Умножение отрицательных чисел: правило, примеры. Умножение положительных и отрицательных чисел

Теперь давайте разберемся с умножением и делением .

Предположим, нам нужно умножить +3 на -4. Как это сделать?

Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.

Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.

Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом . Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.

А как перемножить два отрицательных числа?

К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.

Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения , сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.

Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.

Положение знака при умножении изменяется таким образом:

  • положительное число х положительное число = положительное число;
  • отрицательное число х положительное число = отрицательное число;
  • положительное число х отрицательное число = отрицательное число;
  • отрицательное число х отрицательное число = положительное число.

Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число . Перемножая два числа с разными знаками, мы получаем отрицательное число .

Такое же правило справедливо и для действия противоположного умножению – для .

Вы легко можете в этом убедиться, проведя обратные операции умножения . Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).

Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока.

Предметные:

  • сформулировать правило умножения отрицательных чисел и чисел с разными знаками,
  • научить учащихся применять это правило.

Метапредметные:

  • формировать умения работать в соответствии с предложенным алгоритмом, составлять план-схему своих действий,
  • развивать навыки самоконтроля.

Личностные:

  • развивать коммуникативные навыки,
  • формировать познавательный интерес учащихся.

Оборудование: компьютер, экран, мультимедийный проектор, презентация PowerPoint, раздаточный материал: таблица для записи правила, тесты.

(Учебник Н.Я. Виленкина “Математика. 6 класс”, М: “Мнемозина”, 2013.)

Ход урока

I. Организационный момент.

Сообщение темы урока и запись темы в тетрадях учащимися.

II. Мотивация.

Слайд № 2. (Цель урока. План урока).

Сегодня мы продолжим изучение важного арифметического свойства – умножения.

Вы уже умеете выполнять умножение натуральных чисел – устно и в столбик,

Научились умножать десятичные и обыкновенные дроби. Сегодня вам предстоит сформулировать правило умножения для отрицательных чисел и чисел с разными знаками. И не только сформулировать, но и научиться применять его.

III. Актуализация знаний.

1) Слайд № 3.

Решить уравнения: а) х: 1,8 = 0,15; б) у: = . (Ученик у доски)

Вывод: для решения подобных уравнений нужно уметь выполнять умножение различных чисел.

2) Проверка домашней самостоятельной работы. Повторение правил умножения десятичных дробей, обыкновенных дробей и смешанных чисел. (Слайды № 4 и № 5).

IV. Формулировка правила.

Рассмотреть задачу 1 (слайд № 6).

Рассмотреть задачу 2 (слайд № 7).

В процессе решения задач нам приходилось выполнять умножение чисел с разными знаками и отрицательных чисел. Рассмотрим подробнее это умножение и его результаты.

Выполнив умножение чисел с разными знаками, мы получили отрицательное число.

Рассмотрим другой пример. Найдите произведение (–2) * 3, заменяя умножение суммой одинаковых слагаемых. Аналогично найдите произведение 3 * (–2). (Проверка - слайд № 8).

Вопросы:

1) Каков знак результата при умножении чисел с разными знаками?

2) Как получен модуль результата? Формулируем правило умножения чисел с разными знаками и записываем правило в левый столбик таблицы. (Слайд № 9 и Приложение 1).

Правило умножения отрицательных чисел и чисел с разными знаками.

Вернёмся ко второй задаче, в которой мы выполняли умножение двух отрицательных чисел. Объяснить по-другому такое умножение довольно трудно.

Воспользуемся объяснением, которое дал ещё в 18 веке великий русский учёный (уроженец Швейцарии), математик и механик Леонард Эйлер. (Леонард Эйлер оставил после себя не только научные труды, но и написал ряд учебников по математике, предназначавшихся воспитанникам академической гимназии).

Итак, Эйлер объяснял результат примерно следующим образом. (Слайд № 10).

Ясно, что –2 · 3 = – 6. Поэтому произведение (–2) · (–3) не может быть равно –6. Однако, оно должно быть как-то связано с числом 6. Остаётся одна возможность: (–2) · (–3) = 6. .

Вопросы:

1) Каков знак произведения?

2) Как получен модуль произведения?

Формулируем правило умножения отрицательных чисел, заполняем правый столбик таблицы. (Слайд № 11).

Чтобы легче запомнить правило знаков при умножении, можно воспользоваться его формулировкой в стихах. (Слайд № 12).

Плюс на минус, умножая,
Ставим минус, не зевая.
Умножим минус с минусом
В ответ поставим плюс!

V. Формирование навыков.

Научимся применять это правило для вычислений. Сегодня на уроке будем производить вычисления только с целыми числами и с десятичными дробями.

1) Составление схемы действий.

Составляется схема применения правила. Делаются записи на доске. Примерная схема на слайде № 13.

2) Выполнение действий по схеме.

Решаем из учебника № 1121(б,в,и,к,п,р). Решение выполняем в соответствии с составленной схемой. Каждый пример поясняет один из учащихся. Одновременно решение демонстрируется на слайде № 14.

3) Работа в парах.

Задание на слайде № 15.

Учащиеся работают по вариантам. Сначала учащийся 1 варианта решает и объясняет решение 2 варианту, учащийся со 2 варианта внимательно слушает, при необходимости помогает и поправляет, а потом учащиеся меняются ролями.

Дополнительное задание для тех пар, которые раньше закончат работу: № 1125.

По окончании работы проводится поверка по готовому решению, размещённому на слайде № 15 (используется анимация).

Если многие успели решить № 1125 , то делается вывод об изменении знака числа при умножении на (?1).

4) Психологическая разгрузка.

5) Самостоятельная работа.

Самостоятельная работа – текст на слайде № 17. После выполнения работы – самопроверка по готовому решению (слайд № 17 – анимация, гиперссылка на слайд № 18).

VI. Проверка уровня усвоения изученного материала. Рефлексия.

Учащиеся выполняют тест. На этом же листочке оценивают свою работу на уроке, заполняя таблицу.

Тест “Правило умножения”. Вариант 1.

1) –13 * 5

А. –75. Б. – 65. В. 65. Г. 650.

2) –5 * (–33)

А. 165. Б. –165. В. 350 Г. –265.

3) –18 * (–9)

А. –162. Б. 180. В. 162. Г. 172.

4) –7 * (–11) * (–1)

А. 77. Б. 0. В.–77. Г. 72.

Тест “Правило умножения”. Вариант 2.

А. 84. Б. 74. В. –84. Г. 90.

2) –15 * (–6)

А. 80. Б. –90. В. 60. Г. 90.

А. 115. Б. –165. В. 165. Г. 0.

4) –6 * (–12) * (–1)

А. 60. Б. –72. В. 72. Г. 54.

VII. Домашнее задание.

П. 35, правила, № 1143 (а – з), № 1145 (в).

Литература.

1) Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. “Математика 6. Учебник для общеобразовательных учреждений”, - М: “Мнемозина”, 2013.

2) Чесноков А.С., Нешков К.И. “Дидактические материалы по математике для 6 класса”, М: “Просвещение”, 2013.

3) Никольский С.М. и др. “Арифметика 6”: учебник для общеобразовательных учреждений, М: “Просвещение”, 2010.

4) Ершова А.П., Голобородько В.В. “Самостоятельные и контрольные работы по математике для 6 класса”. М: “Илекса”, 2010.

5) “365 задач на смекалку”, составитель Г.Голубкова, М: “АСТ-ПРЕСС”, 2006.

6) “Большая энциклопедия Кирилла и Мефодия 2010”, 3 CD.

В этой статье мы разберемся с процессом умножения отрицательных чисел . Сначала сформулируем правило умножения отрицательных чисел и обоснуем его. После этого перейдем к решению характерных примеров.

Навигация по странице.

Сразу озвучим правило умножения отрицательных чисел : чтобы умножить два отрицательных числа, надо перемножить их модули.

Запишем это правило с помощью букв: для любых отрицательных действительных чисел −a и −b (при этом числа a и b – положительные) справедливо равенство (−a)·(−b)=a·b .

Докажем правило умножения отрицательных чисел, то есть, докажем равенство (−a)·(−b)=a·b .

В статье умножение чисел с разными знаками мы обосновали справедливость равенства a·(−b)=−a·b , аналогично показывается, что (−a)·b=−a·b . Эти результаты и свойства противоположных чисел позволяют записать следующие равенства (−a)·(−b)=−(a·(−b))=−(−(a·b))=a·b . Это доказывает правило умножения отрицательных чисел.

Из приведенного правила умножения понятно, что произведение двух отрицательных чисел является положительным числом. Действительно, так как модуль любого числа является положительным, то произведение модулей также является положительным числом.

В заключение этого пункта отметим, что рассмотренное правило можно использовать для умножения действительных чисел, рациональных чисел и целых чисел.

Пришло время разобрать примеры умножения двух отрицательных чисел , при решении будем пользоваться правилом, полученном в предыдущем пункте.

Перемножьте два отрицательных числа −3 и −5 .

Модули умножаемых чисел равны 3 и 5 соответственно. Произведение этих чисел равно 15 (при необходимости смотрите умножение натуральных чисел), таким образом, произведение исходных чисел равно 15 .

Весь процесс умножения исходных отрицательных чисел кратко записывается так: (−3)·(−5)= 3·5=15 .

Умножение отрицательных рациональных чисел с помощью разобранного правила можно свести к умножению обыкновенных дробей, умножению смешанных чисел или умножению десятичных дробей.

Вычислите произведение (−0,125)·(−6) .

По правилу умножения отрицательных чисел имеем (−0,125)·(−6)=0,125·6 . Осталось лишь закончить вычисления, выполним умножение десятичной дроби на натуральное число столбиком:

Наконец, заметим, что если один или оба множителя являются иррациональными числами, заданными в виде корней, логарифмов, степеней и т.п., то их произведение часто приходится записывать как числовое выражение. Значение полученного выражения вычисляется лишь при необходимости.

Проведите умножение отрицательного числа на отрицательное число .

Найдем сначала модули умножаемых чисел: и (смотрите свойства логарифма). Тогда по правилу умножения отрицательных чисел имеем. Полученное произведение и является ответом.

.

Продолжить изучение темы можно, обратившись к разделу умножение действительных чисел .

С некоторой натяжкой то же объяснение годится и для произведения 1-5, если считать, что «сумма» из одного-единственного

слагаемого равна этому слагаемому. Но произведение 0 5 или (-3) 5 так не объяснишь: что означает сумма из нуля или из минус трех слагаемых?

Можно, однако, переставить сомножители

Если мы хотим, чтобы произведение не изменялось при перестановке сомножителей - как это было для положительных чисел - то тем самым должны считать, что

Теперь перейдем к произведению (-3) (-5). Чему оно равно: -15 или +15? Оба варианта имеют резон. С одной стороны, минус в одном сомножителе уже делает произведение отрицательным - тем более оно должно быть отрицательным, если отрицательны оба сомножителя. С другой стороны, в табл. 7 уже есть два минуса, но только один плюс, и «по справедливости» (-3)-(-5) должно быть равно +15. Так что же предпочесть?

Вас, конечно, такими разговорами не запутаешь: из школьного курса математики Вы твердо усвоили, что минус на минус дает плюс. Но представьте себе, что Ваш младший брат или сестра спрашивает Вас: а почему? Что это - каприз учительницы, указание высшего начальства или теорема, которую можно доказать?

Обычно правило умножения отрицательных чисел поясняют на примерах вроде представленного в табл. 8.

Можно объяснять и иначе. Напишем подряд числа

  • Сложение отрицательных чисел Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси. Сложение чисел с помощью координатной прямой Сложение небольших по модулю чисел удобно выполнять на […]
  • Значение слова Объясните значение слов: закон, ростовщик, раб-должник. объясните значение слов: закон, ростовщик, раб-должник. ВкУсНаЯ КлУбНиКа (Гость) Школы Вопросы по теме 1.На какие 3 типа можно разделить […]
  • Ставка единого налога - 2018 Ставка единого налога - 2018 для предпринимателей-физлиц первой и второй гpупп расcчитывается в процентах oт размера прожиточного минимума и минимальной зарплаты, установлeнных нa 01 января […]
  • на рацию в машине разрешение нужно? где бы прочитать? Вам необходимо зарегистрировать вашу радиостанцию в любом случае. Рации, которые работают на частоте 462MHz, если Вы не являетесь представителем МВД, на Вас не […]
  • Экзаменационные билеты ПДД категории СД 2018 года Экзаменационные билеты CD ГИБДД 2018 Официальные экзаменационные билеты категории СД 2018 года. Билеты и комментарии составлены на основе ПДДот 18 июля 2018 года […]
  • Курсы иностранных языков в Киеве «Европейское Образование» английский итальянский нидерландский норвежский исландский вьетнамский бирманский бенгальский сингальский тагальский непальский малагасийский Где бы Вы не […]

Теперь напишем те же числа, умноженные на 3:

Легко заметить, что каждое число больше предыдущего на 3. Теперь напишем те же числа в обратном порядке (начав, например, с 5 и 15):

При этом под числом -5 оказалось число -15, так что 3 (-5) = -15: плюс на минус дает минус.

Теперь повторим ту же процедуру, умножая числа 1,2,3,4,5 . на -3 (мы уже знаем, что плюс на минус дает минус):

Каждое следующее число нижнего ряда меньше предыдущего на 3. Запишем числа в обратном порядке

Под числом -5 оказалось 15, так что (-3) (-5) = 15.

Возможно, эти объяснения и удовлетворили бы Вашего младшего брата или сестру. Но Вы вправе спросить, как же обстоят дела на самом деле и можно ли доказать, что (-3) (-5) = 15?

Ответ здесь таков: можно доказать, что (-3) (-5) должно равняться 15, если только мы хотим, чтобы обычные свойства сложения, вычитания и умножения оставались верными для всех чисел, включая отрицательные. Схема этого доказательства такова.

Докажем сначала, что 3 (-5) = -15. Что такое -15? Это число, противоположное 15, т. е. число, которое в сумме с 15 дает 0. Так что нам надо доказать, что

(Вынося 3 за скобку, мы воспользовались законом дистрибутивности ab + ас = а(b + с) при - ведь мы предполагаем, что он остается верным для всех чисел, включая отрицательные.) Итак, (Дотошный читатель спросит нас, почему . Честно признаемся: доказательство этого факта - как и вообще обсуждение того, что такое ноль - мы пропускаем.)

Докажем теперь, что (-3) (-5) = 15. Для этого запишем

и умножим обе части равенства на -5:

Раскроем скобки в левой части:

т. е. (-3) (-5) + (-15) = 0. Таким образом, число противоположно числу -15, т. е. равно 15. (В таком рассуждении также есть пробелы: следовало бы доказать, что и что существует только одно число, противоположное числу -15.)

Правила умножение отрицательных чисел

Правильно ли мы понимаем умножение?

«- А и Б сидели на трубе. А упало, Б пропало, что осталось на трубе?
— Осталась ваша буква И».

(Из к/ф «Отроки во Вселенной»)

Почему при умножении числа на ноль получается ноль?

Почему при перемножении двух отрицательных чисел получается положительное число?

Что только не придумывают педагоги, чтобы дать ответы на эти два вопроса.

Но никому не хватает смелости признать, что в формулировке умножения три смысловые ошибки!

Возможны ли ошибки в основах арифметики? Ведь математика позиционирует себя точной наукой.

Школьные учебники математики не дают ответов на эти вопросы, заменяя объяснения набором правил, которые нужно запомнить. Может быть считают эту тему трудной для объяснения в средних классах школы? Попробуем разобраться в этих вопросах.

7 — множимое. 3 — множитель. 21- произведение.

По официальной формулировке:

  • умножить число на другое число — значит сложить столько множимых, сколько предписывает множитель.

По принятой формулировке множитель 3 говорит нам о том, что в правой части равенства должно быть три семерки.

7 * 3 = 7 + 7 + 7 = 21

Но эта формулировка умножения не может объяснить поставленные выше вопросы.

Исправим формулировку умножения

Обычно в математике многое имеют в виду, но об этом не говорят и не записывают.

Имеется в виду знак плюс перед первой семеркой в правой части равенства. Запишем этот плюс.

7 * 3 = + 7 + 7 + 7 = 21

Но к чему прибавляется первая семерка. Имеется в виду, что к нулю, разумеется. Запишем и ноль.

7 * 3 = 0 + 7 + 7 + 7 = 21

А если мы будем умножать на три минус семь?

— 7 * 3 = 0 + (-7) + (-7) + (-7) = — 21

Мы записываем сложение множимого -7, на самом деле мы производим многократное вычитание из нуля. Раскроем скобки.

— 7 * 3 = 0 — 7 — 7 — 7 = — 21

Теперь можно дать уточненную формулировку умножения.

  • Умножение — это многократное прибавление к нулю (или вычитание из нуля) множимого (-7) столько раз, сколько указывает множитель. Множитель (3) и его знак (+ или -) указывает количество операций прибавления к нулю или вычитания из нуля.

По этой уточненной и несколько измененной формулировке умножения легко объясняются «правила знаков» при умножении, когда множитель отрицательный.

7 * (-3) — должно быть после нуля три знака «минус» = 0 — (+7) — (+7) — (+7) = — 21

— 7 * (-3) — снова должно быть после нуля три знака «минус» =

0 — (-7) — (-7) — (-7) = 0 + 7 + 7 + 7 = + 21

Умножение на ноль

7 * 0 = 0 + . нет операций прибавления к нулю.

Если умножение это прибавление к нулю, а множитель показывает количество операций прибавления к нулю, то множитель ноль показывает, что к нулю ничего не прибавляется. Поэтому и остается ноль.

Итак, в существующей формулировке умножения мы нашли три смысловые ошибки, которые блокируют понимание двух «правил знаков» (когда множитель отрицательный) и умножение числа на ноль.

  1. Нужно не складывать множимое, а прибавлять его к нулю.
  2. Умножение это не только прибавление к нулю, но и вычитание из нуля.
  3. Множитель и его знак показывают не количество слагаемых, а количество знаков плюс или минус при разложении умножения на слагаемые (или вычитаемые).

Несколько уточнив формулировку, нам удалось объяснить правила знаков при умножении и умножение числа на ноль без помощи переместительного закона умножения, без распределительного закона, без привлечения аналогий с числовой прямой, без уравнений, без доказательств от обратного и т.п.

Правила знаков по уточненной формулировке умножения выводятся очень просто.

7 * (+3) = 0 + (-7) + (-7) + (-7) = 0 — 7 — 7 — 7 = -21 (- + = -)

7 * (-3) = 0 — (+7) — (+7) — (+7) = 0 — 7 — 7 — 7 = -21 (+ — = -)

7 * (-3) = 0 — (-7) — (-7) — (-7) = 0 + 7 + 7 + 7 = +21 (- — = +)

Множитель и его знак (+3 или -3) указывает на количество знаков «+» или «-» в правой части равенства.

Измененная формулировка умножения соответствует операции возведения числа в степень.

2^0 = 1 (единица ни на что не умножается и не делится, поэтому остается единицей)

2^-2 = 1: 2: 2 = 1/4

2^-3 = 1: 2: 2: 2 = 1/8

Математики согласны, что возведение числа в положительную степень — это многократное умножение единицы. А возведение числа в отрицательную степень — это многократное деление единицы.

Операция умножения должна быть аналогична операции возведения в степень.

2*3 = 0 + 2 + 2 + 2 = 6

2*0 = 0 (к нулю ничего не прибавляется и из нуля ничего не вычитается)

2*-3 = 0 — 2 — 2 — 2 = -6

Измененная формулировка умножения ничего не меняет в математике, но возвращает первоначальный смысл операции умножения, объясняет «правила знаков», умножение числа на ноль, согласовывает умножение с возведением в степень.

Проверим, согласуется ли наша формулировка умножения с операцией деления.

15: 5 = 3 (обратная операция умножения 5 * 3 = 15)

Частное (3) соответствует количеству операций прибавления к нулю (+3) при умножении.

Разделить число 15 на 5 — значит найти, сколько раз нужно вычесть 5 из 15-ти. Делается это последовательным вычитанием до получения нулевого результата.

Чтобы найти результат деления, нужно подсчитать количество знаков «минус». Их три.

15: 5 = 3 операции вычитания пятерки из 15 до получения нуля.

15 — 5 — 5 — 5 = 0 (деление 15: 5)

0 + 5 + 5 + 5 = 15 (умножение 5 * 3)

Деление с остатком.

17 — 5 — 5 — 5 — 2 = 0

17: 5 = 3 и 2 остаток

Если есть деление с остатком, почему нет умножения с придатком?

2 + 5 * 3 = 0 + 2 + 5 + 5 + 5 = 17

Смотрим разницу формулировок на калькуляторе

Существующая формулировка умножения (три слагаемых).

10 + 10 + 10 = 30

Исправленная формулировка умножения (три операции прибавления к нулю).

0 + 10 = = = 30

(Три раза нажимаем «равняется».)

10 * 3 = 0 + 10 + 10 + 10 = 30

Множитель 3 указывает, что к нулю нужно прибавить множимое 10 три раза.

Попробуйте выполнить умножение (-10) * (-3) путем сложения слагаемого (-10) минус три раза!

(-10) * (-3) = (-10) + (-10) + (-10) = -10 — 10 — 10 = -30 ?

Что значит знак минус у тройки? Может так?

(-10) * (-3) = (-10) — (-10) — (-10) = — 10 + 10 + 10 = 10?

Опс. Не получается разложить произведение на сумму (или разность) слагаемых (-10).

С помощью измененной формулировки это выполняется правильно.

0 — (-10) = = = +30

(-10) * (-3) = 0 — (-10) — (-10) — (-10) = 0 + 10 + 10 + 10 = 30

Множитель (-3) указывает, что из нуля нужно вычесть множимое (-10) три раза.

Правила знаков при сложении и вычитании

Выше был показан простой способ вывода правил знаков при умножении, путем изменения смысла формулировки умножения.

Но для вывода мы использовали правила знаков при сложении и вычитании. Они почти такие же, как и для умножения. Создадим визуализацию правил знаков для сложения и вычитания, чтобы и первокласснику было понятно.

Что такое «минус», «отрицательный»?

Ничего отрицательного в природе нет. Нет отрицательной температуры, нет отрицательного направления, нет отрицательной массы, нет отрицательных зарядов. Даже синус по своей природе может быть только положительным.

Но математики придумали отрицательные числа. Для чего? Что означает «минус»?

Минус означает противоположное направление. Левый — правый. Верх — низ. По часовой стрелке — против часовой стрелки. Вперед — назад. Холодно — горячо. Легкий — тяжелый. Медленно — быстро. Если подумать, можно привести много других примеров, где удобно использовать отрицательные значения величин.

В известном нам мире бесконечность начинается с нуля и уходит в плюс бесконечность.

«Минус бесконечности» в реальном мире не существует. Это такая же математическая условность, как и понятие «минус».

Итак, «минус» обозначает противоположное направление: движения, вращения, процесса, умножения, сложения. Проанализируем разные направления при сложении и вычитании положительных и отрицательных (увеличивающихся в другом направлении) чисел.

Сложность понимания правил знаков при сложении и вычитании связана с тем, что обычно эти правила пытаются объяснить на числовой прямой. На числовой прямой смешиваются три разные составляющие, из которых выводятся правила. И из-за смешивания, из-за сваливания разных понятий в одну кучу, создаются трудности понимания.

Для понимания правил, нам нужно разделить:

  • первое слагаемое и сумму (они будут на горизонтальной оси);
  • второе слагаемое (оно будет на вертикальной оси);
  • направление операций сложения и вычитания.

Такое разделение наглядно показано на рисунке. Мысленно представьте, что вертикальная ось может вращаться, накладываясь на горизонтальную ось.

Операция сложения всегда выполняется вращением вертикальной оси по часовой стрелке (знак «плюс»). Операция вычитания всегда выполняется путем вращения вертикальной оси против часовой стрелки (знак «минус»).

Пример. Схема в нижнем правом углу.

Видно, что два рядом стоящих знака минуса (знак операции вычитания и знак числа 3) имеют разный смысл. Первый минус показывает направление вычитания. Второй минус — знак числа на вертикальной оси.

Находим первое слагаемое (-2) на горизонтальной оси. Находим второе слагаемое (-3) на вертикальной оси. Мысленно вращаем вертикальную ось против часовой стрелки до совмещения (-3) с числом (+1) на горизонтальной оси. Число (+1) есть результат сложения.

дает такой же результат, как операция сложения на схеме в верхнем правом углу.

Поэтому два рядом стоящих знака «минус» можно заменить одним знаком «плюс».

Мы все привыкли пользоваться готовыми правилами арифметики, не задумываясь об их смысле. Поэтому мы часто даже не замечаем, чем правила знаков при сложении (вычитании) отличаются от правил знаков при умножении (делении). Кажется, они одинаковые? Почти. Незначительная разница видна на следующей иллюстрации.

Теперь у нас есть все необходимое, чтобы вывести правила знаков для умножения. Последовательность вывода следующая.

  1. Наглядно показываем, как получаются правила знаков для сложения и вычитания.
  2. Вносим смысловые изменения в существующую формулировку умножения.
  3. На основе измененной формулировки умножения и правил знаков для сложения выводим правила знаков для умножения.

Ниже написаны правила знаков при сложени и вычитании , полученные из визуализации. И красным цветом, для сравнения, те же правила знаков из учебника математики. Серый плюс в скобках — это плюс-невидимка, который не записывается у положительного числа.

Между слагаемыми всегда два знака: знак операции и знак числа (плюс мы не записываем, но подразумеваем). Правила знаков предписывают замену одной пары знаков на другую пару без изменения результата сложения (вычитания). Фактически, правил всего два.

Правила 1 и 3 (по визуализации) — дублируют правила 4 и 2.. Правила 1 и 3 в школьной интерпретации не совпадают с визуальной схемой, следовательно, они не относятся к правилам знаков при сложении. Это какие-то другие правила.

Школьное правило 1. (красный цвет) разрешает заменять два плюса подряд одним плюсом. Правило не относится к замене знаков при сложении и вычитании.

Школьное правило 3. (красный цвет) разрешает не записывать знак плюс у положительного числа после операции вычитания. Правило не относится к замене знаков при сложении и вычитании.

Смысл правил знаков при сложении- замена одной ПАРЫ знаков другой ПАРОЙ знаков без изменения результата сложения.

Школьные методисты смешали в одном правиле два правила:

— два правила знаков при сложении и вычитании положительных и отрицательных чисел (замена одной пары знаков другой парой знаков);

— два правила, по которым можно не писать знак «плюс» у положительного числа.

Два разных правила, смешанных в одно, похожи на правила знаков при умножении, где из двух знаков следует третий. Похожи один в один.

Здорово запутали! Ещё раз то же самое, для лучшего распутывания. Выделим красным цветом знаки операций, чтобы отличать их от знаков чисел.

1. Сложение и вычитание. Два правила знаков, по которым взаимозаменяются пары знаков между слагаемыми. Знак операции и знак числа.

2. Два правила, по которым знак плюс у положительного числа разрешается не писать. Это правила формы записи. К сложению не относятся. Для положительного числа записывается только знак операции.

3. Четыре правила знаков при умножении. Когда из двух знаков множителей следует третий знак произведения. В правилах знаков для умножения только знаки чисел.

Теперь, когда мы отделили правила формы записи, должно быть хорошо видно, что правила знаков для сложения и вычитания совсем не похожи на правила знаков при умножении.

«Правило умножения отрицательных чисел и чисел с разными знаками». 6-й класс

Презентация к уроку

Загрузить презентацию (622,1 кБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока.

Предметные:

  • сформулировать правило умножения отрицательных чисел и чисел с разными знаками,
  • научить учащихся применять это правило.

Метапредметные:

  • формировать умения работать в соответствии с предложенным алгоритмом, составлять план-схему своих действий,
  • развивать навыки самоконтроля.

Личностные:

  • развивать коммуникативные навыки,
  • формировать познавательный интерес учащихся.

Оборудование: компьютер, экран, мультимедийный проектор, презентация PowerPoint, раздаточный материал: таблица для записи правила, тесты.

(Учебник Н.Я. Виленкина “Математика. 6 класс”, М: “Мнемозина”, 2013.)

Ход урока

I. Организационный момент.

Сообщение темы урока и запись темы в тетрадях учащимися.

II. Мотивация.

Слайд № 2. (Цель урока. План урока).

Сегодня мы продолжим изучение важного арифметического свойства – умножения.

Вы уже умеете выполнять умножение натуральных чисел – устно и в столбик,

Научились умножать десятичные и обыкновенные дроби. Сегодня вам предстоит сформулировать правило умножения для отрицательных чисел и чисел с разными знаками. И не только сформулировать, но и научиться применять его.

III. Актуализация знаний.

Решить уравнения: а) х: 1,8 = 0,15; б) у: = . (Ученик у доски)

Вывод: для решения подобных уравнений нужно уметь выполнять умножение различных чисел.

2) Проверка домашней самостоятельной работы. Повторение правил умножения десятичных дробей, обыкновенных дробей и смешанных чисел. (Слайды № 4 и № 5).

IV. Формулировка правила.

Рассмотреть задачу 1 (слайд № 6).

Рассмотреть задачу 2 (слайд № 7).

В процессе решения задач нам приходилось выполнять умножение чисел с разными знаками и отрицательных чисел. Рассмотрим подробнее это умножение и его результаты.

Выполнив умножение чисел с разными знаками, мы получили отрицательное число.

Рассмотрим другой пример. Найдите произведение (–2) * 3, заменяя умножение суммой одинаковых слагаемых. Аналогично найдите произведение 3 * (–2). (Проверка — слайд № 8).

Вопросы:

1) Каков знак результата при умножении чисел с разными знаками?

2) Как получен модуль результата? Формулируем правило умножения чисел с разными знаками и записываем правило в левый столбик таблицы. (Слайд № 9 и Приложение 1).

Правило умножения отрицательных чисел и чисел с разными знаками.

Вернёмся ко второй задаче, в которой мы выполняли умножение двух отрицательных чисел. Объяснить по-другому такое умножение довольно трудно.

Воспользуемся объяснением, которое дал ещё в 18 веке великий русский учёный (уроженец Швейцарии), математик и механик Леонард Эйлер. (Леонард Эйлер оставил после себя не только научные труды, но и написал ряд учебников по математике, предназначавшихся воспитанникам академической гимназии).

Итак, Эйлер объяснял результат примерно следующим образом. (Слайд № 10).

Ясно, что –2 · 3 = – 6. Поэтому произведение (–2) · (–3) не может быть равно –6. Однако, оно должно быть как-то связано с числом 6. Остаётся одна возможность: (–2) · (–3) = 6. .

Вопросы:

1) Каков знак произведения?

2) Как получен модуль произведения?

Формулируем правило умножения отрицательных чисел, заполняем правый столбик таблицы. (Слайд № 11).

Чтобы легче запомнить правило знаков при умножении, можно воспользоваться его формулировкой в стихах. (Слайд № 12).

Плюс на минус, умножая,
Ставим минус, не зевая.
Умножим минус с минусом
В ответ поставим плюс!

V. Формирование навыков.

Научимся применять это правило для вычислений. Сегодня на уроке будем производить вычисления только с целыми числами и с десятичными дробями.

1) Составление схемы действий.

Составляется схема применения правила. Делаются записи на доске. Примерная схема на слайде № 13.

2) Выполнение действий по схеме.

Решаем из учебника № 1121(б,в,и,к,п,р). Решение выполняем в соответствии с составленной схемой. Каждый пример поясняет один из учащихся. Одновременно решение демонстрируется на слайде № 14.

3) Работа в парах.

Задание на слайде № 15.

Учащиеся работают по вариантам. Сначала учащийся 1 варианта решает и объясняет решение 2 варианту, учащийся со 2 варианта внимательно слушает, при необходимости помогает и поправляет, а потом учащиеся меняются ролями.

Дополнительное задание для тех пар, которые раньше закончат работу: № 1125.

По окончании работы проводится поверка по готовому решению, размещённому на слайде № 15 (используется анимация).

Если многие успели решить № 1125 , то делается вывод об изменении знака числа при умножении на (?1).

4) Психологическая разгрузка.

5) Самостоятельная работа.

Самостоятельная работа – текст на слайде № 17. После выполнения работы – самопроверка по готовому решению (слайд № 17 – анимация, гиперссылка на слайд № 18).

VI. Проверка уровня усвоения изученного материала. Рефлексия.

Учащиеся выполняют тест. На этом же листочке оценивают свою работу на уроке, заполняя таблицу.

Тест “Правило умножения”. Вариант 1.

Умножение отрицательных чисел: правило, примеры

В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.

Умножение отрицательных чисел

Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел – a , — b данное равенство считается верным.

Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: (— а) · (— b) = a · b . Статья умножение чисел с разными знаками рассказывает о том, что равенств а · (— b) = — a · b справедливое, как и (— а) · b = — a · b . Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:

(— a) · (— b) = — (— a · (— b)) = — (— (a · b)) = a · b .

Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.

Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.

Примеры умножения отрицательных чисел

Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.

Произвести умножение чисел — 3 и — 5 .

Решение.

По модулю умножаемые данные два числа равны положительным числам 3 и 5 . Их произведение дает в результате 15 . Отсюда следует, что произведение заданных чисел равно 15

Запишем кратко само умножение отрицательных чисел:

(— 3) · (— 5) = 3 · 5 = 15

Ответ: (— 3) · (— 5) = 15 .

При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.

Вычислить произведение (— 0 , 125) · (— 6) .

Используя правило умножения отрицательных чисел, получим, что (− 0 , 125) · (− 6) = 0 , 125 · 6 . Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:

Получили, что выражение примет вид (− 0 , 125) · (− 6) = 0 , 125 · 6 = 0 , 75 .

Ответ: (− 0 , 125) · (− 6) = 0 , 75 .

В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.

Необходимо произвести умножение отрицательного — 2 на неотрицательное log 5 1 3 .

Находим модули заданных чисел:

— 2 = 2 и log 5 1 3 = — log 5 3 = log 5 3 .

Следуя из правил умножения отрицательных чисел, получим результат — 2 · log 5 1 3 = — 2 · log 5 3 = 2 · log 5 3 . Это выражение и является ответом.

Ответ: — 2 · log 5 1 3 = — 2 · log 5 3 = 2 · log 5 3 .

Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.

В этой статье мы разберемся с умножением чисел с разными знаками . Здесь мы сначала сформулируем правило умножения положительного и отрицательного числа, обоснуем его, а после этого рассмотрим применение данного правила при решении примеров.

Навигация по странице.

Правило умножения чисел с разными знаками

Умножение положительного числа на отрицательное, а также отрицательного на положительное, проводится по следующему правилу умножения чисел с разными знаками : чтобы умножить числа с разными знаками, надо умножить, и перед полученным произведением поставить знак минус.

Запишем данное правило в буквенном виде. Для любого положительного действительного числа a и действительного отрицательного числа −b справедливо равенство a·(−b)=−(|a|·|b|) , а также для отрицательного числа −a и положительного числа b справедливо равенство (−a)·b=−(|a|·|b|) .

Правило умножения чисел с разными знаками полностью согласуется со свойствами действий с действительными числами . Действительно, на их основе несложно показать, что для действительных и положительных чисел a и b справедлива цепочка равенств вида a·(−b)+a·b=a·((−b)+b)=a·0=0 , которая доказывает, что a·(−b) и a·b – противоположные числа, откуда следует равенство a·(−b)=−(a·b) . А из него следует справедливость рассматриваемого правила умножения.

Следует отметить, что озвученное правило умножения чисел с разными знаками справедливо как для действительных чисел, так и для рациональных чисел и для целых чисел. Это следует из того, что действия с рациональными и целыми числами обладают теми же свойствами, которые использовались при доказательстве выше.

Понятно, что умножение чисел с разными знаками по полученному правилу сводится к умножению положительных чисел.

Осталось лишь рассмотреть примеры применения разобранного правила умножения при умножении чисел с разными знаками.

Примеры умножения чисел с разными знаками

Разберем решения нескольких примеров умножения чисел с разными знаками . Начнем с простого случая, чтобы сосредоточиться на шагах правила, а не на вычислительных сложностях.

Выполните умножение отрицательного числа −4 на положительное число 5 .

По правилу умножения чисел с разными знаками нам сначала нужно перемножить модули исходных множителей. Модуль −4 равен 4 , а модуль 5 равен 5 , а умножение натуральных чисел 4 и 5 дает 20 . Наконец, осталось поставить знак минус перед полученным числом, имеем −20 . На этом умножение завершено.

Кратко решение можно записать так: (−4)·5=−(4·5)=−20 .

(−4)·5=−20 .

При умножении дробных чисел с разными знаками нужно уметь выполнять умножение обыкновенных дробей, умножение десятичных дробей и их комбинаций с натуральными и смешанными числами.

Проведите умножение чисел с разными знаками 0,(2) и.

Выполнив перевод периодической десятичной дроби в обыкновенную дробь, а также выполнив переход от смешанного числа к неправильной дроби, от исходного произведения мы придем к произведению обыкновенных дробей с разными знаками вида. Это произведение по правилу умножения чисел с разными знаками равно. Осталось лишь перемножить обыкновенные дроби в скобках, имеем .

.

Отдельно стоит сказать об умножении чисел с разными знаками, когда один или оба множителя являются

Теперь давайте разберемся с умножением и делением .

Предположим, нам нужно умножить +3 на -4. Как это сделать?

Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.

Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.

Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом. Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.

А как перемножить два отрицательных числа?

К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.

Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения , сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.

Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.

Положение знака при умножении изменяется таким образом:

  • положительное число х положительное число = положительное число;
  • отрицательное число х положительное число = отрицательное число;
  • положительное число х отрицательное число = отрицательное число;
  • отрицательное число х отрицательное число = положительное число.

Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число . Перемножая два числа с разными знаками, мы получаем отрицательное число .

Такое же правило справедливо и для действия противоположного умножению – для.

Вы легко можете в этом убедиться, проведя обратные операции умножения . Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).

Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.


В данной статье дается подробный обзор деления чисел с разными знаками . Сначала приведено правило деления чисел с разными знаками. Ниже разобраны примеры деления положительных чисел на отрицательные и отрицательных чисел на положительные.

Навигация по странице.

Правило деления чисел с разными знаками

В статье деление целых чисел было получено правило деления целых чисел с разными знаками . Его можно распространить и на рациональные числа , и на действительные числа , повторив все рассуждения из указанной статьи.

Итак, правило деления чисел с разными знаками имеет следующую формулировку: чтобы разделить положительное число на отрицательное или отрицательное число на положительное, надо делимого разделить на модуль делителя, и перед полученным числом поставить знак минус.

Запишем это правило деления с помощью букв. Если числа a и b имеют разные знаки, то справедлива формула a:b=−|a|:|b| .

Из озвученного правила понятно, что результатом деления чисел с разными знаками является отрицательное число. Действительно, так как модуль делимого и модуль делителя есть положительнее числа, то их частное есть положительное число, а знак минус делает это число отрицательным.

Отметим, что рассмотренное правило сводит деление чисел с разными знаками к делению положительных чисел.

Можно привести другую формулировку правила деления чисел с разными знаками: чтобы разделить число a на число b , нужно число a умножить на число b −1 , обратное числу b . То есть, a:b=a·b −1 .

Это правило можно использовать, когда есть возможность выходить за пределы множества целых чисел (так как далеко не каждое целое число имеет обратное). Иными словами, оно применимо на множестве рациональных, а также на множестве действительных чисел.

Понятно, это правило деления чисел с разными знаками позволяет от деления перейти к умножению.

Это же правило используется при делении отрицательных чисел .

Осталось рассмотреть, как данное правило деления чисел с разными знаками применяется при решении примеров.

Примеры деления чисел с разными знаками

Рассмотрим решения нескольких характерных примеров деления чисел с разными знаками , чтобы усвоить принцип применения правил из предыдущего пункта.

Разделите отрицательное число −35 на положительное число 7 .

Правило деления чисел с разными знаками предписывает сначала найти модули делимого и делителя. Модуль числа −35 равен 35 , а модуль числа 7 равен 7 . Теперь нам нужно разделить модуль делимого на модуль делителя, то есть, надо разделить 35 на 7 . Вспомнив, как выполняется деление натуральных чисел , получаем 35:7=5 . Остался последний шаг правила деления чисел с разными знаками – поставить минус перед полученным числом, имеем −5 .

Вот все решение: .

Можно было исходить из другой формулировки правила деления чисел с разными знаками. В этом случае сначала находим число, обратное делителю 7 . Этим числом является обыкновенная дробь 1/7 . Таким образом, . Осталось выполнить умножение чисел с разными знаками : . Очевидно, мы пришли к такому же результату.

(−35):7=−5 .

Вычислите частное 8:(−60) .

По правилу деления чисел с разными знаками имеем 8:(−60)=−(|8|:|−60|)=−(8:60) . Полученному выражению соответствует отрицательная обыкновенная дробь (смотрите знак деления как черта дроби), можно провести сокращение дроби на 4 , получаем .

Запишем все решение кратко: .

.

При делении дробных рациональных чисел с разными знаками их обычно делимое и делитель представляют в виде обыкновенных дробей. Это связано с тем, что с числами в другой записи (например, в десятичной) не всегда удобно выполнять деление.

Модуль делимого равен, а модуль делителя равен 0,(23) . Чтобы провести деление модуля делимого на модуль делителя, перейдем к обыкновенным дробям.

В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.

Yandex.RTB R-A-339285-1

Умножение отрицательных чисел

Определение 1

Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел – a , - b данное равенство считается верным.

(- а) · (- b) = a · b .

Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: (- а) · (- b) = a · b . Статья умножение чисел с разными знаками рассказывает о том, что равенств а · (- b) = - a · b справедливое, как и (- а) · b = - a · b . Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:

(- a) · (- b) = - (- a · (- b)) = - (- (a · b)) = a · b .

Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.

Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.

Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.

Пример 1

Произвести умножение чисел - 3 и - 5 .

Решение.

По модулю умножаемые данные два числа равны положительным числам 3 и 5 . Их произведение дает в результате 15 . Отсюда следует, что произведение заданных чисел равно 15

Запишем кратко само умножение отрицательных чисел:

(- 3) · (- 5) = 3 · 5 = 15

Ответ: (- 3) · (- 5) = 15 .

При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.

Пример 2

Вычислить произведение (- 0 , 125) · (- 6) .

Решение.

Используя правило умножения отрицательных чисел, получим, что (− 0 , 125) · (− 6) = 0 , 125 · 6 . Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:

Получили, что выражение примет вид (− 0 , 125) · (− 6) = 0 , 125 · 6 = 0 , 75 .

Ответ: (− 0 , 125) · (− 6) = 0 , 75 .

В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.

Пример 3

Необходимо произвести умножение отрицательного - 2 на неотрицательное log 5 1 3 .

Решение

Находим модули заданных чисел:

2 = 2 и log 5 1 3 = - log 5 3 = log 5 3 .

Следуя из правил умножения отрицательных чисел, получим результат - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 . Это выражение и является ответом.

Ответ: - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 .

Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter