 2 =

Доказательство :

а) Рассмотрим уравнение ax² + bx + c = 0

x 1,2 = =

б) Рассмотрим уравнение y² + by + аc = 0

y 1,2 =


Заметим, что дискриминанты у обоих решений равны, сравним корни этих двух уравнений. Они отличаются друг от друга на старший коэффициент, корни первого уравнения меньше корней второго на а. Используя теорему Виета и выше приведенное правило, нетрудно решать разнообразные уравнения.

Пример :

Имеем произвольное квадратное уравнение

10х² - 11х + 3 = 0

Преобразуем это уравнение по приведенному правилу

y² - 11y + 30 = 0

Получим приведенное квадратное уравнение, которое можно достаточно легко решить с помощью теоремы Виета.

Пусть y 1 и y 2 корни уравнения y² - 11y + 30 = 0

y 1 y 2 = 30 y 1 = 6

y 1 + y 2 = 11 y 2 = 5

Зная, что корни этих уравнений отличны друг от друга на а, то

х 1 = 6/10 = 0,6

х 2 = 5/10 = 0,5

В некоторых случаях удобно решать сначала не данное уравнение ax² + bx + c = 0, а приведенное y² + by + аc = 0, которое получается из данного «переброской» коэффициента а, а затем разделить найденный корни на а для нахождения исходного уравнения.

2.5 Формула Виета для многочленов (уравнений) высших степеней

Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.

Пусть многочлен

P(x) = a 0 x n + a 1 x n -1 ­­­ + … +a n

Имеет n различных корней x 1 , x 2 …, x n .

В этом случае он имеет разложение на множители вида:

a 0 x n + a 1 x n-1 +…+ a n = a 0 (x – x 1)(x – x 2)…(x – x n)

Разделим обе части этого равенства на a 0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n -2 + … +(-1) n x 1 x 2 … x n

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

x 1 + x 2 + … + x n = -

x 1 x 2 + x 2 x 3 + … + x n -1 x n =

x 1 x 2 … x n = (-1) n


Например, для многочленов третей степени

a 0 x³ + a 1 x² + a 2 x + a 3

Имеем тождества

x 1 + x 2 + x 3 = -

x 1 x 2 + x 1 x 3 + x 2 x 3 =

x 1 x 2 x 3 = -

Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x 1 , x 2 …, x n данного уравнения, а правые части выражаются через коэффициент многочлена.

2.6 Уравнения, сводимые к квадратным (биквадратные)

К квадратным уравнениям сводятся уравнения четвертой степени:

ax 4 + bx 2 + c = 0,

называемые биквадратными, причем, а ≠ 0.

Достаточно положить в этом уравнении х 2 = y, следовательно,

ay² + by + c = 0

найдём корни полученного квадратного уравнения


y 1,2 =

Чтобы найти сразу корни х 1, x 2, x 3, x 4 , заменим y на x и получим

x² =

х 1,2,3,4 = .

Если уравнение четвёртой степени имеет х 1 , то имеет и корень х 2 = -х 1 ,

Если имеет х 3 , то х 4 = - х 3 . Сумма корней такого уравнения равна нулю.

Пример :

2х 4 - 9x² + 4 = 0

Подставим уравнение в формулу корней биквадратных уравнений:

х 1,2,3,4 = ,

зная, что х 1 = -х 2 , а х 3 = -х 4 , то:

х 3,4 =

Ответ : х 1,2 = ±2; х 1,2 =

2.7 Исследование биквадратных уравнений

Возьмем биквадратное уравнение

ax 4 + bx 2 + c = 0,

где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

2.8 Формула Кардано

Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

х =

Эта формула определяет корни общего уравнения третей степени:

ax 3 + 3bx 2 + 3cx + d = 0.

Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.

2.9 Симметричные уравнения третей степени

Симметричными уравнениями третей степени называют уравнения вида


ax³ + bx² +bx + a = 0 (1 )

ax³ + bx² - bx – a = 0 (2 )

где a и b – заданные числа, причём a¹0.

Покажем, как решаются уравнение (1 ).

ax³ + bx² + bx + a = a(x³ + 1) + bx(x + 1) = a(x + 1) (x² - x + 1) + bx(x + 1) = (x + 1) (ax² +(b – a)x + a).

Получаем, что уравнение (1 ) равносильно уравнению

(x + 1) (ax² +(b – a)x + a) = 0.

Значит его корнями, будут корни уравнения

ax² +(b – a)x + a = 0

и число x = -1

аналогично решается уравнение (2 )

ax³ + bx² - bx - a = a(x³ - 1) + bx(x - 1) = a(x - 1) (x² + x + 1) + bx(x - 1) = (x - 1) (ax 2 + ax + a + bx) = (x - 1) (ax² +(b + a)x + a).

1) Пример :

2x³ + 3x² - 3x – 2 = 0


Ясно, что x 1 = 1, а

х 2 и х 3 корни уравнения 2x² + 5x + 2 = 0 ,

Найдем их через дискриминант:

x 1,2 =

x 2 = -, x 3 = -2

2) Пример :

5х³ + 21х² + 21х + 5 = 0

Ясно, что x 1 = -1, а

х 2 и х 3 корни уравнения 5x² + 26x + 5 = 0 ,

Найдем их через дискриминант:

x 1,2 =

x 2 = -5, x 3 = -0,2.

2.10 Возвратные уравнения

Возвратное уравнение – алгебраическое уравнение

а 0 х n + a 1 x n – 1 + … + a n – 1 x + a n =0,

в котором а к = a n – k , где k = 0, 1, 2 …n, причем, а ≠ 0.

Задачу нахождения корней возвратного уравнения сводят к задаче нахождения решений алгебраического уравнения меньшей степени. Термин возвратные уравнения был введён Л. Эйлером.

Уравнение четвёртой степени вида:


ax 4 + bx 3 + cx 2 + bmx + am² = 0, (a ≠ 0).

Приведя это уравнение к виду

a (x² + m²/x²) + b(x + m/x) + c = 0, и y = x + m/x и y² - 2m = x² + m²/x²,

откуда уравнение приводится к квадратному

ay² + by + (c-2am) = 0.

3х 4 + 5х 3 – 14х 2 – 10х + 12 = 0

Разделив его на х 2 , получим эквивалентное уравнение

3х 2 + 5х – 14 – 5 × , или

Где и

3(y 2 - 4) + 5y – 14 = 0, откуда

y 1 = y 2 = -2, следовательно

И , откуда


Ответ: х 1,2 = х 3,4 = .

Частным случаем возвратных уравнений являются симметричные уравнения. О симметричных уравнениях третей степени мы говорили ранее, но существуют симметричные уравнения четвертой степени.

Симметричные уравнения четвертой степени.

1) Если m = 1, то это симметричное уравнение первого рода, имеющее вид

ax 4 + bx 3 + cx 2 + bx + a = 0 и решающееся новой подстановкой

2) Если m = -1, то это симметричное уравнение второго рода, имеющее вид

ax 4 + bx 3 + cx 2 - bx + a = 0 и решающееся новой подстановкой

2.11 Схема Горнера

Для деления многочленов применяется правило “деления углом”, или схема Горнера. С этой целью располагают многочлены по убывающим степеням х и находят старший член частного Q(x) из условия, что при умножении его на старший член делителя D(x) получается старший член делимого P(x). Найденный член частного умножают, затем на делитель и вычитают из делимого. Старший член частного определяют из условия, что он при умножении на старший член делителя даёт старший член многочлена разности и т.д. Процесс продолжается до тех пор, пока степень разности не окажется меньше степени делителя.(см. приложение №2).

В случае уравнений R = 0 этот алгоритм заменяется схемой Горнера.

Пример :

х 3 + 4х 2 + х – 6 = 0

Находим делители свободного члена ±1; ± 2; ± 3; ± 6.

Левую часть уравнения обозначим f(x). Очевидно, что f(1) = 0, x1 = 1. Делим f(x) на х – 1. (см. приложение №3)

х 3 + 4х 2 + х – 6 = (х – 1) (х 2 + 5х + 6)

Последний множитель обозначим через Q(x). Решаем уравнение Q(x) = 0.

х 2,3 =

Ответ : 1; -2; -3.

В этой главе мы привели некоторые формулы решения различных уравнений. Большинство этих формул решения уравнений частного характера. Эти свойства очень удобны так, как гораздо легче решать уравнения по отдельной формуле для этого уравнения, а не по общему принципу. К каждому из способов мы привели доказательство и несколько примеров.

Заключение

В первой главе была рассмотрена история возникновения квадратных уравнений и уравнений высших порядков. Различные уравнения решали более 25 веков назад. Множество способов решения таких уравнений были созданы в Вавилоне, Индии. Потребность в уравнениях была и будет.

Во второй главе приведены различные способы решения (нахождения корней) квадратных уравнений и уравнений высших порядков. В основном это способы решения для уравнений частного характера, то есть к каждой группе уравнений, объединенных какими- либо общими свойствами или видом, приведено особое правило, которое применяется только для этой группы уравнений. Этот способ (подбора к каждому уравнению собственной формулы) гораздо легче, чем нахождение корней через дискриминант.

В этом реферате достигнуты все цели и выполнены основные задачи, доказаны и разучены новые, ранее неизвестные формулы. Мы проработали много вариантов примеров перед тем, как занести их в реферат, по этому мы уже представляем, как решать некоторые уравнения. Каждое решение пригодится нам в дальнейшей учебе. Этот реферат помог классифицировать старые знания и познать новые.


Список литературы

1. Виленкин Н.Я. “Алгебра для 8 класса”, М., 1995.

2. Галицкий М.Л. “Сборник задач по алгебре”, М. 2002.

3. Даан-Дальмедико Д. “Пути и лабиринты”, М., 1986.

4. Звавич Л.И. “Алгебра 8 класс”, М., 2002.

5. Кушнир И.А. “Уравнения”, Киев 1996.

6. Савин Ю.П. “Энциклопедический словарь юного математика”, М., 1985.

7. Мордкович А.Г. “Алгебра 8 класс”, М., 2003.

8. Худобин А.И. “Сборник задач по алгебре”, М., 1973.

9. Шарыгин И.Ф. “Факультативный курс по алгебре”, М., 1989.

Приложение 1

Исследование биквадратных уравнений

C b Выводы
О корнях вспомогательного уравнения ay² +by+c=0 О корнях данного уравнения a(x²)² +bx² +c=0

C < 0

b- любое действительное число

y < 0 ; y > 0

1 2

x = ±Öy

C > 0 b<0 D > 0

x = ±Öy

D = 0 y > 0

x = ±Öy

D < 0 Нет корней Нет корней
b ≥ 0 Нет корней
Нет корней Нет корней

y > 0 ; y < 0

1 2

x = ±Öy

C = 0 b > 0 y = 0 x = 0
b = 0 y = 0 x = 0
b < 0 y = 0 x = 0

Приложение 2

Деление многочлена на многочлен «уголком»

A 0 a 1 a 2 ... a n c
+
b 0 c b 1 c b n-1 c
B 0 b 1 b 2 b n = R (остаток)

Приложение 3

Схема Горнера

Корень
1 4 1 -6 1
х 1 = 1
сносим 5 6 0
1 1×1 +4 = 5 5×1 + 1 = 6 6×1 – 6 = 0
корень
х 1 = 1

Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


Как составлял и решал Диофант квадратные уравнения «Найти два числа, зная, что их сумма равна 20, а произведение 96» Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+X, другое же меньше, т.е. 10-X. Разность между ними 2Х Отсюда Х=2. Одно из искомых чисел равно 12, другое 8. Решение Х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. УРАВНЕНИЕ: или же:


Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c, a>0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата, 0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата,">


Квадратные уравнения в Древней Азии Вот как решал это уравнение среднеазиатский ученый ал-Хорезми: Он писал: "Правило таково: раздвои число корней, х=2х·5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5·5=25 прибавь это к тридцати девяти, будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8-5 останется 3 это будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х х = 39


Квадратные уравнения в Европе XIII-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе лишь в 1544 г. Штифелем.. Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид


О теореме Виета Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B+D, умноженное на А-А, равно BD, то А равно В и равно D». Чтобы понять Виета, следует помнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же B,D- кэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).


Метод разложения на множители привести квадратное уравнение общего вида к виду: А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Цель: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Способы: Пример:




Корни квадратного уравнения: Если D>0, Если D 0, Если D"> 0, Если D"> 0, Если D" title="Корни квадратного уравнения: Если D>0, Если D"> title="Корни квадратного уравнения: Если D>0, Если D">


X 1 и х 2 – корни уравнения Решение уравнений с помощью теоремы Виета Х 2 + 3Х – 10 = 0 Х 1 ·Х 2 = – 10, значит корни имеют разные знаки Х 1 + Х 2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х 1 = – 5, Х 2 = 2 Например:


0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" class="link_thumb"> 14 Решите уравнение: 2х х +15 = 0. Перебросим коэффициент 2 к свободному члену у у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски» 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски»"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени">


Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен второй по теореме Виета равен Если в квадратном уравнении a+c=b, то один из корней равен (-1), а второй по теореме Виета равен Пример: Свойства коэффициентов квадратного уравнения 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1; 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;




Графический способ решения квадратного уравнения Не используя формул квадратное уравнение можно решить графическим способом. Решим уравнение Для этого построим два графика: X Y X 01 Y012 Ответ: Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет. 1)y=x2 2)y=x+1




Решение квадратных уравнений с помощью номограммы Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 «Четырехзначные математические таблицы» Брадис В.М. Таблица XXII. Номограмма для решения уравнения Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. Для уравнения номограмма дает корни


Геометрический способ решения квадратных уравнений В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. А вот, например, как древние греки решали уравнение: или Выражения и геометрически предоставляют собой один и тот же квадрат, а исходное уравнение одно и тоже уравнение. Откуда и получаем что, или


Заключение данные приёмы решения заслуживают внимания, поскольку они не все отражены в школьных учебниках математики; овладение данными приёмами поможет учащимся экономить время и эффективно решать уравнения; потребность в быстром решении обусловлена применением тестовой системы вступительных экзаменов;

Исследовательская работа

На тему

«Способы решения квадратных уравнений »

Выполнила:
группа 8 «Г » класса

Руководитель работы:
Беньковская Мария Михайловна

Цели и задачи проекта.

1. Показать, что в математике, как и во всякой другой науке, достаточно своих неразгаданных тайн.
2. Подчеркнуть, что математиков отличает нестандартное мышление. А иногда смекалка и интуиция хорошего математика просто приводят в восхищение!
3. Показать, что сама попытка решения квадратных уравнений содействовала развитию новых понятий и идей в математике.
4. Научиться работать с различными источниками информации.
5. Продолжить исследовательскую работу по математике

Этапы исследования

1. История возникновения квадратных уравнений.

2. Определение квадратного уравнения и его виды.

3. Решение квадратных уравнений, используя формулу дискриминанта.

4. Франсуа Виет и его теорема.

5. Свойства коэффициентов для быстрого нахождения корней квадратного уравнения.

6. Практическая направленность.

Посредством уравнений, теорем

Я уйму всяких разрешал проблем.

(Чосер, английский поэт, средние века.)

этап. История возникновения квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени, ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать ещё около 2000 лет до нашей эры вавилоняне. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает, по существу, с современными, однако не известно, каким образом дошли вавилоняне до нахождения правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта содержится систематический ряд задач, сопровождаемых объяснениями и решаемые при помощи составления уравнений различных степеней, однако в ней нет систематического изложения алгебры.

Задачи на квадратные уравнения встречаются уже в астрономических трактатах «Ариабхаттиам», составленном в 499г. индейским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Для аль-Хорезми, незнавшего отрицательных чисел, члены каждого уравнения слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений, при решении неполного квадратного уравнения аль-Хорезми, как и все ученые до XVII века, не учитывает нулевого решения.

Трактат аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и формулы их решения.

Формулы решения квадратных уравнений по образцу аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Этот объёмистый труд отличается полнотой и ясностью изложения. Автор самостоятельно разработал некоторые новые алгебраические приёмы решения задач, и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI - XVII и частично XVIII веков.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду при всевозможных комбинациях знаков коэффициентов b,c было сформулировано в Европе лишь в 1544 году М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI веке учитывают, не только положительные, но и отрицательные корни. Лишь в XVII веке, благодаря трудам Жиррара, Декарта, Ньютона и других ученых, способ решения квадратных уравнений принимает современный вид.

ОКАЗЫВАЕТСЯ :

Задачи на квадратные уравнения встречаются уже в 499 г.

В Древней Индии были распространены публичные соревнования в решении трудных задач – ОЛИМПИАДЫ.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Министерство образования и науки РТ

Муниципальное бюджетное общеобразовательное учреждение

«Усадская средняя общеобразовательная школа

Высокогорского муниципального района Республики Татарстан»

Исследовательская работа:

«История возникновения квадратных уравнений »

Выполнила: Андреева Екатерина,

ученица 8Б класса

Научный руководитель:

Пожарская Татьяна Леонидовна,

учитель математики

Введение

Кто хочет ограничиться настоящим

без знания прошлого,

тот никогда его не поймет.

Г.В. Лейбниц

Уравнения в школьном курсе математики занимают ведущее место, но ни один из видов уравнений не нашел столь широкого применения, как квадратные уравнения.

Уравнение второй степени или квадратные уравнения, люди умели решать еще в Древнем Вавилоне во II тысячелетии до нашей эры. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактатах. И в настоящее время многие задачи алгебры, геометрии, физики так же решаются с помощью квадратных уравнений. Решая их, люди находят ответы на различные вопросы науки и техники.

Цель данного исследования - изучить историю возникновения квадратных уравнений.

Для достижения данной цели необходимо решить следующие задачи:

  1. Изучить научную литературу по теме.
  2. Проследить историю возникновения квадратных уравнений.

Объект исследования: квадратные уравнения.

Предмет исследования: история возникновения квадратных уравнений.

Актуальность темы :

  1. Решением квадратных уравнений люди занимались еще с древних веков. Мне захотелось узнать историю возникновения квадратных уравнений.
  2. В школьных учебниках нет информации об истории возникновения квадратных уравнений.

Методы исследования:

  1. Работа с учебной и научно-популярной литературой.
  2. Наблюдение, сравнение, анализ.

Научная ценность работы, на мой взгляд, заключается в том, что данный материал может быть интересен школьникам, увлекающимся математикой, и учителям на факультативных занятиях.

Квадратные уравнения в Древнем Вавилоне.

В Древнем Вавилоне необходимость решать уравнения не только первой, но и второй степени была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 - х = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Пример, взятый из одной из глиняных табличек этого периода.

«Площадь, состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям, решение которых сводится к решению квадратного уравнения, имеющему положительный корень.

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д

Как составлял и решал Диофант квадратные уравнения

Диофант представляет одну из наиболее трудных загадок в истории науки. Он был одним из самых своеобразных древнегреческих математиков был Диофант Александрийский, труды которого имели большое значение для алгебры и теории чисел. До сих пор не выяснены ни год рождения, ни дата смерти Диофанта. Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Полагают, что он жил в III в.н.э. Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.

Из работ Диофанта самой важной является “Арифметика”, из 13 книг которой только 6 сохранились до наших дней.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача: «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения из арифметики Диофанта:

  1. 12x 2 +x = 1
  2. 630x 2 +73x=6.

Еще в глубокой древности Индия славилась знаниями в области астрономии, грамматики и других наук.

Наибольших успехов Индийские ученые достигли в области математики . Они явились основоположниками арифметики и алгебры, в разработке которых пошли дальше греков.

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 +bх=с, а>0.

Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования
в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

« Обезьянок резвых стая,

Всласть поевши, развлекалась.

Их в квадрате часть восьмая,

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать, повисая…

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствуют о том, что он знал о двузначности корней квадратных уравнений.

Соответствующее задаче уравнение

Бхаскара пишет под видом х 2 - 64х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляют к обеим частям 32 2 ,получая затем:

х 2 -64х+32 2 =-768+1024,

х 1 =16, х 2 =48.

Квадратные уравнения в Китае (1 тысячелетие до н.э.).

Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIII--XII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр. Но подлинный расцвет науки начался после того, как в XII в. до н. э. Китай был завоёван кочевниками Чжоу. В эти годы возникают и достигают удивительных высот китайская математика и астрономия. Появились первые точные календари и учебники математики. К сожалению, «истребление книг» императором Цинь Ши Хуаном (Ши Хуанди) не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.

«Математика в девяти книгах» - это первое математическое сочинение из ряда классических в древнем Китае, замечательный памятник древнего Китая времени династии Ранней Хань (206г. до н.э. - 7 г. н. э.). В этом сочинении содержится разнообразный и богатый по содержанию математический материал, в том числе и квадратные уравнения.

Китайская задача: «Имеется водоём со стороной 10 чи. В центре его растёт камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша?»

(х+1) 2 =х 2 +5 2 ,

х 2 +2х+1= х 2 +25,

Ответ:12чи; 13чи.

Квадратные уравнения у ал-Хорезми

«Я составил краткую книгу об исчислении алгебры и алмукабалы, заключающую в себе простые и сложные вопросы арифметики, ибо это необходимо людям.» Ал-Хорезми Мухаммед бен-Муса.

Ал-Хорезми (Узбекистан) известен прежде всего своей «Книгой о восполнении и противопоставлении» («Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала»), от названия которой произошло слово «алгебра». Этот трактат является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

В теоретической части своего трактата ал-Хорезми даёт Классификацию уравнений 1-й и 2-й степени и выделяет шесть их видов:

1) «Квадраты равны корням», т. е. ах 2 = bх. (пример:)

2) «Квадраты равны числу», т. е. ах 2 = с.(пример:)

3) «Корни равны числу», т. е. ах = с. (пример:)

4) «Квадраты и числа равны корням», т. е. ах 2 + с = bх. (пример:)

5) «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах 2 . (пример:)

Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

«Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: « Раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень».

Знаменитое уравнение Аль-Хорезми: «Квадрат и десять корней равны 39». x 2 + 10x = 39 (IX век) . В своем трактате он пишет: «Правило таково: раздвой число корней, получится в этой задаче пять. Прибавь это к тридцатидевяти, будет шестьдесят четыре. Извлеки из этого корень, будет восемь, и вычти из этого половину числа корней, т.е. пять, останется три: это и будет корень квадрата, который ты искал»

Квадратные уравнения в Европе XII-XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к виду x 2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Заключение.

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

В настоящее время, умение решать квадратные уравнения необходимо для всех. Умение быстро, рационально и правильно решать квадратные уравнения облегчает прохождение многих тем курса математики. Квадратные уравнения решаются не только на уроках математики, но и на уроках физики, химии, информатики. Большинство практических задач реального мира тоже сводится к решению квадратных уравнений.

Литература

  1. Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972.
  2. Березкина Э.И. Математика древнего Китая - М.: Наука, 1980
  3. Пичурин Л.Ф. За страницами учебника алгебры: Кн. для учащихся

7-9 кл. сред.шк. - М.: Просвещение, 1990

  1. Глейзер Г. И. История математики в школе VII - VIII кл. Пособие для учителей. - М.: Просвещение, 1982.

 Представители различных цивилизаций: Древнего Египта, Древнего Вавилона, Древней Греции, Древней Индии, Древнего Китая, Средневекового Востока, Европы овладели приемами решения квадратных уравнений.

Впервые квадратное уравнение сумели решить математики Древнего Египта. В одном из математических папирусов содержится задача:

«Найти стороны поля, имеющего форму прямоугольника, если его площадь 12, а – длины равны ширине». «Длина поля равна 4», – указано в папирусе.

Прошли тысячелетия, в алгебру вошли отрицательные числа. Решая уравнение х²= 16, мы получаем два числа: 4, –4.

 Разумеется, в задаче египтян мы приняли бы X = 4, так как длина поля может быть только положительной величиной.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Правило решения квадратных уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом вавилоняне «дошли до этого». Но почти во всех найденных папирусах и клинописных текстах приводятся только задачи с решениями. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел!».

Греческий математик Диофант составлял и решал квадратные уравнения. В его «Арифметике» нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

Задачи на составление квадратных уравнений встречаются уже в астрономическом трактате «Ариа-бхатиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой.

Другой индийский ученый Брахмагупта (VII в.) изложил общее правило решения квадратных уравнений вида ах² + bх = с.

​ В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг по поводу таких соревнований говорится следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая на поляне забавлялась.

А двенадцать по лианам... стали прыгать, повисая...

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?

​ Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

 Наиболее древние из дошедших до нас китайских математических текстов относятся к концу I в. до н.э. Во II в. до н.э. была написана «Математика в девяти книгах». Позднее, в VII в., она вошла в сборник «Десять классических трактатов», который изучали в течение многих столетий. В трактате «Математика в девяти книгах» объясняется, как извлечь квадратный корень с помощью формулы квадрата суммы двух чисел.

Метод получил название «тянь-юань» (буквально – «небесный элемент») – так китайцы обозначали неизвестную величину. ​

 Первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр»– со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми стало отправной точкой в становлении науки о решении уравнений. В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает шесть видов уравнений, выражая их следующим образом:

-квадраты равны корням , то есть ах² = bх;

-квадраты равны числу , то есть ах² = с;

-корни равны числу , то есть ах = с;

-квадраты и числа равны корням , то есть ах²+ с = bх;

-квадраты и корни равны числу , то есть ах² + bх = с;

-корни и числа равны квадратам , то есть bх + с = ах²;

Трактат аль-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

Формулы решения квадратных уравнений по образцу аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Автор самостоятельно разработал некоторые новые алгебраические примеры решения задач и первым в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» были включены почти во все европейские учебники XVI-XVII в. и частично XVIII в.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х² + bх = с, при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако он также признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают помимо положительных и отрицательные корни. Лишь в XVII в., благодаря трудам Жирара, Декарта, Ньютона и других ученых, способ решения квадратных уравнений принимает современный вид.