Свойства функции 2 степени. Степенная функция

Степенная функция, ее свойства и график Демонстрационный материал Урок-лекция Понятие функции. Свойства функции. Степенная функция, ее свойства и график. 10 класс Все права защищены. Copyright с Copyright с




Ход урока: Повторение. Функция. Свойства функций. Изучение нового материала. 1. Определение степенной функции.Определение степенной функции. 2. Свойства и графики степенных функций.Свойства и графики степенных функций. Закрепление изученного материала. Устный счет. Устный счет. Итог урока. Задание на дом.Задание на дом.






Область определения и область значений функции Все значения независимой переменной образуют область определения функции х y=f(x) f Область определения функции Область значений функции Все значения, которые принимает зависимая переменная образуют область значений функции Функция. Свойства функции


График функции Пусть задана функция где хУ у х,75 3 0,6 4 0,5 График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции. Функция. Свойства функции


У х Область определения и область значений функции 4 y=f(x) Область определения функции: Область значений функции: Функция. Свойства функции


Четная функция у х y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется четной, если f(-x) = f(x) для любого х из области определения функции Функция. Свойства функции


Нечетная функция у х y=f(x) График нечетной функции симметричен относительно начала координат О(0;0) Функция у=f(x) называется нечетной, если f(-x) = -f(x) для любого х из области определения функции Функция. Свойства функции


Определение степенной функции Функция, где р – заданное действительное число, называется степенной. р у=х р Р= х у 0 Ход урока








Степенная функция х у 1.Областью определения и областью значений степенных функций вида, где n – натуральное число, являются все действительные числа. 2. Эти функции – нечетные. График их симметричен относительно начала координат. Свойства и графики степенной функции




Степенные функции с рациональным положительным показателем Область определения- все положительные числа и число 0. Область значений функций с таким показателем – также все положительные числа и число 0. Эти функции не являются ни четными ни нечетными. у х Свойства и графики степенной функции


Степенная функция с рациональным отрицательным показателем. Областью определения и областью значений таких функций являются все положительные числа. Функции не являются ни четными ни нечетными. Такие функции убывают на всей своей области определения. у х Свойства и графики степенной функции Ход урока

На данном уроке мы продолжим изучение степенных функций с рациональным показателем, рассмотрим функции с отрицательным рациональным показателем.

1. Основные понятия и определения

Напомним свойства и графики степенных функций с целым отрицательным показателем.

При четных n, :

Пример функции:

Все графики таких функций проходят через две фиксированные точки: (1;1), (-1;1). Особенность функций данного вида - их четность, графики симметричны относительно оси ОУ.

Рис. 1. График функции

При нечетных n, :

Пример функции:

Все графики таких функций проходят через две фиксированные точки: (1;1), (-1;-1). Особенность функций данного вида - их нечетность, графики симметричны относительно начала координат.

Рис. 2. График функции

2. Функция с отрицательным рациональным показателем степени, графики, свойства

Напомним основное определение.

Степенью неотрицательного числа а с рациональным положительным показателем называется число .

Степенью положительного числа а с рациональным отрицательным показателем называется число .

Для выполняется равенство:

Например: ; - выражение не существует по определению степени с отрицательным рациональным показателем; существует, т. к. показатель степени целый,

Перейдем к рассмотрению степенных функций с рациональным отрицательным показателем.

Например:

Для построения графика данной функции можно составить таблицу. Мы поступим иначе: сначала построим и изучим график знаменателя - он нам известен (рисунок 3).

Рис. 3. График функции

График функции знаменателя проходит через фиксированную точку (1;1). При построении графика исходной функции данная точка остается, при корень также стремится к нулю, функция стремится к бесконечности. И, наоборот, при стремлении х к бесконечности функция стремится к нулю (рисунок 4).

Рис. 4. График функции

Рассмотрим еще одну функцию из семейства изучаемых функций.

Важно, что по определению

Рассмотрим график функции, стоящей в знаменателе: , график данной функции нам известен, она возрастает на своей области определения и проходит через точку (1;1) (рисунок 5).

Рис. 5. График функции

При построении графика исходной функции точка (1;1) остается, при корень также стремится к нулю, функция стремится к бесконечности. И, наоборот, при стремлении х к бесконечности функция стремится к нулю (рисунок 6).

Рис. 6. График функции

Рассмотренные примеры помогают понять, каким образом проходит график и каковы свойства изучаемой функции - функции с отрицательным рациональным показателем.

Графики функций данного семейства проходят через точку (1;1), функция убывает на всей области определения.

Область определения функции:

Функция не ограничена сверху, но ограничена снизу. Функция не имеет ни наибольшего, ни наименьшего значения.

Функция непрерывна, принимает все положительные значения от нуля до плюс бесконечности.

Функция выпукла вниз (рисунок 15.7)

На кривой взяты точки А и В, через них проведен отрезок, вся кривая находится ниже отрезка, данное условие выполняется для произвольных двух точек на кривой, следовательно функция выпукла вниз. Рис. 7.

Рис. 7. Выпуклость функции

3. Решение типовых задач

Важно понять, что функции данного семейства ограничены снизу нулем, но наименьшего значения не имеют.

Пример 1 - найти максимум и минимум функции на интервале }