Правила для многоугольников которые можно вписать в окружность и описать окружность вокруг них. Вписанный четырехугольник

Вам понадобится

  • - четырехугольник с заданными параметрами;
  • - циркуль;
  • - линейка;
  • - транспортир;
  • - калькулятор;
  • - лист бумаги.

Инструкция

Измерьте все углы данного вам четырехугольника. Найдите суммы противолежащих углов. Вписать четырехугольник в окружность можно только в том случае, если суммы противоположных углов равны 180°. Таким образом, построить описанную окружность всегда можно вокруг квадрата, и трапеции.

Начертите окружность с радиусом R. Определите ее центр. Как , он обозначается О. Найдите на самой окружности произвольную точку и назовите ее любой буквой. Допустим, это будет точка А. Ваши дальнейшие действия от того, именно четырехугольник вам дан. У квадрата диагонали перпендикулярны друг другу и являются радиусами описанной окружности. Поэтому постройте два диаметра, угол между которыми составляет 90°. Точки их пересечения с окружность ю последовательно соедините прямыми линиями.

Чтобы вписать прямоугольник, вам нужно знать угол между диагоналями или же размеры сторон. Во втором случае угол можно будет , использовав теоремы Пифагора, синусов или косинусов. Проведите один из диаметров. Обозначьте его, например, точками А и С. От точки О, которая одновременно является и серединой диагонали, отложите угол между диагоналями. Через центр и новую точку проведите второй диаметр. Точно так же, как и в случае с квадратом, соедините последовательно точки пересечения диаметров с окружность ю.

Для построения равнобедренной трапеции найдите на окружности произвольную точку. Постройте от нее хорду, равную верхнему или нижнему основанию. Найдите ее середину и проведите через нее и центр окружности диаметр, перпендикулярный . Отложите на диаметре высоты трапеции. Через эту точку проведите перпендикуляр в обе стороны до пересечения с окружность ю. Соедините попарно концы .

Полезный совет

При построении вписанных многоугольников в программе AutoCAD сначала найдите в главном меню выпадающее окно "Рисование", а в нем - функцию "Многоугольник". Количество сторон квадрата выставляется сразу. После того, как он появится на экране, перейдите к функции "Вписанный/описанный многоугольник". Нужное построение тут же появится на экране.

Для построения в этой программе трапеции или прямоугольника найдите координаты точки пересечения диагоналей. Она же будет являться и центром описанной окружности.

Трапецией называют плоскую четырехугольную фигуру, две стороны которой (основания) параллельны, а две другие (боковые стороны) обязательно должны быть не параллельны. Если все четыре вершины трапеции лежат на одной окружности, этот четырехугольник называется вписанным в нее. Построить такую фигуру несложно.

Вам понадобится

  • Бумага, карандаш, угольник, циркуль.

Инструкция

Если никаких дополнительных требований к вписанной трапеции нет, вы можете стороны любой длины. Поэтому начните построение с произвольной , например, в нижней левой четверти . Обозначьте ее буквой А - здесь будет одна из вершин вписанной в окружность трапеции.

Проведите горизонтальную линию, начинающуюся в А и заканчивающуюся в месте пересечения с окружность ю в нижней правой . Это место пересечение обозначьте буквой В. Построенный отрезок АВ - это нижнее основание трапеции.

Любым удобным способом начертите параллельный нижнему основанию отрезок, выше центра . Например, если в вашем распоряжении есть , это можно сделать так: приложите его к основанию АВ и начертите вспомогательную перпендикулярную линию. Затем приложите инструмент к вспомогательной линии выше центра круга и начертите перпендикуляры в обе стороны от нее, заканчивая каждый на пересечении с окружность ю. Эти два перпендикуляра должны лежать на одной и тогда они образуют верхнее основание трапеции. Левую крайнюю точку этого основания обозначьте буквой D, а правую - буквой С.

Если угольника нет, но есть циркуль, то построение верхнего основания будет еще проще. Поставьте на левой верхней четверти окружности произвольную точку. Единственное условие - она не должна располагаться строго вертикально над точкой А, иначе построенная фигура будет квадратом. Обозначьте точку буквой D и отложите на циркуле расстояние между точками А и D. Затем установите циркуль в точку В и в правой верхней четверти окружности отметьте точку, соответствующую отложенному расстоянию. Обозначьте ее буквой С и начертите верхнее основание, соединив точки D и С.

Начертите боковые стороны вписанной трапеции, проведя отрезки АD и ВС.

Видео по теме

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом совершенно неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция или что-то иное. Также не играет роли, правильный или неправильный это многоугольник. Необходимо лишь учитывать, что существуют многоугольники, вокруг которых окружность описать нельзя. Всегда можно описать окружность вокруг треугольника. Что касается четырехугольников, то окружность можно описать около квадрата или прямоугольника или равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические понятия и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

Постройте многоугольник с заданными параметрами и , можно ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Каждая из них должна равняться 180°.

Для того, чтобы описать окружность , нужно вычислить ее радиус. Вспомните, где лежит центр окружности в разных многоугольниках. В треугольнике он в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для любого другого выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Разделив диаметр на 2, получаете радиус.

Вычислите радиус описанной окружности для треугольника. Поскольку параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Вместо этой стороны можно взять сторону и противолежащий ей угол.

Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - известные по условиям основания трапеции, h - высота, d - диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту можно вычислить по теореме синусов или косинусов, длины сторон трапеции и углы заданы в условиях . Зная высоту и учитывая подобия треугольников, вычислите диагональ. После этого останется вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет

Чтобы вычислить радиус окружности, описанной вокруг другого многоугольника, выполните ряд дополнительных построений. Получите более простые фигуры, параметры которых вам известны.

Задача вписать в окружность многоугольник нередко может поставить взрослого человека в тупик. Ребенку-школьнику необходимо объяснить ее решение, поэтому родители отправляются в серфинг по всемирной паутине в поисках решения.

Инструкция

Начертите окружность . Поставьте иголку циркуля на сторону окружности, при этом радиус не изменяйте. Проводите две дуги, перекрещивающие окружность , поворачивая циркуль вправо и влево.

Переместите иголку циркуля по окружности в точку пересечения с ней дуги. Снова поворачиваете циркуль и прочерчиваете еще две дуги, пересекая контур окружности. Данную процедуру повторяете до пересечения с первой точкой.

Нарисуйте окружность . Проведите диаметр через ее центр, линии должна быть горизонтальной. Постройте перпендикуляр к через центр окружности, получите вертикальную линию (СВ, например).

Разделите радиус пополам. Отметьте эту точку на линии диаметра (обозначьте ее А). Постройте окружность с центром в точке А и радиусом АС. При пересечении с горизонтальной линией вы получите еще одну точку (D, например). В результате отрезок СD будет являться стороной пятиугольника, который требуется вписать.

Откладывайте полуокружности, радиус которых равен CD, по контуру окружности. Таким образом, исходная окружность будет поделена на пять равных частей. Соедините точки линейкой. Задача по вписыванию пятиугольника в окружность также выполнена.

Далее описывается по вписыванию в окружность квадрата. Проведите линию диаметра . Возьмите транспортир. Поставьте его в точку пересечения диаметра со стороной окружности. Растворите циркуль на длину радиуса.

Проведите две дуги до пересечения с окружность ю, поворачивая циркуль в одну и другую сторону. Переставьте ножку циркуля в противоположную точку и проведите еще две дуги тем же раствором. Соедините полученные точки.

Возведите диаметр в квадрат, разделите на два и извлеките корень. В итоге получите сторону квадрата, который легко впишется в окружность . Растворите циркуль на эту длину. Ставьте его иголку на окружность и рисуйте дугу, пересекающую одну сторону окружности. Перемещайте ножку циркуля в полученную точку. Снова проведите дугу.

Повторите процедуру и нарисуйте еще две точки. Соедините все четыре точки. Это более простой способ вписать квадрат в окружность .

Рассмотрите задачу по вписыванию в окружность . Нарисуйте окружность . Возьмите точку произвольно на окружности - она будет вершиной треугольника. От этой точки, сохраняя циркуля, проведите дугу до пересечения с окружность ю. Это будет вторая вершина. Из нее аналогичным способом постройте третью вершину. Соедините точки линейкой. Решение найдено.

Видео по теме

Вписать квадрат в окружность легко можно с помощью чертежных инструментов. Но эта задача решается даже при полном их отсутствии. Необходимо только помнить некоторые свойства квадрата.

Вам понадобится

  • -циркуль
  • -карандаш
  • -угольник
  • -ножницы

Инструкция

Нарисуйте к задаче. Очевидно, что диаметр окружности является диагональю вписанного в эту . Вспомните известное свойство квадрата: его диагонали взаимно перпендикулярны. Используйте эту взаимосвязь диагоналей при построении заданного квадрата.

Начертите в окружности диаметр. Из центра с помощью угольника проведите второй диаметр под углом 90 градусов к первому. Соедините точки пересечения перпендикулярных диаметров с окружностью и получите вписанный в эту окружность квадрат.

Если из чертежных инструментов у вас имеется только циркуль, начертите окружность. Отметьте на окружности произвольную точку и проведите через нее диаметр с помощью с ровным краем. Теперь нужно с помощью циркуля разделить половину окружности между концами диаметра на две равные части. Из точек пересечения диаметра с окружностью сделайте две засечки, сохраняя неизменным раствор циркуля. Через точку пересечения этих засечек и центр окружности проведите второй диаметр. Очевидно, что он будет перпендикулярен первому.

Если чертежных инструментов у вас нет, можно вырезать круг, ограниченный заданной окружностью. Сложите вырезанную фигуру точно пополам. Повторите операцию. Нужно совместить концы линии сгиба, тогда криволинейные участки совпадут без дополнительных усилий. Зафиксируйте линии сложения. Теперь разверните круг. Линии сгибов отчетливо видны. Загните сегменты круга между точками пересечения линий сгибов с окружностью и отрежьте эти сегменты. Линии отреза являются сторонами искомого квадрата. Поместите вырезанный квадрат в заданную окружность, совместив ее центр с точкой пересечения линий сгиба круга. Вершины квадрата окажутся лежащими на окружности, что и требовалось выполнить.

Окружность называется вписанной в многоугольник, если она полностью размещается внутри этого многоугольника. Каждая сторона описанной фигуры имеет с окружностью общую точку.

Материал из Википедии - свободной энциклопедии

  • В евклидовой геометрии , вписанный четырехугольник - это четырехугольник, у которого все вершины лежат на одной окружности. Эта окружность называется описанной окружностью четырехугольника, а вершины, как говорят, лежат на одной окружности. Центр этой окружности и ее радиус называются соответственно центром и радиусом описанной окружности. Другие термины для этого четырехугольника: четырехугольник лежит на одной окружности , стороны последнего четырехугольника являются хордами окружности. Обычно предполагается, что выпуклый четырехугольник является выпуклым четырехугольником. Формулы и свойства, приведенные ниже, действительны в выпуклом случае.
  • Говорят, что если около четырёхугольника можно описать окружность , то четырёхугольник вписан в эту окружность , и наоборот.

Общие критерии вписанности четырехугольника

  • Около выпуклого четырёхугольника \pi радиан), то есть:
\angle A+\angle C = \angle B + \angle D = 180^\circ

или в обозначениях рисунка:

\alpha + \gamma = \beta + \delta = \pi = 180^{\circ}.

  • Можно описать окружность около любого четырехугольника, у которого пересекаются в одной точке четыре серединных перпендикуляра его сторон (или медиатрисы его сторон, то есть перпендикуляры к сторонам, проходящие через их середины).
  • Можно описать окружность около любого четырехугольника, у которого один внешний угол, смежный с данным внутренним углом , точно равен другому внутреннему углу, противолежащему данному внутреннему углу . По сути это условие есть условие антипараллельности двух противоположных сторон четырехугольника. На рис. ниже показан внешний и смежный с ним внутренний углы зеленого пятиугольника.
\displaystyle AX\cdot XC = BX\cdot XD.
  • Пересечение X может быть внутренним или внешним по отношению к кругу. В первом случае получим вписанный четырехугольник является ABCD , а в последнем случае получим вписанный четырехугольник ABDC . При пересечении внутри круга, равенство гласит, что произведение длин сегментов, в котором точка X делит одну диагональ, равна произведению длин сегментов, в котором точка X делит другую диагональ. Это условие известно, как "теорема о пересекающихся хордах". В нашем случае диагонали вписанного четырехугольника являются хордами окружности.
  • Еще один критерий вписанности. Выпуклый четырехугольник ABCD вписан круг тогда и только тогда, когда
\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}=\tan{\frac{\beta}{2}}\tan{\frac{\delta}{2}}=1.

Частные критерии вписанности четырехугольника

Вписанный простой (без самопересечений) четырёхугольник является выпуклым . Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180° (\pi радиан). Можно описать окружность около:

  • любого антипараллелограмма
  • любого прямоугольника (частный случай квадрат)
  • любой равнобедренной трапеции
  • любого четырехугольника, у которого два противоположных угла прямые.

Свойства

Формулы с диагоналями

ef=ac+bd; \frac{e}{f} = \frac{a\cdot d+b\cdot c}{a\cdot b+c\cdot d}.

В последней формуле пары смежных сторон числителя a и d , b и c опираются своими концами на диагональ длиной e . Аналогичное утверждение имеет место для знаменателя.

  • Формулы для длин диагоналей (следствия ):
e = \sqrt{\frac{(ac+bd)(ad+bc)}{ab+cd}} и f = \sqrt{\frac{(ac+bd)(ab+cd)}{ad+bc}}

Формулы с углами

Для вписанного четырехугольника с последовательностью сторон a , b , c , d , с полупериметром p и углом A между сторонами a и d , тригонометрические функции угла A даются формулами

\cos A = \frac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)}, \sin A = \frac{2\sqrt{(p-a)(p-b)(p-c)(p-d)}}{(ad+bc)}, \tan \frac{A}{2} = \sqrt{\frac{(p-a)(p-d)}{(p-b)(p-c)}}.

Угол θ между диагоналями есть :p.26

\tan \frac{\theta}{2} = \sqrt{\frac{(p-b)(p-d)}{(p-a)(p-c)}}.

  • Если противоположные стороны a и c пересекаются под углом φ , то он равен
\cos{\frac{\varphi}{2}}=\sqrt{\frac{(p-b)(p-d)(b+d)^2}{(ab+cd)(ad+bc)}},

где p есть полупериметр . :p.31

Радиус окружности, описанной около четырёхугольника

Формула Парамешвара (Parameshvara)

Если четырехугольник с последовательными сторонами a , b , c , d и полупериметром p вписан окружность, то ее радиус равен по формуле Парамешвара :p. 84

R= \frac{1}{4} \sqrt{\frac{(ab+cd)(ad+bc)(ac+bd)}{(p-a)(p-b)(p-c)(p-d)}}.

Она была получена индийским математиком Парамешваром в 15 веке (ок. 1380–1460 гг.)

  • Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля , вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF .

Критерий того, что четырехугольник, составленный из двух треугольников, вписан в некоторую окружность

f^2 = \frac{(ac+bd)(ad+bc)}{(ab+cd)}.
  • Последнее условие дает выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырех его сторон (a , b , c , d ). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея (см.выше).

Критерий того, что четырехугольник, отрезанный прямой линией от треугольника, вписан в некоторую окружность

  • Прямая, антипараллельная стороне треугольника и пересекающая его, отсекает от него четырёхугольник, около которого всегда можно описать окружность.
  • Следствие. Около антипараллелограмма , у которого две противоположные стороны антипараллельны, всегда можно описать окружность.

Площадь вписанного в окружность четырёхугольника

Варианты формулы Брахмагупты

S=\sqrt{(p-a)(p-b)(p-c)(p-d)}, где p - полупериметр четырёхугольника. S= \frac{1}{4} \sqrt{- \begin{vmatrix}

a & b & c & -d \\ b & a & -d & c \\ c & -d & a & b \\ -d & c & b & a \end{vmatrix}}

Другие формулы площади

S = \tfrac{1}{2}(ab+cd)\sin{B} S = \tfrac{1}{2}(ac+bd)\sin{\theta},

где θ любой из углов между диагоналями. При условии, что угол A не является прямым, площадь также может быть выражена как :p.26

S = \tfrac{1}{4}(a^2-b^2-c^2+d^2)\tan{A}. \displaystyle S=2R^2\sin{A}\sin{B}\sin{\theta},

где R есть радиус описанной окружности . Как прямое следствие имеем неравенство

S\le 2R^2,

где равенство возможно тогда и только тогда, когда этот четырехугольник является квадратом.

Четырехугольники Брахмагупты

Четырехугольник Брахмагупты является четырехугольником, вписанным в окружность, с целыми значениями длин сторон, целыми значениями его диагоналей и с целым значением его площади. Все возможные четырехугольники Брахмагупты со сторонами a , b , c , d , с диагоналями e , f , с площадью S , и радиусом описанной окружности R могут быть получены путем освобождения от знаменателей следующих выражений, включающих рациональные параметры t , u , и v :

a= b=(1+u^2)(v-t)(1+tv) c=t(1+u^2)(1+v^2) d=(1+v^2)(u-t)(1+tu) e=u(1+t^2)(1+v^2) f=v(1+t^2)(1+u^2) S=uv 4R=(1+u^2)(1+v^2)(1+t^2).

Примеры

  • Частными четырёхугольниками, вписанными в окружность, являются: прямоугольник , квадрат , равнобедренная или равнобочная трапеция , антипараллелограмм .

Четырехугольники, вписанные в окружность с перпендикулярными диагоналями (вписанные ортодиагональные четырехугольники)

Свойства четырехугольников, вписанных в окружность с перпендикулярными диагоналями

Радиус описанной окружности и площадь

У четырехугольника, вписанного в окружность с перпендикулярными диагоналями, предположим, что пересечение диагоналей делит одну диагональ на отрезки длины p 1 и p 2 , а другую диагональ делит на отрезки длины q 1 и q 2 . Тогда (Первое равенство является Предложением 11 у Архимеда " Книга лемм )

D^2=p_1^2+p_2^2+q_1^2+q_2^2=a^2+c^2=b^2+d^2,

где D - диаметр cокружности . Это справедливо, потому что диагонали перпендикулярны хорды окружности . Из этих уравнений следует, что радиус описанной окружности R может быть записан в виде

R=\tfrac{1}{2}\sqrt{p_1^2+p_2^2+q_1^2+q_2^2}

или в терминах сторон четырехугольника в виде

R=\tfrac{1}{2}\sqrt{a^2+c^2}=\tfrac{1}{2}\sqrt{b^2+d^2}.

Отсюда также следует, что

a^2+b^2+c^2+d^2=8R^2.

  • Для вписанных ортодиагональных четырехугольников справедлива теорема Брахмагупты :

Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке M, то две пары его антимедиатрис проходят через точку M.

Замечание . В этой теореме под антимедиатрисой понимают отрезок FE четырехугольника на рисунке справа (по аналогии с серединным перпендикуляром (медиатрисой) к стороне треугольника). Он перпендикулярен одной стороне и одновременно проходит через середину противоположной ей стороны четырехугольника.

Напишите отзыв о статье "Четырехугольники, вписанные в окружность"

Примечания

  1. Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates , Highperception, с. 179, ISBN 1906338000 , OCLC
  2. . Вписанные четырёхугольники.
  3. Siddons, A. W. & Hughes, R. T. (1929), Trigonometry , Cambridge University Press, с. 202, OCLC
  4. Durell, C. V. & Robson, A. (2003), , Courier Dover, ISBN 978-0-486-43229-8 ,
  5. Alsina, Claudi & Nelsen, Roger B. (2007), "", Forum Geometricorum Т. 7: 147–9,
  6. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ., 2007 (orig. 1929).
  7. Hoehn, Larry (March 2000), "Circumradius of a cyclic quadrilateral", Mathematical Gazette Т. 84 (499): 69–70
  8. .
  9. Altshiller-Court, Nathan (2007), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, сс. 131, 137–8, ISBN 978-0-486-45805-2 , OCLC
  10. Honsberger, Ross (1995), , Episodes in Nineteenth and Twentieth Century Euclidean Geometry , vol. 37, New Mathematical Library, Cambridge University Press, сс. 35–39, ISBN 978-0-88385-639-0
  11. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  12. Bradley, Christopher (2011), ,
  13. .
  14. Coxeter, Harold Scott MacDonald & Greitzer, Samuel L. (1967), , Geometry Revisited , Mathematical Association of America, сс. 57, 60, ISBN 978-0-88385-619-2
  15. .
  16. Andreescu, Titu & Enescu, Bogdan (2004), , Mathematical Olympiad Treasures , Springer, сс. 44–46, 50, ISBN 978-0-8176-4305-8
  17. .
  18. Buchholz, R. H. & MacDougall, J. A. (1999), "", Bulletin of the Australian Mathematical Society Т. 59 (2): 263–9, DOI 10.1017/S0004972700032883
  19. .
  20. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ. Co., 2007
  21. , с. 74.
  22. .
  23. .
  24. .
  25. Peter, Thomas (September 2003), "Maximizing the area of a quadrilateral", The College Mathematics Journal Т. 34 (4): 315–6
  26. Prasolov, Viktor, ,
  27. Alsina, Claudi & Nelsen, Roger (2009), , , Mathematical Association of America, с. 64, ISBN 978-0-88385-342-9 ,
  28. Sastry, K.R.S. (2002). «» (PDF). Forum Geometricorum 2 : 167–173.
  29. Posamentier, Alfred S. & Salkind, Charles T. (1970), , Challenging Problems in Geometry (2nd ed.), Courier Dover, сс. 104–5, ISBN 978-0-486-69154-1
  30. .
  31. .
  32. .

См. также

Окружность называется вписанной в четырехугольник, если все стороны четырехугольника являются касательными к окружности.

Центром этой окружности является точка пересечения биссектрис углов четырехугольника. В этом случае радиусы, проведенные в точки касания являются перпендикулярами к сторонам четырехугольника

Окружность называется описанной около четырехугольника, если она проходит через все его вершины.

Центром этой окружности является точка пересечения серединных перпендикуляров к сторонам четырехугольника

Не во всякий четырехугольник можно вписать окружность и не около всякого четырехугольника можно описать окружность

СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЕХУГОЛЬНИКОВ

ТЕОРЕМА В выпуклом вписанном четырехугольнике суммы противолежащих углов равны между собой и равны 180°.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих углов равны, то около четырехугольника можно описать окружность. Ее центр - точка пересечения серединных перпендикуляров к сторонам.

ТЕОРЕМА Если в четырехугольник вписана окружность, то суммы противолежащих сторон его равны.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность. Ее центр - точка пересечения биссектрис.

Следствия: из всех параллелограммов только около прямоугольника (в частности около квадрата) можно описать окружность.

Из всех параллелограммов только в ромб (в частности в квадрат) можно вписать окружность (центр - точка пересечения диагоналей, радиус - равен половине высоты).

Если около трапеции можно описать окружность, то она равнобедренная. Около любой равнобедренной трапеции можно описать окружность.

Если в трапецию вписана окружность, то радиус ее равен половине высоты.

Задания с решениями

1. Найти диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.

Центром окружности, описанной около прямоугольника является точка пересечения его диагоналей. Следовательно, диагональ АС равна 2R . То есть АС =10
Ответ: 10.

2. Около трапеции, основания которой 6 см и 8 см, а высота 7см, описан круг Найти площадь этого круга.

Пусть DC =6, AB =8. Так как около трапеции описана окружность, то она равнобедренная.

Проведем две высоты DM и CN .Так как трапеция равнобедренная, то AM=NB =

Тогда AN =6+1=7

Из треугольника ANС по теореме Пифагора найдем АС .

Из треугольника CВN по теореме Пифагора найдем ВС .

Окружность, описанная около трапеции, является и окружностью, описанной около треугольника АСВ.

Найдем площадь этого треугольника двумя способами по формулам

Гдe h - высота и - основание треугольника

Где R- радиус описанной окружности.

Из этих выражений получаем уравнение . Откуда

Площадь круга будет равна

3. Углы , и четырехугольника относятся как . Найдите угол , если около данного четырехугольника можно описать окружность. Ответ дайте в градусах

Из условия следует, что .Так как около четырехугольника можно описать окружность, то

Получаем уравнение . Тогда . Сумма всех углов четырехугольника равна 360º. Тогда

. откуда получаем, что

4.Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

Тогда средняя линия равна

5. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

В трапеции радиус вписанной окружности равен половине высоты. Проведем высоту СК.

Тогда .

Так как в трапецию вписана окружность, то суммы длин противоположных сторон равны. Тогда

Тогда периметр

Получаем уравнение

6. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

Пусть О центр описанной около трапеции окружности. Тогда .

Проведем высоту КН через точку О

Тогда , где КО и ОН высоты и одновременно медианы равнобедренных треугольников DOC и АОВ. Тогда

По теореме Пифагора.








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели.

Образовательная. Создание условий для успешного усвоения понятия описанного четырёхугольника, его свойства, признака и овладения умениями применять их на практике.

Развивающая. Развитие математических способностей, создание условий для умения обобщать и применять прямой и обратный ход мыслей.

Воспитательная. Воспитание чувства красоты эстетикой чертежей, удивления необычным

решением, формирование организованности, ответственность за результаты своего труда.

1. Изучить определение описанного четырёхугольника.

2. Доказать свойство сторон описанного четырёхугольника.

3. Познакомить с двойственностью свойств сумм противоположных сторон и противоположных углов вписанного и описанного четырёхугольников.

4. Дать опыт практического применения рассмотренных теорем при решении задач.

5. Провести первичный контроль уровня усвоения нового материала.

Оборудование:

  • компьютер, проектор;
  • учебник “Геометрия. 10-11 классы” для общеобразоват. учреждений: базовый и профил. уровни авт. А.В. Погорелов.

Программные средства: Microsoft Word, Microsoft Power Point.

Использование компьютера при подготовке учителя к уроку.

С помощью стандартной программы операционной системы Windows созданы к уроку:

  1. Презентация.
  2. Таблицы.
  3. Чертежи.
  4. Раздаточный материал.

План урока

  • Организационный момент. (2 мин.)
  • Проверка домашнего задания. (5 мин.)
  • Изучение нового материала. (28 мин.)
  • Самостоятельная работа. (7 мин.)
  • Домашнее задание.(1 мин.)
  • Итог урока. (2 мин.)
  • Ход урока

    1. Организационный момент. Приветствие. Сообщение темы и цели урока. Запись в тетради даты и темы урока.

    2. Проверка домашнего задания.

    3. Изучение нового материала.

    Работа над понятием описанного многоугольника.

    Определение. Многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

    Вопрос. Какие из предложенных многоугольников являются описанными, а какие не являются и почему?

    <Презентация. Слайд №2>

    Доказательство свойств описанного четырёхугольника.

    <Презентация. Слайд №3>

    Теорема. В описанном четырёхугольнике суммы противоположных сторон равны.

    Учащиеся работают с учебником, записывают формулировку теоремы в тетрадь.

    1. Представить формулировку теоремы в форме условного предложения.

    2. Каково условие теоремы?

    3. Каково заключение теоремы?

    Ответ. Если четырёхугольник описан около окружности, то суммы противолежащих сторон равны.

    Проводится доказательство, учащиеся делают записи в тетради.

    <Презентация. Слайд №4>

    Учитель. Отметим двойственность ситуаций для сторон и углов описанного и вписанного четырёхугольников.

    Закрепление полученных знаний.

    Задачи.

  • Противоположные стороны описанного четырёхугольника 8 м и 12 м. Можно ли найти периметр?
  • Задачи по готовым чертежам. <Презентация. Слайд №5>
  • Ответ. 1. 10 м. 2. 20 м. 3. 21 м

    Доказательство признака описанного четырёхугольника.

    Сформулировать обратную теорему.

    Ответ. Если в четырёхугольнике суммы противоположных сторон равны, то в него можно вписать окружность. (Вернуться к слайду 2, рис.7) <Презентация. Слайд №2>

    Учитель. Уточните формулировку теоремы.

    Теорема. Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.

    Работа с учебником. Познакомиться с доказательством признака описанного четырёхугольника по учебнику.

    Применение полученных знаний.

    3. Задачи по готовым чертежам.

    1. Можно ли вписать окружность в четырёхугольник с противоположными сторонами 9 м и 4 м, 10 м и 3 м?

    2. Можно ли вписать окружность в равнобокую трапецию с основаниями 1 м и 9 м, высотой 3 м?

    <Презентация. Слайд №6>

    Письменная работа в тетрадях

    .

    Задача. Найти радиус окружности, вписанной в ромб с диагоналями 6 м и 8 м.

    <Презентация. Слайд № 7>

    4. Самостоятельная работа.

      1 вариант

    1. Можно ли вписать окружность

    1) в прямоугольник со сторонами 7 м и 10 м,

    2. Противоположные стороны четырёхугольника, описанного около окружности, равны 7 м и 10 м.

    Найти периметр четырёхугольника.

    3. Равнобокая трапеция с основаниями 4 м и 16 м описана около окружности.

    1) радиус вписанной окружности,

    2 вариант

    1. Можно ли вписать окружность:

    1) в параллелограмм со сторонами 6 м и 13 м,

    2) в квадрат?

    2. Противоположные стороны четырёхугольника, описанного около окружности, равны 9 м и 11 м. Найти периметр четырёхугольника.

    3. Равнобокая трапеция с боковой стороной 5 м описана около окружности с радиусом 2 м.

    1) основание трапеции,

    2) радиус описанной окружности.

    5. Домашнее задание. П.86, № 28, 29, 30.

    6. Итог урока. Проверяется самостоятельная работа, выставляются оценки.

    <Презентация. Слайд № 8>

    Теорема 1 . Сумма противоположных углов вписанного четырёхугольника равна 180° .

    Пусть в окружность с центром О вписан четырёхугольник ABCD (рис. 412). Требуется доказать, что ∠А + ∠С = 180° и ∠В + ∠D = 180°.

    ∠А, как вписанный в окружность О, измеряется 1 / 2 \(\breve{BCD}\).

    ∠С, как вписанный в ту же окружность, измеряется 1 / 2 \(\breve{BAD}\).

    Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т.е. имеют 360°.

    Отсюда ∠А + ∠С = 360°: 2 = 180°.

    Аналогично доказывается, что и ∠В + ∠D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов Аи С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180°.

    Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

    Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно

    ∠А + ∠С = 180° и ∠В + ∠D = 180°(рис. 412).

    Докажем, что около такого четырёхугольника можно описать окружность.

    Доказательство . Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

    Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

    Допустим, что вершина окажется внутри круга и займёт положение D’ (рис. 413). Тогда в четырёхугольнике ABCD’ будем иметь:

    ∠В + ∠D’ = 2d .

    Продолжив сторону AD’ до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

    ∠B + ∠Е = 2d .

    Из этих двух равенств следует:

    ∠D’ = 2d - ∠B;

    ∠E = 2d - ∠B;

    но этого быть не может, так как ∠D’, как внешний относительно треугольника CD’E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

    Так же доказывается, что вершина D не может занять положение D" вне круга (рис. 414).

    Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

    Следствия.

    1. Вокруг всякого прямоугольника можно описать окружность.

    2. Вокруг равнобедренной трапеции можно описать окружность.

    В обоих случаях сумма противоположных углов равна 180°.


    Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (рис. 415), т. е. стороны его АВ, ВС, CD и DA - касательные к этой окружности.

    Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки, имеем:

    Сложим почленно эти равенства. Получим:

    АР + ВР + DN + CN = АК + ВМ +DK + СМ,

    т. е. АВ + CD = AD + ВС, что и требовалось доказать.

    Другие материалы