Строение бактерии рисунок с подписями. основным компонентом клеточной стенки грамположительных бактерий является. Почвенные бактерии улучшают обучаемость

Современная наука достигла фантастического прогресса за последние столетия. Однако, некоторые загадки до сих пор будоражат умы выдающихся ученых.

В наши дни так и не найден ответ на актуальный вопрос – сколько же разновидностей бактерий существует на нашей огромной планете?

Бактерия – организм с уникальной внутренней организацией, которому свойственны все процессы, характерные живым организмам. Бактериальная клетка имеет множество удивительных особенностей, одна из которых – разнообразие форм.

Клетка бактерии может обладать сферической, палочковидной, кубической или звездчатой формой. Кроме того, бактерии бывают немного согнуты или формируют разнообразные завитки.

Форма клетки играет важную роль для правильного функционирования микроорганизма, так как она может влиять на возможность бактерии прикрепляться к другим поверхностям, получать необходимые вещества и передвигаться.

Минимальный клеточный размер обычно составляет 0,5 мкм, однако в исключительных случаях величина бактерии может достигать 5,0 мкм.

Строение клетки любой бактерии строго упорядочено. Ее структура значительно отличается от структуры остальных клеток, например растений и животных. Клетки всех видов бактерий не имеют такие элементы, как: дифференцированное ядро, внутриклеточные мембраны, митохондрии, лизосомы.

У бактерий имеются специфические структурные компоненты – постоянные и непостоянные.

К постоянным компонентам относятся: цитоплазматическая мембрана (плазмолемма), клеточная стенка, нуклеоид, цитоплазма. Непостоянными структурами являются: капсула, жгутики, плазмиды, пили, ворсинки, фимбрии, споры.

Цитоплазматическая мембрана


Любую бактерию обволакивает цитоплазматическая мембрана (плазмолемма), которая включает в себя 3 слоя. Мембрана содержит глобулины, отвечающие за выборочную транспортировку разнообразных субстанций в клетку.

Плазмолемма выполняет также следующие важные функции:

  • механическая – обеспечивает автономное функционирование бактерии и всех структурных элементов;
  • рецепторная – белки, находящиеся в плазмолемме, выступают в качестве рецепторов, то есть помогают клетке воспринимать различные сигналы;
  • энергетическая – некоторые белки отвечают за функцию переноса энергии.

Нарушение функционирования плазмолеммы ведет к тому, что бактерия разрушается и погибает.

Клеточная стенка


Структурный компонент, присущий только бактериальным клеткам – клеточная стенка. Это жесткая проницаемая оболочка, которая выступает в роли важней составляющей структурного скелета клетки. Располагается она с внешней стороны от цитоплазматической мембраны.

Клеточная стенка реализует функцию защиты, а кроме того придает клетке постоянную форму. Ее поверхность покрывают многочисленные споры, которые пропускают внутрь необходимые вещества и выводят из микроорганизма продукты распада.

Защита внутренних составляющих от осмотического и механического воздействия – еще одна функция стенки. Она играет незаменимую роль в контроле деления клетки и распределении в ней наследственных признаков. В ее составе содержится пептидогликан, именно он наделяет клетку ценными иммунобиологическими характеристиками.

Толщина клеточной стенки колеблется от 0,01 до 0,04 мкм. С возрастом происходит рост бактерии и количество материала, из которого она построена, соответственно, увеличивается.

Нуклеоид


Нуклеоид – это прокариот, в котором хранится вся наследственная информация бактериальной клетки. Нуклеоид располагается в центральной части бактерии. По своим свойствам он эквивалентен ядру.

Нуклеоид – это одна, замкнутая в кольцо, молекула ДНК. Длина молекулы составляет 1 мм, а объем информации – около 1000 признаков.

Нуклеоид является главным носителем материала о свойствах бактерии и основным фактором передачи этих свойств потомству. Нуклеоид в клетках бактерий не имеет ядрышка, мембраны и основных белков.

Цитоплазма


Цитоплазма – водный раствор, включающий следующие компоненты: минеральные соединения, питательные вещества, белки, углеводы и липиды. Соотношение данных веществ зависит от возраста и типа бактерий.

В цитоплазму входят различные структурные компоненты : рибосомы, гранулы и мезосомы.

  • Рибосомы отвечают за синтез белка. Их химический состав включает молекулы РНК и белок.
  • Мезосомы участвуют в образовании спор и размножении клеток. Могут иметь форму пузырька, петли, трубочки.
  • Гранулы служат дополнительным ресурсом энергии для бактериальных клеток. Эти элементы бывают разнообразных форм. В их составе представлены полисахариды, крахмал, капельки жира.

Капсула


Капсула – это слизистая структура, крепко связанная с клеточной стенкой. Исследуя ее под световым микроскопом, можно заметить, что капсула обволакивает клетку и ее внешние границы имеют четко очерченный контур. В бактериальной клетке капсула служит защитным барьером от фагов (вирусов).

Бактерии формируют капсулу, когда условия внешней среды становятся агрессивными. Капсула включает в свой состав в основном полисахариды, а также в определенных случаях в ней может содержаться клетчатка, гликопротеины, полипептиды.

Основные функции капсулы:

    • адгезия с клетками в организме человека. Например, стрептококки слипаются с эмалью зубов и в союзе с другими микробами провоцируют появление кариеса;
    • защита от негативных условий окружающей среды: токсических веществ, механических повреждений, повышенного уровня кислорода;
    • участие в водном обмене (защита клетки от высыхания);
    • создание дополнительной осмотической преграды.

Капсула формирует 2 слоя:

  • внутренний – часть слоя цитоплазмы;
  • наружный – результат выделительной функции бактерии.

В основу классификации легли особенности строения капсул. Они бывают:

  • нормальные;
  • сложные капсулы;
  • с поперечно-полосатыми фибриллами;
  • прерывистые капсулы.

Некоторые бактерии образуют также микрокапсулу, которая представляет собой слизистое образование. Выявить микрокапсулу можно только под электронным микроскопом, поскольку толщина этого элемента всего 0,2 мкм или даже меньше.

Жгутики


Большинство бактерий имеют поверхностные структуры клетки, которые обеспечивают ее подвижность и передвижение – жгутики. Это длинные отростки в форме левозакрученной спирали, построенные из флагеллина (сократительный белок).

Основная функция жгутиков заключается в том, что они позволяют бактерии передвигаться в жидкой среде в поисках более благоприятных условий. Количество жгутиков в одной клетке может варьироваться: от одного до нескольких жгутиков, жгутиков на всей поверхности клетки или только на одном из ее полюсов.

Существует несколько разновидностей бактерий в зависимости от количества в них жгутиков:

  • Монотрихи – у них имеется только один жгутик.
  • Лофотрихи – имеют определенное количество жгутиков на одном конце бактерии.
  • Амфитрихи – характеризуются наличием жгутиков на полярно противоположных полюсах.
  • Перитрихи – жгутики располагаются по всей поверхности бактерии, им характерно медленно и плавное движение.
  • Атрихи – жгутики отсутствуют.

Жгутики совершают двигательную активность, совершая вращательные движения. Если у бактерий нет жгутиков – она все равно в состоянии перемещаться, а точнее скользить при помощи слизи на поверхности клетки.

Плазмиды


Плазмиды представляют собой небольшие мобильные молекулы ДНК, отдельные от хромосомных факторов наследственности. Эти компоненты обычно содержат генетический материал, повышающий невосприимчивость бактерии к антибиотикам.

Могут передавать свои свойства от одного микроорганизма к другим. Несмотря на все свои особенности, плазмиды не выступают в качестве важных элементов для жизнедеятельности бактериальной клетки.

Пили, ворсинки, фимбрии


Эти структуры локализуются на поверхностях бактерий. Насчитывают от двух единиц до нескольких тысяч на одну клетку. Эти структурные элементы имеет как бактериальная подвижная клетка, так и неподвижная, поскольку они не оказывают никакого влияния на способность передвигаться.

В количественном отношении, пили достигают несколько сотен на одну бактерию. Существуют пили, которые отвечают за питание, водно-солевой обмен, а также конъюгационные (половые) пили.

Ворсинкам характерна полая цилиндрическая форма. Именно через эти структуры в бактерию проникают вирусы.

Ворсинки не считаются обязательными компонентами бактерии, так как и без них может успешно совершаться процесс деления и роста.

Фимбрии располагаются, как правило, на одном конце клетки. Эти структуры позволяют микроорганизму фиксироваться в тканях организма. Некоторые фимбрии имеют особые белки, контактирующие с рецепторными окончаниями клеток.

Фимбрии отличаются от жгутиков тем, что они толще и короче, а также не реализуют функцию движения.

Споры


Споры образуются в случае негативных физических или химических манипуляций над бактерией (в результате высушивания или нехватки питательных веществ). Они разнообразны по размеру спор, так как у различных клеток они могут быть совершенно разным. Различается также и форма спор – они бывают овальными или шаровидными.

По местоположению в клетке споры подразделяются на:

  • центральные – их положение в самом центре, как например, у сибиреязвенной палочки;
  • субтерминальные – располагаются на конце палочки, придавая форму булавы (у возбудителя газовой гангрены).

В благоприятной среде жизненный цикл спор включает следующие этапы:

  • подготовительный этап;
  • этап активации;
  • этап инициации;
  • этап прорастания.

Споры отличаются особой живучестью, которая достигается благодаря своей оболочке. Она многослойна и состоит преимущественно из белка. Повышенная невосприимчивость спор к негативным условиям и внешним воздействиям обеспечивается именно благодаря белкам.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом (рис. 3.4). Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики , пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры .

Рис. 3.4

Клеточная стенка . В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом толстой клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточной стенки (рис. 3.5, 3.7). С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка).


Рис. 3-5-


Рис. 3.6. Фазово-контрастная микроскопия L -форм

В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической (рис. 3.5,3.8). Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид. Липополи- сахарид наружной мембраны состоит из 3 фрагментов: липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (от лат. core - ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельной О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (0-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.


Рис. 3-7 Электронограмма улыратонкого среза клетки листерий - Listeria monocytogenes (по А. А. Авакяну, Л. Н. Кац. И. Б. Павловой). Хорошо выражены цитоплазматическая мембрана, мезосома и нуклеоид в виде светлых зон с фибриллярными, нитевидными структурами ДНК; клеточная стенка - толстая, типичная для грамположительных бактерий


Рис. 3.8. Электронограмма ультратонкого среза клетки бруцелл (Brucella melitensis ). По А. А. Авакяну, Л. Н. Кац, И. Б. Павловой.

Нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК; клеточная стенка - тонкая, типичная для грамотрицательных бактерий

Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нук- леазы, бета-лактамазы) и компоненты транспортных систем.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-фор- мами (рис. З.б). Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами (рис. 3.7). Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.
Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от ЭОБ-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде мета- хроматических гранул. Характерное расположение гранул во лютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки (рис 3.87).

Рис. 3-9 а

Рис. 3-9 б. Мазок из чистой культуры Klebsiella pneumoniae , окраска по Бурри-Гипсу. Видны капсулы - светлые ореолы вокруг палочковидных бактерий


Рис. 3.10. Жгутики и пили кишечной палочки. Электронограмма бактерии, напыленной платинопалладиевым сплавом. Препарат В. С. Тюрина

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка (рис. 3.4, 3.7 и 3.8). Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в
бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности в виде ковалентно замкнутых колец ДНК - так называемые плазмиды (см. рис. 3.4).

Капсула, микрокапсула, слизь. Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала (см. рис. 3.9а). В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь образует темный фон вокруг капсулы (см. рис. 3.9б).
Капсула состоит из полисахаридов (экзополисахаридов), иногда - из полипептидов; например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).

Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде. Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка (рис. 3.10). Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (отflagellum - жгутик), являющегося Н-антигеном. Субъединицы флагеллина закручены в виде спирали. Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др.


Рис. 3.11. Электронограмма ультратонкого среза столбнячной палочки (Clostridium tetani ) в вегетативной клетке бактерии формируется терминальная спора с многослойной оболочкой. (По А. А. Авакяну, Л. Н. Кац, И. Б. Павловой)

Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10 нм х 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, т. е. за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водно-солевой обмен и половые (F-пили), или конъюгационные, пили. Пили многочисленны - несколько сотен на клетку.

Однако половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми «мужскими» клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col- плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми «мужскими» сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях (рис. 3.10).

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка - в синий цвет (см. рис. 3.2, бациллы, клостридии).
Форма спор может быть овальной, шаровидной; расположение в клетке - терминальное, т. е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки (рис. 3.11), дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В благоприятных условиях споры прорастают, проходя 3 последовательные стадии: активация, инициация, прорастание.

Строение и химический состав бактериальной
клетки

Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.
Клеточная стенка. Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой (рис. 2, 14). Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки.
Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.
Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.
Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид,

мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот,- аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.

Составные части клеточной стенки, ее компоненты, образуют сложную прочную структуру (рис. 3, 4 и 5).
С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на две группы: грамположительные и
грамотрицательные . Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.
Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен.
У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты
(сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено.
Вероятно, все эти вещества очень плотно связаны между собой.
Стенки грамотрицательных бактерий более сложные по химическому составу, в них содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий.
Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные (рис.
6).

Внутренний слой состоит из муреина. Над ним находится более широкий слой из неплотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.
Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.
Капсула. Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой (рис. 7). Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.
Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.
По химическому составу капсулы чаще всего представляют собой полисахариды.
Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).
Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.
Цитоплазма. Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной (рис.
2, 15).
Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.
Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.
Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы.
Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок.
Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.
На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя
(липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину
20-30А. Такая мембрана называется элементарной (табл. 30, рис. 8).

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов
- мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные
мезосомами. Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы (рис. 2). Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий.
После впячивания цитоплазмы мембрана продолжает расти и образует стопки (табл. 30), которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты
(цитохромы), осуществляющие процесс фотосинтеза.

,
В цитоплазме бактерий содержатся рибосомы- белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.
Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров.
Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.
У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты).
Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.
Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.
В результате наличияв цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже - 4-8 атм.
Ядерный аппарат. В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислот а (ДНК).

,
У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог -
«ядерный эквивалент» - нуклеоид (см. рис. 2, 8), который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре - ядре. Ядро окружено оболочкой- мембраной .

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклеоиде расположена в виде пучка фибрилл.
Жгутики. На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.
Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков.
У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности и т. д. (рис. 9). Жгутики бактерий имеют диаметр
0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики Состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.

На поверхности некоторых бактериальных клеток имеются тонкие ворсинки -
фимбрии .
Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный
редактор чл.-кор. АН СССР, проф. А.А. Федоров. 1974

  • Строение и химический состав бактериальной клетки

Каталог: documents
documents -> Фонограммы как доказательства по гражданским делам
documents -> Примерная программа профессионального модуля
documents -> Умеренные когнитивные нарушения у больных с сосудистым поражением головного мозга 14. 01. 11 нервные болезни
documents -> Учебное пособие для самостоятельной подготовки студентов специальной медицинской группы по освоению теоретического раздела дисциплины «Физическая культура»
documents -> Программа «Счастливое материнство с желанным ребёнком»
documents -> Новая информация из раздела безопасности использования лекарственного средства
documents -> Федеральные клинические рекомендации по диагностике и лечению синдрома зависимости

ЦИТОПЛАЗМА (ЦП)

Участвуют в спорообразовании.

МЕЗОСОМЫ

При избыточном росте, по сравнению с ростом КС, ЦПМ образует инвагинаты (впячивания) - мезосомы. Мезосомы - центр энергетического метаболизма прокариотической клетки. Мезосомы являются аналогами митохондрий эукариот, но устроены проще.

Хорошо развитые и сложно организованные мезосомы характерны для Грам+ бактерий.

Клеточная стенка бактерий

У Грам- бактерий мезосомы встречаются реже и просто организованы (в форме петли). Полиморфизм мезосом отмечается даже у одного и того же вида бактерий. У риккетсий мезосомы отсутствуют.

Мезосомы различаются по размеру, форме и локализации в клетке.

По форме различают мезосомы:

– — ламеллярные (пластинчатые),

– — везикулярные (имеющие форму пузырьков),

– — тубулярные (трубчатые),

– — смешанные.

По расположению в клетке различают мезосомы:

– — образующиеся в зоне клеточного деления и формирования поперечной перегородки,

– — к которым прикреплен нуклеоид;

– — сформированные в результате инвагинации периферических участков ЦПМ.

Функции мезосом:

1. Усиливают энергетический метаболизм клеток, так как увеличивают общую «рабочую» поверхность мембран.

2. Участвуют в секреторных процессах (у некоторых Грам+ бактерий).

3. Участвуют вклеточном делении. При размножении нуклеоид движется к мезосоме, получает энергию, удваивается и делится амитозом.

Выявление мезосом:

1. Электронная микроскопия.

Строение. Цитоплазма (протоплазма)-содержимое клетки, окруженное ЦПМ и занимающее основной объем бактериальной клетки. ЦП является внутренней средой клетки и представляет собой сложную коллоидную систему, состоящую из воды (около 75%) и различных органических соединений (белков, РНК и ДНК, липидов, углеводов, минеральных веществ).

Располагающийся под ЦПМ слой протоплазмы более плотный, чем остальная масса в центре клетки. Фракция цитоплазмы, имеющая гомогенную консистенцию и содержащая набор растворимых РНК, ферментных белков, продуктов и субстратов метаболических реакций, получила название цитозоля. Другая часть цитоплазмы представлена разнообразными структурными элементами: нуклеоидом, плазмидами, рибосомами и включениями.

Функции цитоплазмы:

1. Содержит клеточные органеллы.

Выявление цитоплазмы:

1. Электронная микроскопия.

Строение. Нуклеоид - эквивалент ядра эукариот, хотя отличается от него по своей структуре и химическо-му составу. Нуклеоид не отделен от ЦП ядерной мембраной, не имеет ядрышек и гистонов, содержит одну хромосому, имеет гаплоидный (одиночный) набор генов, не способен к митотическому делению.

Нуклеоид расположен в центре бактериальной клетки, содержит двунитевую молекулу ДНК, небольшое количество РНК и белков. У большинства бактерий двунитевая молекула ДНК диаметром около 2 нм, длиной около 1 м с молекулярной массой 1–3х109 Да замкнута в кольцо и плотно уложена наподобие клубка. У микоплазм молекулярная масса ДНК наименьшая для клеточных организмов (0,4–0,8×109 Да).

ДНК прокариот построена так же, как и у эукариот (рис. 25).

Рис. 25. Строение ДНК прокариот:

А - фрагмент нити ДНК, образованной чередующимися остатками дезоксирибозы и фосфорной кислоты. К первому углеродному атому дезоксирибозы присоединено азотистое основание: 1 - цитозин; 2 - гуанин.

Б - двойная спираль ДНК: Д - дезоксирибоза; Ф - фосфат; А - аденин; Т - тимин; Г - гуанин; Ц - цитозин

Молекула ДНК несет множество отрицательных зарядов, так как каждый фосфатный остаток содержит ионизированную гидроксильную группу. У эукариот отрицательные заряды нейтрализуются образованием комплекса ДНК с основными белками - гистонами. В клетках прокариот гистонов нет, поэтому нейтрализация зарядов осуществляется взаимодействием ДНК с полиаминами и ионами Mg2+.

По аналогии с хромосомами эукариот бакте-риальная ДНК часто обозначается как хромосома. Она представлена в клетке в единственном числе, поскольку бактерии являются гаплоидными. Однако перед делени-ем клетки число нуклеоидов удваивается, а во время деления уве-личивается до 4 и более. Поэтому термины «нуклеоид» и «хромосома» не всегда совпадают. При действии на клетки определенных факторов (температуры, pH среды, ионизирующего излучения, солей тяжелых металлов, некоторых антибиотиков и др.) происходит образование множества копий хромосомы. При устранении воздействия этих факторов, а также после перехода в стационарную фазу в клетках обнаруживается по одной копии хромосомы.

Длительное время считали, что в распределении нитей ДНК бактериальной хромосомы не прослеживается никакой закономерности. Специальные исследования показали, что хромосомы прокариот - высокоупорядоченная структура. Часть ДНК в этой структуре представлена системой из 20–100 независимо суперспирализованных петель. Суперспирализованные петли соответствуют неактивным в данное время участкам ДНК и находятся в центре нуклеоида. По периферии нуклеоида располагаются деспирализованные участки, на которых происходит синтез информационной РНК (иРНК). Поскольку у бактерий процессы транскрипции и трансляции идут одновременно, одна и та же молекула иРНК может быть одновременно связана с ДНК и рибосомами.

Кроме нуклеоида в цитоплазме бактериальной клетки могут находиться плазмиды - факторы внехромосомной наследственности в виде дополнительных автономных кольцевых молекул двунитевой ДНК с меньшей молекулярной мас-сой. В плазмидах также закодирована наследственная информация, однако она не является жизненно необходимой для бактериальной клетки.

Функции нуклеиода:

1. Хранение и передача наследственной информации, в том числе о синтезе факторов патогенности.

Выявление нуклеоида:

1. Электронная микроскопия: на электронограммах ультратонких срезов нуклеоид имеет вид светлых зон меньшей оптической плотности с фибриллярными, нитевидными структурами ДНК (рис. 26). Несмотря на отсутствие ядерной мембраны, нуклеоид довольно четко отграничен от цитоплазмы.

2. Фазово-контрастная микроскопия нативных препаратов.

3. Световая микроскопия после окраски специфическими для ДНК методами по Фельгену, по Пашкову или по Романовскому-Гимза:

– препарат фиксируют метиловым спиртом;

– на фиксированный препарат наливают краситель Романовского-Гимза (смесь равных частей трех красок - азура, эозина и метиленового синего, растворенных в метаноле) на 24 часа;

– краску сливают, промывают препарат дистиллированной водой, высушивают и микроскопируют: нуклеоид окрашивается в фиолетовый цвет и располагается диффузно в цитоплазме, окрашенной в бледно-розовый цвет.

Читайте также:

Особенности химического состава клеток бактерий

Структура бактериальной клетки. Основные отличия прокариотов и эукариотов. Функции отдельных структурных элементов бактериальной клетки. Особенности химического состава клеточных стенок грамположительных и грамотрицательных бактерий.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.
Отличия по строению клетки
1) У прокариот нет ядра, а у эукариот есть.
2) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот, кроме рибосом (крупных, 80S), имеется множество других органоидов: митохондрии, ЭПС, клеточный центр, и т.д.
3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.
1) У прокариот ДНК кольцевая, а у эукариот линейная
2) У прокариот ДНК голая, почти не соединена с белками, а у эукариот ДНК соединена с белками в соотношении 50/50, образуется хромосома
3) У прокариот ДНК лежит в специальной области цитоплазмы, которая называется нуклеоид, а у эукариот ДНК лежит в ядре.
Постоянные компоненты бактериальной клетки.
Нуклеоид – эквивалент ядра прокариот
Клеточная стенка – отличается у Гр+ и Гр – бактерий. Определяет и сохраняет постоянную форму, обеспечивает связь с внешней средой, определяет антигенную специфичность бактерий, обладает важными иммуноспецифическими свойствами; нарушение синтеза клеточной стенки ведет к образованию L-форм бактерий.
Гр+ : такая окраска связана с содержанием в КС тейховыми и дипотейхоевыми кислотами, которые пронизывают его насквозь и закрепляют в цитоплазме. Пептидогликан толстый, состоит плазматической мембраны, связанной бета-гликозидными связями.
Гр -: тонкий слой пептидогликанов, нарудная мембрана представлена липополисахаридными гликокопротеинами, гликолипидами.
ЦПМ – состоит из липопротеинов. Воспринимает всю химическую информацию, поступающую в клетку. Является основным барьером. Участвует процессе репликации нуклеоида и плазмид; содержит большое количество ферментов; Участвует в синтезе компонентов клеточной стенки.
Мезосомы – аналоги митохондрий в бактериальной клетке
Рибосомы 70S - многочисленные мелкие гранулы, располагающиеся в в цитоплазме.
НЕПОСТОЯННЫЕ:
Жгутики: состоят из белка флагеллина, берут начало от ЦПМ, основная функция -двигательная.
Пили: за счет них идет прикрепление к клетке-хозяину
Плазмиды. Капсула, Споры, Включения.

Основная статья: Надмембранный комплекс

Надмембранный аппаратбактерий представлены клеточ-ной стенкой, специфика организации которой служит основой для подразделения их на две нетаксономические группы (грамположительные и грамотрицательные формы) и коррелирует с очень большим числом морфофункциональных, метаболических и генетических признаков. Клеточная стенка прокариот явля-ется по существу полифункциональным органоидом, выведен-ным за пределы протопласта и несущим значительную долю метаболической нагрузки клетки.

Клеточная стенка грамположительных бактерий

Строение клеточной стенки

У грамположительных бактерий (рис. 12, А) клеточная стенка устроена в целом более просто. Наружные слои клеточной стенки образованы белком в комплексе с липидами. У некоторых видов бактерий сравнительно недавно обнаружен слой поверхностных белковых глобул, форма, размер и характер расположения которых спе-цифичны для вида. Внутри клеточной стенки, а также непо-средственно на ее поверхности помещаются ферменты, расщеп-ляющие субстраты до низкомолекулярных компонентов, кото-рые в дальнейшем транспортируются через цитоплазматиче-скую мембрану внутрь клетки. Здесь же находятся ферменты, синтезирующие внеклеточные полимеры, например капсульные полисахариды.

Полисахаридная капсула

Полисахаридная капсула, снаружи обволаки-вающая клеточную стенку ряда бактерий, имеет в основном частноприспособительное значение, и ее присутствие не обяза-тельно для сохранения жизнедеятельности клетки. Так, она обеспечивает прикрепление клеток к поверхности плотных суб-стратов, аккумулирует некоторые минеральные вещества и у патогенных форм препятствует их фагоцитированию.

Муреин

Непосредственно к цито-плазматической мембране прилегает жесткий муреиновый слой.

Муреин, или пептидогликан, является сополимером ацетилглюкозамина и ацетилмурамовой кислоты с поперечными олиго- пептидными сшивками. Не исключено, что муреиновый слой представляет собой одну гигантскую молекулу-мешок, обеспе-чивающую ригидность клеточной стенки и ее индивидуальную форму.

Тейхоевые кислоты

В тесном контакте с муреиновым слоем находится вто-рой полимер стенки грамположительных бактерий — тейхоевые кислоты. Им приписывается роль аккумулятора катионов и регулятора ионного обмена между клеткой и окружающей сре-дой.

Клеточная стенка грамотрицательных бактерий

Строение клеточной стенки

По сравнению с грамположительными формам, клеточная стенка грамотрицательных бактерий более сложно устроена и ее физиологическое значение несравненно шире. Помимо муреинового слоя ближе к поверхности располагается вторая белко-во-липидная мембрана (рис. 12,Б,В), в состав которой входят липополисахариды. Она ковалентно связана с муреином сшив-ками из молекул липопротеида. Основная функция этой мем-браны — роль молекулярного сита, кроме того, на ее наруж-ной и внутренней поверхностях находятся ферменты.

3.Строение бактериальной клетки.

Пространство, ограниченное наружной и цитоплазматиче-ской мембранами, носит название периплазматического и яв-ляется уникальной принадлежностью грамотрицательных бак-терий. В его объеме локализуется целый набор ферментов — фосфатаз, гидролаз, нуклеаз и т. д. Они расщепляют сравни-тельно высокомолекулярные питательные субстраты, а также разрушают собственный клеточный материал, выделяемый в окружающую среду из цитоплазмы. В известной степени периплазматическое пространство можно уподобить лизосоме эука-риот. В зоне периплазмы оказывается возможным не только максимально эффективное протекание энзиматических реакций, но и изоляция от цитоплазмы соединений, представляющих угрозу для ее нормального функционирования. Материал с сайта http://wiki-med.com

Функции клеточной стенки бактерий

Как у грамположительных, так и у грамотрицательных форм клеточная стенка играет роль молекулярного сита, изби-рательно осуществляя пассивный транспорт ионов, субстратов и метаболитов. У бактерий, обладающих способностью к актив-ному движению за счет жгутиков, клеточная стенка является компонентом локомоторного механизма. Наконец, отдельные участки клеточной стенки тесно ассоциированы с цитоплазма-тической мембраной в зоне прикрепления нуклеоида и играют важную роль в его репликации и сегрегации.

У одного из видов бактерий процесс разрушения старой клеточной оболочки, происходящий при делении кле-ток, обеспечивается работой по крайней мере четырех систем гидролитических ферментов, присутствующих в клеточной стен-ке в латентном состоянии. При делении клеток осуществляется закономерная и строго последовательная по времени активация этих систем, приводящая к постепенному разрушению и слущиванию старой («материнской») оболочки бактериальной клетки.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам:

  • .основным компонентом клеточной стенки грамположительных бактерий является

  • клеточных стенок бактерий функции

  • особенности структуры клеточной стенки бактерий

  • клеточная стенка строение

  • характеристика клеточной стенки бактерий

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А — консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core - ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты — бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым — промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) — консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК — в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин).

Клеточная стенка

Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности — плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула — слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь — мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков — у грамположительных и 2 пары дисков — у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка — флагеллина (от flagellum — жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили

Пили (фимбрии, ворсинки) — нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны — несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры — своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium — веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное — ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Бактерии: места обитания, строение, процессы жизнедеятельности, значение

2. б) Строение бактериальной клетки

Клеточная стенка бактерий определяет их форму и обеспечивает сохранение внутреннего содержимого клетки. По особенностям химического состава и структуры клеточной стенки бактерии дифференцируют с помощью окрашивания по грамму…

Биополимеры бактериальной клеточной стенки

Строение бактериальной клетки

Структуру бактерий изучают с помощью электронной микроскопии целых клеток и их ультрафиолетовых срезов. Основными структурами бактериальной клетки являются: клеточная стенка, цитоплазматическая мембрана, цитоплазма с включениями и ядро…

Гуморальная регуляция организма

3. Особенности строения, свойства и функции клеточных мембран

Многообразие живых клеток

1.1 Общий план строения эукариотических клеток, также характеризующий строение животной клетки

Клетка — структурно-функциональная единица живого. Для всех эукариотических клеток характерно наличие следующих структур: 1) Клеточная мембрана — это органоид, ограничивающий содержимое клетки от окружающей среды…

Многообразие живых клеток

1.2 Особенности строения растительной клетки

В растительных клетках встречаются органоиды, которые характерны и для животных, например, ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи (см. рис 2). В них отсутствует клеточный центр, а функцию лизосом выполняют вакуоли…

Многообразие живых клеток

1.3 Особенности строения грибной клетки

У большинства грибов клетка по своему строению и выполняемым ею функциям в целом аналогична клетке растений. Она состоит из твердой оболочки и внутреннего содержимого, представляющего собой цитоплазматическую систему…

Многообразие живых клеток

1.4 Общий план строения прокариотических клеток, также характеризующий строение бактериальной клетки

Прокариотическая клетка устроена следующим образом. Главная особенность этих клеток — это отсутствие морфологически выраженного ядра, но имеется зона, в которой расположена ДНК (нуклеоид).

Структура бактериальной клетки

В цитоплазме расположены рибосомы…

Основы микробиологии

1. Охарактеризуйте строение бактериальной клетки. Зарисуйте органеллы клетки

К бактериям относятся микроскопические растительные организмы. Большинство их — одноклеточные организмы, не содержащие хлорофилла и размножающиеся делением. По форме бактерии бывают шаровидными, палочковидными и извитыми…

Особенности зрительной и слуховой сенсорных систем

13. Простые, сложные и сверхсложные клетки и их функции

"Простые" и "сложные" клетки. Нейроны, отвечающие на простые линейные стимулы (щели, края или темные полосы), получили название "простых", а те, которые отвечают на стимулы сложной конфигурации и на движущиеся стимулы, были названы "сложными"…

Особенности строения клетки

1. Клетка как элементарная структурная единица организма. Основные компоненты клетки

Клетка — основная структурная и функциональная единица жизни, ограниченная полупроницаемой мембраной и способная к самовоспроизведению. В растительной клетке, прежде всего, нужно различать клеточную оболочку и содержимое…

Распространение и динамика численности популяции кабана в Брянской области

1.1 Особенности строения

Кабан (Sus scrofa L.) — массивное животное на невысоких, относительно нетолстых ногах. Туловище сравнительно короткое, передняя часть очень массивная, задняя области лопаток сильно приподнята, шея толстая, короткая, почти неподвижная…

Строение, свойства и функции белков

2. Функции органоидов клетки

Органоиды клетки и их функции: 1. Клеточная оболочка — состоит из 3 слоев: 1. жесткая клеточная стенка; 2. тонкий слой пектиновых веществ; 3. тонкая цитоплазматическая нить. Клеточная оболочка обеспечивает механическую опору и защиту…

4.1 Особенности строения

Таллом представляет собой плазмодий, способный к амебообразным движениям по поверхности или внутри субстрата. При половом размножении плазмодии превращаются в плодовые тела, называемые спорокарпами…

Таксономическая группа слизевиков

5.1 Особенности строения

Вегетативное тело в виде многоядерного протопласта, не способного к самостоятельному движению и находящегося внутри клетки растенияхозяина. Специальные спороношения не образуются. Зимующая стадия представлена спорами…

Энергетическая система клетки. Классификация мышечной ткани. Строение сперматозоида

Энергетическая система клетки. Общий план строения митохондрий и пластид, их функции. Гипотеза о симбиотическом происхождении митохондрий и хлоропластов

В эукариотических клетках есть уникальная органелла, митохондрия, в которой в процессе окислительного фосфорилирования образуются молекулы АТФ. Часто говорят, что митохондрии являются энергетическими станциями клетки (рисунок 1)…

СТРОЕНИЕ БАКТЕРИАЛЬНОЙ КЛЕТКИ

Структурными компонентами клетки являются оболочка бактерий, состоящая из клеточной стенки, цитоплазматической мембраны и иногда капсулы; цитоплазма; рибосомы; различные цитоплазматические включения; нуклеоид (ядро). Некоторые виды бактерий имеют, кроме того, споры, жгутики, реснички (пили, фимбрии) (рис. 2).

Клеточная стенка обязательное образование бактерий большинства видов. Ее строение зависит от вида и принадлежности
бактерий к группам, дифференцируемым при окраске по методу Грама. Масса клеточной стенки составляет около 20 % сухой массы всей клетки, толщина – от 15 до 80 нм.

Рис. 3. Схема строения бактериальной клетки

1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - цитоплазма; 5 - мезосомы; 6 - рибосомы; 7 - нуклеоид; 8 - внутрицитоплазматические мембранные образования; 9 - жировые кап­ли; 10 - полисахаридные гранулы; 11 - гранулы по­лифосфата; 12 -- включения серы; 13 - жгутики; 14 - базальное тельце

Клеточная стенка имеет поры диаметром до 1 нм, поэтому она – полупроницаемая мембрана, через которую проникают питательные вещества и выделяются продукты обмена.

Эти вещества могут проникать внутрь микробной клетки лишь после предварительного гидролитического расщепления специфическими ферментами, выделяемыми бактериями во внешнюю среду.

Химический состав клеточной стенки неоднороден, но он является постоянным для определенного вида бактерий, что используется при идентификации. В составе клеточной стенки обнаружены азотистые соединения, липиды, целлюлоза, полисахариды, пектиновые вещества.

Наиболее важным химическим компонентом клеточной стенки является сложный полисахаридпептид. Его еще называют пептидогликан, гликопептид, муреин (от лат. murus – стенка).

Муреин представляет собой структурный полимер, состоящий из молекул гликана, образованных ацетилглюкозамином и ацетилмурамовой кислотой. Синтез его осуществляется в цитоплазме на уровне цитоплазматической мембраны.

Пептидогликан клеточной стенки различных видов имеет специфический аминокислотный состав и в зависимости от этого определенный хемотип, что учитывают при идентификации молочнокислых и других бактерий.

В клеточной стенке грамотрицательных бактерий пептидогликан представлен одним слоем, тогда как в стенке грамположительных бактерий он формирует несколько слоев.

В 1884 г. Gram предложил метод окраски ткани, который использовали для окрашивания клеток прокариот. Если при окраске по Граму фиксированные клетки обработать спиртовым раствором краски кристаллического фиолетового, а затем раствором йода, то эти вещества образуют с муреином устойчивый окрашенный комплекс.

У гоамположительных микроорганизмов окрашенный фиолетовый комплекс под воздействием этанола не растворяется и соответственно не обесцвечивается, при докрашивании фуксином (краска красного цвета) клетки остаются окрашенными в темно-фиолетовый цвет.

У грамотрицательных видов микроорганизмов генцианвиолет растворяется этанолом и вымывается водой, а при докрашивании фуксином клетка окрашивается в красный цвет.

Способность микроорганизмов окрашиваться аналиновыми красителями и по методу Грама называют тинкториальными свойствами . Их необходимо изучать в молодых (18-24 часовых) культурах, так как некоторые грамположительные бактерии в старых культурах теряют способность положительно окрашиваться по методу Грама.

Значение пептидогликана заключается в том, что благодаря ему клеточная стенка обладает ригидностью, т.е. упругостью, и является защитным каркасом бактериальной клетки.

При разрушении пептидогликана, например, под действием лизоцима клеточная стенка теряет ригидность и разрушается. Содержимое клетки (цитоплазма) вместе с цитоплазматической мембраной приобретает сферическую форму, т. е. становится протопластом (сферопластом).

С клеточной стенкой связаны многие как синтезирующие, так и разрушающие ферменты. Компоненты клеточной стенки синтезируются в цитоплазматической мембране, а затем транспортируются в клеточную стенку.

Цитоплазматическая мембрана располагается под клеточной стенкой и плотно прилегает к ее внутренней поверхности. Она представляет собой полупроницаемую оболочку, окружающую цитоплазму и внутреннее содержимое клетки -протопласт. Цитоплазматическая мембрана – это уплотненный наружный слой цитоплазмы.

Цитоплазматическая мембрана является главным барьером между цитоплазмой и окружающей средой, нарушение ее целостности приводит к гибели клетки. В ее состав входят белки (50-75 %), липиды (15-45 %), у многих видов – углеводы (1-19 %).

Главным липидным компонентом мембраны являются фосфо- и гликолипиды.

Цитоплазматическая мембрана при помощи локализованных в ней ферментов осуществляет разнообразные функции: синтезирует мембранные липиды – компоненты клеточной стенки; мембранные ферменты – избирательно переносят через мембрану различные органические и неорганические молекулы и ионы, мембрана участвует в превращениях клеточной энергии, а также в репликации хромосом, в переносе электрохимической энергии и электронов.

Таким образом, цитоплазматическая мембрана обеспечивает избирательное поступление в клетку и удаление из нее разнообразных веществ и ионов.

Производными цитоплазматической мембраны являются мезосомы . Это сферические структуры, образуемые при закручивании мембраны в завиток. Они располагаются с двух сторон – в месте образования клеточной перегородки или рядом с зоной локализации ядерной ДНК.

Мезосомы функционально эквивалентны митохондриям клеток высших организмов. Они участвуют в окислительно-восстановительных реакциях бактерий, играют важную роль в синтезе органических веществ, в формировании клеточной стенки.

Капсула является производным наружного слоя клеточной сгонки и представляет собой слизистую оболочку, окружающую одну или несколько микробных клеток. Толщина ее может достигать 10 мкм, что во много раз превышает толщину самой бактерии.

Капсула выполняет защитную функцию. Химический состав капсулы бактерий различен. В большинстве случаев она состоит из сложных полисахаридов, мукополисахаридов, иногда полипептидов.

Капсулообразование, как правило, является видовым признаком. Однако появление микрокапсулы часто зависит от условий культивирования бактерий.

Цитоплазма – сложная коллоидная система с содержанием большого количества воды (80-85 %), в которой диспергированы белки, углеводы, липиды, а также минеральные соединения и другие вещества.

Цитоплазма представляет собой содержимое клетки, окруженное цитоплазматической мембраной. Ее подразделяют на две функциональные части.

Одна часть цитоплазмы находится в состоянии золя (раствора), имеет гомогенную структуру и содержит набор растворимых рибонуклеиновых кислот, белков-ферментов и продуктов метаболизма.

Другая часть представлена рибосомами, включениями различной химической природы, генетическим аппаратом, другими внутрицитоплазма-тическими структурами.

Рибосомы – это субмикроскопические гранулы, представляющие собой нуклеопротеиновые частицы сферической формы диаметром от 10 до 20 нм, молекулярной массой около 2-4 млн.

Рибосомы прокариот состоят из 60 % РНК (рибонуклеиновой кислоты), располагающейся в центре, и 40 % белка, покрывающего нуклеиновую кислоту снаружи.

Включения цитоплазмы представляют собой продукты обмена, а также резервные продукты, за счет которых клетка живет в условиях недостатка питательных веществ.

Генетический материал прокариот состоит из двойной нити дезоксирибонуклеиновой кислоты (ДНК) компактной структуры, расположенной в центральной части цитоплазмы и не отделенной от нее мембраной. ДНК бактерий по строению не отличается от ДНК эукариот, но так как она не отделена от цитоплазмы мембраной, генетический материал называют нуклеоидом или генофором . Ядерные структуры имеют сферическую или подковообразную форму.

Споры бактерий являются покоящейся, не размножающейся их формой. Они формируются внутри клетки, представляют собой образования круглой или овальной формы. Споры образуют преимущественно грамположительные бактерии, палочковидной формы с аэробным и анаэробным типом дыхания в старых культурах, а также в неблагоприятных условиях внешней среды (недостаток питательных веществ и влаги, накопление продуктов обмена в среде, изменение рН и температуры культивирования, наличие или отсутствие кислорода воздуха и др.) могут переключаться на альтернативную программу развития, в результате чего образуются споры. При этом в клетке образуется одна спора. Это свидетельствует о том, что спорообразование у бактерий является приспособлением для сохранения вида (индивидуума) и не является способом их размножения. Процесс спорообразования происходит, как правило, во внешней среде в течение 18-24 ч.

Зрелая спора составляет примерно 0,1 объема материнской клетки. Споры у разных бактерий различаются по форме, размеру, расположению в клетке.

Микроорганизмы, у которых диаметр споры не превышает ширины вегетативной клетки, называют бациллами , бактерии, имеющие споры, диаметр которых больше поперечника клетки в 1,5-2 раза, называют клостридиями .

Внутри микробной клетки спора может располагаться в середине – центральное положение, на конце – терминальное и между центром и концом клетки – субтерминальное расположение.

Жгутики бактерий являются локомоторными органами (органами движения), при помощи которых бактерии могут передвигаться со скоростью до 50-60 мкм/с. При этом за 1 с бактерии перекрывают длину своего тела в 50-100 раз. Длина жгутиков превышает длину бактерий в 5-6 раз. Толщина жгутиков составляет в среднем 12-30 нм.

Число жгутиков, их размеры и расположение постоянны для определенных видов прокариот и поэтому учитываются при их идентификации.

В зависимости от количества и местонахождения жгутиков бактерии подразделяют на монотрихи (монополярные монотрихи) – клетки с одним жгутиком на одном из концов, лофотрихи (монополярные политрихи) – пучок жгутиков располагается на одном из концов, амфитрихи (биполярные политрихи) – жгутики располагаются на каждом из полюсов, перитрихи – жгутики расположены по всей поверхности клетки (рис. 4) и атрихи – бактерии, лишенные жгутиков.

Характер движения бактерий зависит от числа жгутиков, возраста, особенностей культуры, температуры, наличия различных химических веществ и других факторов. Наибольшей подвижностью обладают монотрихи.

Жгутики чаще имеются у палочковидных бактерий, они не являются жизненно необходимыми структурами клетки, так как существуют безжгутиковые варианты подвижных видов бактерий.

По мнению ученых, бактериям более 3,5 миллиардов лет. Они существовали на Земле задолго до появления высокоорганизованных организмов. Находясь у истоков жизни, бактериальные организмы получили элементарное строение по прокариотическому типу, характеризующееся отсутствием оформленного ядра и ядерной оболочки. Одним из факторов, повлиявших на формирование их биологических свойств, является оболочка бактерий (клеточная стенка).

Функции внешней стенки

Стенка бактерии призвана выполнять несколько основополагающих функций:

  • быть скелетом бактерии;
  • придавать ей определенную форму;
  • осуществлять связь с внешней средой;
  • защищать от вредных воздействий окружающих факторов;
  • участвовать в делении бактериальной клетки, которая не имеет ядра и ядерной оболочки;
  • удерживать на своей поверхности антигены и различного рода рецепторы (характерно для грамотрицательных бактерий).

У определенных видов бактерий есть наружная капсула, которая отличается прочностью и служит для сохранения целостности микроорганизма длительное время. В таком случае оболочка у бактерий является промежуточной формой между цитоплазмой и капсулой. Некоторые бактерии (например, лейконосток) имеют особенность заключать в одну капсулу несколько клеток. Это называется зоогелем.

Химический состав капсулы характеризуется наличием полисахаридов и большого количества воды. Капсула также может обеспечивать возможность бактерии прикрепиться к определенному объекту.

От того, насколько легко вещество проникает через оболочку, зависит степень его усвояемости бактерией. Большую вероятность проникновения имеют молекулы с длинными участками цепи, обладающими устойчивостью к биодеградации.

Что представляет собой оболочка?

Бактериальная оболочка состоит из липополисахаридов, протеинов, липопротеидов, тейхоевых кислот. Основополагающим компонентом является муреин (пептидогликан).

Толщина клеточной стенки может быть различной и достигать 80 нм. Поверхность – не сплошная, имеет поры различного диаметра, через которые микроб получает питательные вещества и выделяет продукты своей жизнедеятельности.

О значимости наружной стенки свидетельствует её значительный вес – он может колебаться от 10 до 50% сухой массы всей бактерии. Цитоплазма может выпячиваться, меняя внешний рельеф бактерии.

Сверху оболочка может быть покрыта ресничками либо на ней могут располагаться жгутики, которые состоят из флагеллина – специфического вещества белковой природы. Для крепления к бактериальной оболочке у жгутиков есть особые структуры – плоские диски. Бактерии с одним жгутиком называются монотрихами, с двумя – амфитрихами, с пучком – лофотрихами, с множеством пучков – перитрихами. Не имеющие жгутиков микроорганизмы называются атрихиями.

Клеточная оболочка имеет внутреннюю часть, которая начинает формироваться после завершения роста клетки. В отличие от наружной, она состоит из гораздо меньшего количества воды и имеет большую эластичность и прочность.

Процесс синтеза стенок микроорганизмов начинается внутри бактерии. Для этого в ней имеется сеть полисахаридных комплексов, которые чередуются в определенной последовательности (ацетилглюкозамин и ацетилмурамовая кислота) и связываются между собой прочными пептидными связями. Сборка стенки осуществляется снаружи, на плазматической мембране, где оболочка и располагается.

Поскольку бактерия не имеет ядра, то и ядерной оболочки у нее не имеется.

Оболочка представляет собой неокрашенную тонкую структуру, которую без специальной окраски клеток даже невозможно рассмотреть. Для этого используют плазмолиз и затемненное поле зрения.

Окрашивание по Граму

Для изучения подробной структуры клетки в 1884 году Христиан Грам предложил особый способ её окраски, который в последующем был назван его именем. Окраска по Граму делит все микроорганизмы на грамположительные и грамотрицательные. Для каждого вида характерны свои биохимические и биологические свойства. Различная окраска обусловлена и строением клеточной стенки:

  1. Грамположительные бактерии имеют массивную оболочку, которая включает полисахариды, белки и липиды. Она прочная, поры имеют минимальную величину, краска, применяемая для окрашивания, плотно проникает вглубь и практически не вымывается. Такие микроорганизмы приобретают сине-фиолетовый цвет.
  2. Грамотрицательные бактериальные клетки имеют определенные отличия: толщина их стенки меньше, зато оболочка имеет два слоя. Внутренний слой состоит из пептидогликана, который имеет более рыхлую структуру и широкие поры. Краска при окрашивании по Граму легко вымывается этанолом. Клетка при этом обесцвечивается. В дальнейшем методикой предусмотрено добавление контрастного красного красителя, который окрашивает бактерии в красный или розовый цвет.

Удельный вес грамположительных микробов, безвредных для человека, гораздо превышает грамотрицательные. На сегодняшний день классифицировано три группы грамотрицательных микроорганизмов, которые вызывают у человека заболевания:

  • кокки (стрептококки и стафилококки);
  • неспорообразующие формы (коринебактерии и листерии);
  • спорообразующие формы (бациллы, клостридии).

Характеристика периплазматического пространства

Между бактериальной стенкой и мембраной цитоплазмы находится периплазматическое пространство, которое состоит из ферментов. Этот компонент является обязательной структурой, он составляет 10-12% сухой массы бактерии. Если мембрана по какой-то причине разрушается, клетка гибнет. Генетическая информация располагается непосредственно в цитоплазме, не отделяется от неё ядерной оболочкой.

Независимо от того, является микроб грамположительным или грамотрицательным, это осмотический барьер микроорганизма, транспортер органических и неорганических молекул вглубь клетки. Доказана и определенная роль периплазмы в росте микроорганизма.