Использование подземного пространства при реконструкции. Освоение подземного пространства больших городов

В условиях современных городов во многих случаях целесообразно их многоуровневое развитие, включающее широкое использование подземного пространства. Э. Утуджян, один из пионеров подземной урбанистики , подчеркивая целесообразность широкого развития многоуровневого строительства, отмечал, что "использование подземных сооружений позволит пересмотреть структуру городов и разгрузить их, избавив от заводов, рынков, вокзалов, складов и всяческих хранилищ, от транспортных магистралей и т.п. Эти сооружения парализуют город, и хотя без них невозможна повседневная жизнь, они "бездушны", поэтому нет никаких оснований отводить для них наружные пространства и объемы, которые можно использовать более рационально. Если избавиться на поверхности земли от сооружений, которые там не нужны и только портят ландшафт и отравляют воздух, можно за счет их увеличить площадь зеленых насаждений, разбить новые парки и скверы, построить стадионы. Все подземные сооружения будут защищены от внешних воздействий:

Не нужно будет опасаться пожаров;

Перестанут угрожать людям шумы и колебания атмосферных условий.

В подземном пространстве городов целесообразно широко размещать транспортные сооружения (метрополитен, железнодорожные и автомобильные туннели и вокзалы, гаражи, автобазы), предприятия культурно-бытового обслуживания , зрелищны е , спортивные и торговые объекты (в особенности в сочетании с подземными переходами и сооружениями транспорта), инженерные сооружения и коммуникации (трубопроводы, кабели, коллекторы, электроподстанции, трансформаторные подстанции, станции перекачки и подкачки, центральные тепловые пункты, котельные, очистные сооружения), склады (продовольственные, промтоварные, горючего, холодильники и пр.).

Расчеты по совокупности социально-экономических, инженерно-экономических и градостроительных факторов показывают высокую эффективность использования подземного пространства городов. Научные и проектные разработки по многим городам подтверждают реальность и целесообразность использования в широких масштабах подземного пространства городов . Накоплен большой положительный опыт подземного строительства (в нашей стране - в первую очередь при сооружении метрополитенов).

ПЛАНИРОВОЧНАЯ ОРГАНИЗАЦИЯ СОВРЕМЕННОГО ГОРОДА

Наиболее важными принципами проектирования города, определяющими его планировочную организацию, являются:

Четкое функциональное зонирование территории;

Гибкость планировочной структуры, обеспечивающая беспрепятственное развитие города;

Дифференциация транспортных магистралей;

Организация эффективной системы обслуживания;


Создание экологической инфраструктуры города, включающей единую систему зеленых насаждений и мероприятия по охране окружающей среды;

Эффективное и экономичное оснащение города всеми видами инженерного обслуживания. Необходимое условие - выполнение композиционных требований к плану города: развитие городского центра и взаимодействующих с ним районных общественных центров, создание привлекательного силуэта города и обеспечение зрительного восприятия его главных природных и архитектурных доминант.

При проектировании города необходимо выделить его "каркас" - территории наиболее интенсивного освоения и сосредоточения наиболее важных функций. "Каркас" - наиболее устойчивая во времени основа пространственно-планировочной организации города.

Промышленные зоны города (ПЗ) различаются в зависимости от профиля расположенных в их пределах промышленных производств, определяющих размеры этих зон и необходимые санитарные разрывы от них. Главные требования к взаиморасположению ПЗ и селитебных районов:

1. 1). Их территориальное развитие не должно противоречить друг другу:

Они не должны располагаться чересполосно; промышленность не должна перекрывать возможности развития селитебных зон (СЗ), и наоборот; промышленность следует размещать так, чтобы она не закрывала выход из СЗ к реке или берегу моря; СЗ недопустимо располагать над залеганиями полезных ископаемых.

2). ПЗ должны развиваться со строгим соблюдение санитарно-гигиенических требований (выполнение условий, связанных с охраной воздушного бассейна:

Исключение подветренного размещения СЗ по отношению к источнику выбросов; обеспечение необходимых разрывов с учетом класса санитарной вредности предприятий и их групп;

Обязательное удаление санитарно-вредных предприятий на большое расстояние;

Озеленение ПЗ и санитарных разрывов между ПЗ и СЗ;

Обеспечение требований охраны водного бассейна города и др.

2. Взаимное расположение ПЗ и СЗ должно быть удобно для организации пассажирских связей между ними и не препятствовать обслуживанию предприятий городским транспортом (например, нежелательно одностороннее размещение ПЗ и СЗ по отношению друг к другу). ПЗ необходимо конструировать комплексно, возможно сочетание в одной зоне предприятий разного профиля. "Чистые"промышленные предприятия и научно-технические центры - можно среди СЗ. Селитебная территория – занимает примерно 1\2 территории современного города. Жилая застройка брутто - 50% (из нее выделяются территории жилой застройки нетто - без общ. учреждений, зеленых насаждений, проездов внутри микрорайонов - 50% от брутто или 12-13% городской территории); улицы и площади - 15-20%; участки городских общих зданий и сооружений. - 15-20%; общегородские озелененные пространства - 10-15%. Размеры необходимых СЗ - 10 га на 1000 жит. Современная планировочная структура города основывается на прогрессивных идеях середины 20 в. - дифференциация транспортных магистралей, изоляция мест расселения от потоков массового автомобильного транспорта, ступенчатая организация обслуживания, широкое озеленение вокруг домов.

ДЕМОГРАФИЧЕСКИЕ ФАКТОРЫ

Среди прогнозов, имеющих наиболее важное значение для проектирования расселения и городов, особенное место занимают демографические прогнозы .

При проектировании расселения и городов в перспективе следует учитывать следующие тенденции и проблемы:

1.Мозаичность , асимметрия демографической ситуации . Не существует и вряд ли будет существовать одинаковая демографическая ситуация в разных странах и регионах мира.

2. Вынужденные миграции . Внезапный распад Советского Союза стал трагедией для миллионов людей, оказавшихся по разные стороны государственных границ. Сотни тысяч людей покидают районы национальных конфликтов или районы с нарастающей межэтнической напряженностью. Между тем Россия не готова сейчас принять столь огромное число переселенцев в условиях экономического кризиса, дороговизны жилищного строительства и т.д.

3. Необходимость управления миграционными процессами . Крайне важными задачами миграционной политики, возникшими в последние годы, стало регулирование миграционных потоков, устремившихся из ближнего зарубежья, с севера, где в ряде мест сосредоточены слишком значительные и неэффективно используемые трудовые ресурсы, расселение демобилизуемых военнослужащих и др.

4. Изменения в структуре населения и занятости . Следует учитывать ожидаемые большие изменения в возрастной структуре населения и в структуре занятости. Эти изменения наиболее четко фокусируются в трех фундаментальных тенденциях. Во-первых , по мере роста продолжительности жизни и совершенствования пенсионного обеспечения увеличивающуюся долю населения составят лица в возрасте старше трудоспособного. Во-вторых , при сокращении доли населения в трудоспособном возрасте произойдет уменьшение численности занятых в производственных процессах, поддающихся механизации и автоматизации, и расширится занятость в сфере услуг, управлении, науке и научном обслуживании. В-третьих , уже в ближайшие десятилетия коренным образом изменится "трудовой цикл" человека. Эти изменения должны быть ясно оценены и своевременно предусмотрены в процессе прогнозирования и проектирования с учетом весьма значительных региональных особенностей.

5. Возрастающая роль рационального использования квалификации и трудовых навыков населения . Помимо общего требования внимательного учета этого фактора при проектировании расселения и городов важно использовать сложившиеся "сгустки" квалифицированных кадров и научно-технического потенциала. При проектировании расселения и городов необходим всесторонний и глубокий анализ населения и трудовых ресурсов, а также тщательное исследование возможных вариантов роста и изменения структуры населения.

1ОКЛАД НА СИМПОЗИУМЕ «НЕДЕЛЯ ГОРНЯКА М ОСКВА, ¦ МГГУ, ¦ 31"- января—¦ 4 ¦ февраля ¦ 2000"- годя

^ В. Г. Лернер, Е. В. Петренко, И. Е. Петренко, 2000

В.Г. Лернер, Е. В. Петренко, И. Е. Петренко О

собенности освоения подземного пространства Освоение подземного пространства в планировке и застройке крупных городов приобретает огромное значение из-за дефицита городских территорий, постоянного роста населения, и резкого увеличения загазованности, и транспортных потоков на улицах, и недостаточного развития городской инфраструктуры.

Почти во всех крупных городах мира идёт процесс активного освоения подземного пространства для размещения транспортных и инженерных систем, объектов торговли и бытового обслуживания, складов и автостоянок, решения различных вопросов многофункциональности мегаполисов.

По сути дела, образуется новая подземная инфраструктура крупных городов — мегаполисов, в ходе которой необходимо учитывать ряд обстоятельств и прежде всего — влияние техногенных процессов на экологию подземного пространства, на состояние гидрогеологической среды, а также архитектурно художественное оформление сооружаемых функциональных подземных центров и объектов. При освоении подземного пространства используются практически все направления современного подземного строительства, менеджмента и контрактинговой практики. Комплексное освоение подземного пространства является одним из наиболее эффективных путей решения, территориальных, транспортных и экологических проблем крупных городов, развивающихся как культурно-исторические и торгово-промышлен-ные центры. При этом наиболее полно сохраняется окружающая среда для размещения парков и рекреационных зон и значительно уменьшается загрязнение от автомобильного движения.

Процесс организации освоения городского подземного пространства характеризуется следующими особенностями:

Внутренней упорядоченностью, согласованностью, взаимодействием различных подсистем подземной инфраструктуры, обусловленных строением городского подземного пространства-

Совокупностью процессов проектирования, менеджмента, технологий строительства подземных сооружений, ведущих к образованию и совершенствованию подсистем городского подземного пространства и взаимосвязей между ними-

Методическими подходами, принципами и методами освоения подземного пространства-

Широким набором применяемых технологий подземного строительства-

Современными формами и методами организации строительства подземных сооружений и их функционирования для решения задач удовлетворения общественных потребностей и получения прибыли в условиях рыночных отношений-

Совершенствованием организационно — технологических схем, архитектурных и объемно — планировочных решений-

Методологией проектирования подземных сооружений нового поколения на основе нетрадиционных решений, использования закономерностей освоения недр, высоких технологий, достижений строительной гео-

технологии с учетом горногеологических условий строительства.

Современные тенденции освоения подземного пространства В 21 веке роль комплексного освоения подземного пространства больших городов будет направлена на изменение жизни к лучшему.

Интенсивное освоение подземного пространства будет основной тенденцией в 21 столетии из-за того, что не хватает места для жизни людей, а также из-за необходимости создания новой среды обитания людей посредством расширения их возможностей и улучшения инфраструктуры.

Основные тенденции и направления современного освоения подземного пространства заключаются в комплексном освоении подземного пространства (прежде всего мегаполисов) посредством:

Создания крупных подземных инфраструктур и подземных сооружений, как градообразующих и интегрирующих больших сложных геосистем со встроенными инвариантными техническими и архитектурными решениями-

Строительства подземных сооружений нового поколения с использованием высоких технологий и новых объемно-планировочных и архитектурных решений-

Более широкого использования свойств массива горных пород и управления свойствами подземных сооружений-

Использования достижений менеджмента в подземном строительстве-

Подбора экономически эффективных схем инвестирования строительства подземных объектов и внедрения новых методов финансирования-

Внедрения новых акцентов, аспектов и достижений в подземном строительстве-

Поиска новых видов геосистем-

Повышения безопасности в подземном строительстве, в том числе предотвращения просадок поверхности-

Внедрения геомониторинга и гео-механических исследований структуры и свойств вмещающих горных пород-

Повышения качества подземных сооружений и улучшения жизни людей —

Внедрения новых механизированных комплексов, комбайнов и новоав-

стрийского способа проходки тоннелей НАТМ-

Выбора обоснованной стратегии освоения подземного пространства.

Гибкость технологий проходки тоннелей, оборудования и средств механизации их проходки становится важным критерием приемлемости и прогрессивности технологий в современных условиях подземного строительства.

Геомеханические исследования массива горных пород и мониторинг системы «крепь — массив вмещающих пород» стали неотъемлемой составной частью и основой принципов управления технологией строительства подземных сооружений, обеспечивающих безопасность работ и устойчивость подземных горных выработок.

Внедрение мировых тенденций и достижения тоннелестроения в отечественную практику освоения подземного пространства позволит существенно повысить качество подземных сооружений и улучшить жизнь людей.

Большое внимание необходимо уделять поддержанию уровня грунтовых вод, охране окружающей среды, защите археологически ценных грунтов, сохранению существующих архитектурных памятников, сооружений и геологических условий для устойчивого состояния подземного пространства.

Использование подземного пространства для публичных мероприятий требует обеспечения безопасных выходов и привлечения архитекторов для работы над всеми проектами подземных сооружений.

Освоение подземного пространства Москвы Активно осваивается подземное пространство столицы путем строительства многоцелевых подземных комплексов, транспортных и коллекторных тоннелей, гаражей и складов, других объектов. Построен первый в России подземный торговорекреационный комплекс «Охотный ряд» на Манежной площади.

Большое внимание уделяется развитию инфраструктуры города. В этом ряду строительство 3-го транспортного кольца. Сооружена одна из крупнейших в мире «стена в грунте», ограждающая котлован на строительстве делового центра «Москва-Сити», протяженность стены 1768 м, с заглублением на 10 м ниже уровня ря-

дом с котлованом протекающей Мо-сквы-реки.

В сфере строительства городских подземных сооружений применяются различные технологии воздействия траншейных стен в сочетании с другими строительными технологиями. Совершенствование технологий исследовано на отдельных конкретных примерах строительства подземных сооружений.

Сооружение «стены в грунте» на строительстве торгово-

рекреационного комплекса на Манежной площади было выполнено впервые в практике московского строительства способом фрезерования грунта. Впервые также была разработана и применена бетонная смесь марки 700 водонепроницаемостью не ниже 16 ед. с применением микро-кремнезёмной добавки. Кроме того были выполнены защитные мероприятия по ограждению зданий и действующих линий метрополитена путём устройства более 2000 буронабивных свай. Для повышения надёжности и долговечности подземного сооружения в арматурный каркас «стены в грунте» была включена ме-таллоизоляция, а раздробленные породы днища были укреплены по технологии «jet-grouting».

Стены глубокой части котлована выполнены способом «стены в грунте» с устройством буросекущихся свай. С целью защиты от подземных вод все наружные стены ТРК снабжены внутренней металлоизоляцией. Под фундаментом мелкозаглублённо-го пространства устроен пластовый дренаж с выводом в контурный дренаж. Для усовершенствования схемы работы «стены в грунте» было принято решение объединить её с рядами защитных свай фундаментной плитой малозаглублённости части ТРК на отметки 130 м..

Одной из важнейших задач, от решения которой зависит эффективность использования способа «стена в грунте», является правильный выбор технологии разработки грунтового ядра при строительстве подземного сооружения. АО «Мос-инжстрой» с МГГУ внедрена новая технология, сущность которой заключается в том, что вначале разрабатывается центральная часть породного массива внутри сооружения на глубину одного яруса. При этом рядом с вертикаль-

ными несущими конструкциями оставляются неразработанные участки породы. Это повышает несущую способность породного массива. Под защитой оставленных породных участков монтируются распорные конструкции, после завершения монтажа которых разрабатываются оставленные рядом с вертикальными несущими конструкции участки породы, и цикл повторяется на следующей за-ходке.

При реконструкции Ленинского проспекта и ул. Миклухо-Маклая при строительстве двух транспортных тоннелей предусмотрена технология устройства стен методом буросеку-щихся свай диаметром 1,0 м с последующей разработкой грунта до отметки свода тоннеля и бетонированием перекрытий с применением бетона класса В 30, W 12. Последующая разработка грунта ведётся под защитой готового перекрытия с восстановлением движения наземного транспорта.

На строительстве подземной автостоянки на площади Революции применена новая технология выполнения «стены в грунте» в отдельных захватках длиной 2,2 м с межосевым шагом 4,1 м. В захватках устанавливались пространственные арматурные каркасы сечением 0,47−1,8 м. После бетонирования опережающих панелей производилась разработка соединительных захваток длиной 2,2 м со срезкой бетона толщиной 0,15 м с торцевых кромок опережающих панелей с последующей установкой каркасов и бетонированием. Такая технология обеспечивала монолитность «стены в грунте» и отсутствие холодных и грязевых швов в стыках панелей.

Разработка грунтового ядра в котловане производилась в два этапа. Использовалось максимальное совмещение работ по монтажу каркасов, опалубки, возведению гидроизоляции и бетонированию за счет производства этих работ, одновременно в нескольких уровнях. Применение инвентарной опалубки с фанерным настилом в сочетании с челночной технологией позволило сократить сроки возведения строительных конструкций подземной автостоянки почти в два раза против проектных. На этой стройке применено оригинальное соединение плоского перекрытия каждого яруса со стенами.

Нагрузки от перекрытий и будущие нагрузки от веса автомобилей переносятся на стены не полностью, а частично за счет специальной конструкции арматурных каркасов, входящих своими выступами («пятами») в ниши стен, выполненных заранее в конструкции «стены в грунте». Остальная нагрузка приходится на замкнутые конструкции дополнительных стен. Подобная конструкция многоуровневой подземной автостоянки и метод ее сооружения могут быть также использованы и для других объектов социального, культурного и технического назначения.

На строительстве фондохранилища Музея А. С. Пушкина применено новое решение разработки котлована глубиной 11 м под защитой одного перекрытия в уровне поверхности земли без всякой дополнительной временной крепи стен, устроенной из буросекущихся свай.

Следует отметить высокие технологические возможности щитов фирмы «Бессак», особенно их способность вести безосадочную проходку в водонасыщенных грунтах. Этот комплекс намечается использовать при строительстве канализационного тоннеля длиной 950 м и диаметром 4,3 м в сочетании с обделкой из высокоточных железобетонных тюбингов.

Фирма «Крот и Ко» «Мосинжстроя» внедряет, начиная с 1997 г., щитовую проходку комплексом диаметром 4,0 м с монолитнопрессованной обделкой, что не менее чем на 20% дешевле строительства тоннеля со сборной обделкой. Щит оборудован скользящей опалубкой.

Новые технология и оборудование для строительства городских тоннелей коммунального назначения с применением механизированных щитов и щитовых комплексов диаметром 2,6−5,6 м, оснащенных экскаваторными рабочими органами, и механизированных самоходных комплексов для бетонирования вторичной обделки тоннелей позволили повысить темпы строительства, улучшить условия труда и его безопасность, обеспечить строительство в Москве более 10

км в год коммуникационных тоннелей.

Современные технологии проведения подземных горных выработок с использованием механизированных щитов, микрощитов, новой тоннелестроительной техники, монолитнопрессованной обделки из бетона, высокоточных тюбингов в сочетании с различными техническими и технологическими решениями позволяют активизировать комплексное освоение подземного пространства столицы.

В результате экспериментального использования георадаров созданы приборы, методика и технология зондирования георадарами вмещающих горных пород как составная часть технологии механизированного проведения подземных горных выработок. Использование георадаров позволит предупредить ряд негативных последствий подземного строительства, таких как обрушения и обвалы пород в забоях. Поиск и своевременное обнаружение георадарами подземных пустот и возможных аномалий в массиве вмещающих горных пород позволит предотвратить остановки и аварии во многих случаях проведения коллекторных тоннелей в Москве.

Заключение Описанные строительные технологии и технические решения позволяют осуществлять строительство в стеснённых условиях городской застройки с минимальными объёмами разрытий, не препятствуя движению транспорта. В сложных гидрогеологических условиях эти методы применяются в сочетании со специальными видами работ: водопонижением, замораживанием, химическим закреплением грунтов и др. Использование способа «стена в грунте» осуществляется в сочетании с буросекущимися сваями для ограждения котлована, устройством завес и разными технологиями выемки земляного ядра котлована. Набор различных технологий и технических решений позволяет повысить надёжность и безопасность строительства конкретных подземных сооружений. Развитие центральных районов во многих больших городах намечается за счёт пропуска общественного пассажирского транспорта и автотранспорта под землёй. В будущем необходимо больше уделять внимания изучению инженерно-геологи-ческих условий строительства для выбора соответствующих технологий строительства подземных сооружений.

Будущий процесс освоения подземного городского пространства должен происходить с применением новых идей в области подземного строительства в нескольких направлениях, в первую очередь:

В направлении создания универсальных проходческих комплексов, а также расширения области применения новоавстрийского способа проходки НАТМ-

Схемы финансирования по схеме ВОТ-

Внедрения систем сканирования горных пород с целью обнаружения ослабленных зон как вмещающих породах, так и впереди забоя.

Шире будут:

Использоваться системы для на-брызг-бетона, бурения шпуров и установке анкерного крепления кровли и стен горных выработок-

Новые материалы для гидропригруза щитовых комплексов-

Полимеры для инъекции укрепляющих растворов-

Материалы для облицовки тоннелей-

Приборы для измерения и контроля разнообразных процессов и операций.

В 21 веке во главе проблемы освоения подземного пространства крупных городов становится человек. При этом процесс освоения следует рассматривать как единое целое, когда все его элементы, человеческие и механические, полностью контролируются и необходимым образом объединяются в общую программу действий. Требуется слаженная работа коллектива, взаимные, очень правильные и чётко согласованные действия людей на всех уровнях принятия решений.

Лернер В.Г. первый замесшю.и. юнера.и.нот директора, АО «Мосинжарой». Петренко Е. В. докюр ю. хнических нау к, профессор, Академия юрных нау к.

Петренко И.Е. кандидщ юхничсских наук, Московский тсударстенный юрный униксрсию!

→ Использование пространства


Опыт использования подземного пространства в городах


Высокий уровень урбанизации, рост городов и ряд других факторов обусловливают высокую степень освоения подземного пространства в городах. Это позволяет в значительной мере высвободить дефицитные территории, а также улучшить состояние городской среды. В этой связи необходимо рассмотреть опыт использования данного вида ресурсов и возможности его применения при создании гражданских объектов.

Подземное пространство часто рассматривается как естественные или искусственно созданные полости в недрах земли, используемые для хозяйственных или иных целей.

Автор предлагает определять его как вид ресурсов недр, используемый в качестве среды для проживания, размещения объектов или протекания процессов, тогда его источниками являются естественные или искусственно созданные полости в недрах земли, а также участки недр, в которых могут быть созданы полости. Недра представляют собой часть земной коры, расположенную ниже почвенного слоя, а при его отсутствии - ниже земной поверхности и дна водоемов и водотоков, простирающуюся до глубин, которые доступны для геологического изучения и освоения.

В своем естественном состоянии подземное пространство может быть занято твердым, жидким или газообразным веществом. Участки недр, не заполненные твердым веществом, но окруженные им, называют подземными полостями. Они подразделяются на естественные и искусственные (антропогенные).

Естественные полости включают в себя крупные полости (пещеры), мелкие полости и трещины в массиве горных пород.

Основными характеристиками источников подземного пространства являются глубина от поверхности земли, объем и форма, свойства окружающего массива, территориальное расположение, устойчивость, (способность сохранять свою форму во времени), возможность доступа с поверхности земли и др. К свойствам окружающего массива горных пород можно отнести такие показатели, как напряженное состояние массива горных пород, их твердость, связность, пластичность, влагоем-кость и водопроницаемость, плотность, пористость, электромагнитные свойства (удельное электрическое сопротивление, относительная диэлектрическая проницаемость), абразивность, тепловые свойства (коэффициент теплопроводности, удельная теплоемкость, коэффициент линейного теплового расширения), коэффициент разрыхления (после взрыва), гранулометрический состав (в разрушенном состоянии) и т.п.

Обычно выделяют следующие предпосылки освоения подземного пространства: социальные, горно-технические, геологические, экономические (экономия энергетических затрат) и оборонные.

Социальные предпосылки освоения подземного пространства заключаются в росте народонаселения и происходящих демографических изменениях, неизбежных техногенных изменениях окружающей среды, необходимости сохранения земельных фондов и улучшения рекреационных возможностей людей и санитарно-гигиенических условий их труда. Увеличение количества создаваемых площадей в подземном пространстве позволяет снизить выбытие из пользования сельскохозяйственных угодий.

Считается, что использование подземного пространства целесообразно в районах с высокой плотностью населения, плодородными почвами, развитой горно-добывающей промышленностью, благоприятными инженерно-геологическими условиями для подземного строительства. Выгодно строить подземные склады на Севере. Переносить под землю предприятия с высокими уровнями пожароопасности и шумообразования также полезно для окружающей среды.

Горно-технические предпосылки заключаются в том, что в идеальном случае для использования подземного пространства горные породы должны быть прочными, монолитными, устойчивыми и одновременно легко разрабатываемыми, стойкими к окислительным процессам, необводненными и не выделяющими ядовитые газы, инертными по отношению к хранимым в них материалам, непористыми, не содержать агрессивных растворов. Однако современные технологии в большинстве случаев позволяют ликвидировать действия всех перечисленных факторов.

Геологические предпосылки освоения подземного пространства заключаются в необходимости достаточно подробного изучения верхних слоев земной коры, которое бы позволило объективно принимать решения о выборе места размещения подземного объекта и технологий его создания.

Экономия энергетических затрат как предпосылка освоения подземного пространства объясняется тем, что подземное пространство позволяет снизить сезонные колебания энергопотребления, т.к. горные породы служат аккумулятором солнечной энергии, обладают низкой теплопроводностью и способны удерживать тепло. В связи с этим подземные полости могут использоваться как те-плоаккумуляторы. В северных странах энергетический вопрос оказывает большое влияние на выбор подземного размещения зданий, и все большее применение находит подземное жилье.

Оборонные факторы как предпосылка использования подземного пространства имеют в своей основе необходимость защиты людей, материальных ценностей, производства от военных действий, в том числе и ядерного взрыва.

Французские ученые P. Duffaut и G. Marin считают, что естественный спрос на ресурсы пространства недр вызван следующими причинами: сохранение скоропортящихся продуктов (погреба и подвалы); добыча полезных ископаемых; религиозные цели (например, для ритуального погребения); защита населения от нападения; поиск относительного комфорта в экстремальных температурных условиях.

Считается также, что подземные сооружения при незначительных дополнениях имеют высокую сейсмостойкость, стабильные температуру и влажность, чистоту помещений, т.е. те параметры, для обеспечения которых на поверхности необходимо дополнительно 25- 40 % объема строительно-монтажных работ.

В Швеции при подземном строительстве примерно 1-2 % затрат идет на обоснование геологических возможностей подземного строительства, а на обеспечение длительной устойчивости--4-70 % затрат.

Надежность и долговременность подземных сооружений значительно выше, чем поверхностных. Срок службы многоэтажных зданий - 100 лет, жилых домов особой капитальности - 125 лет, фруктохранилищ - 28 лет. Период эксплуатации подземных сооружений гораздо выше. Например, для тоннелей эти нормы составляют 500 лет. Известно также немало случаев, когда подземные сооружения сохранялись в течение тысячелетий. Затраты на ремонт подземных сооружений ниже, чем наземных, т.к. они не подвержены климатическим факторам. Для естественного разрушения горных пород требуются десятки и сотни тысяч лет.

Автор считает, что основным полезным свойством подземного пространства является их способность вмещать в себя какие-либо объекты или процессы. Однако в отличие от остальных пространственных ресурсов подземное пространство обладает некоторыми другими полезными характеристиками: имеет относительно стабильные климатические характеристики (температурно-влажностный режим); изолировано от разного рода поверхностных воздействий, таких как шум, вибрация, радиоактивность и т.д.; относительно герметично, а также способно удерживать тепловую и другие виды энергии. Кроме того, влияние любого объекта, расположенного под землей, на окружающую среду значительно ниже и в лучшей степени может контролироваться; подземные здания часто не требуют существенных затрат на внешнюю отделку, служат значительно дольше и требуют более низких эксплуатационных затрат, чем поверхностные; подземное пространство в ряде случаев легче осваивать, чем поверхностное, так как оно не зависит от топографии и дробления на частные участки.

Авторы относят к преимуществам заглубленных гражданских зданий следующие: эстетические (взаимосвязи с окружающим ландшафтом); более рациональное использование земли; снижение уровня шума и вибрации; уменьшение эксплуатационных расходов (на ремонт здания, гидро- и теплоизоляцию и др.); пожарная безопасность (распространение огня ограничено); сейсмостойкость; защита от ядерного взрыва и радиоактивных осадков; защита от штормов и торнадо; сохранение энергии.

Однако, наряду с преимуществами использования подземного пространства, существуют и некоторые сложности, обусловленные свойствами данного ресурса. Так, например, опыт подземного строительства в г. Канзас-Сити (США) показывает, что существует три проблемы использования подземного пространства: техническая, Юридическая и психологическая.

Психологическая проблема заключается в субъективном мнении людей о том, что условия пребывания в подземном пространстве должны быть хуже, чем на поверхности. Техническая проблема включает в себя сложности с дренажом воды, канализацией, водостоком и вентиляцией. Юридическая проблема наиболее свойственна США и другим странам, где исторически собственность на землю включает в себя собственность на подземное пространство.

К основным недостаткам подземного пространства по сравнению с поверхностным относят высокую естественную влажность, отсутствие дневного света, невозможность свободного доступа с поверхности земли, т.к. спуск и подъем осуществляется через определенные выработки (в некоторых случаях это является достоинством), наличие горного давления и возможность сдвижения горных пород вследствие создания или использования подземных пустот, более высокие капитальные затраты при строительстве здания под землей, чем на поверхности .

Подземные полости используются людьми издревле. Существуют данные о том, что еще в прошлом веке во Франции и России строили подземные винохранилища. Первые подземные гидроэлектростанции были сооружены в Германии (1907 г.) и Швеции (1910 г.). Во время первой мировой войны в Германии была сделана попытка размещения складов под землей. В 1917 г. в Германии был построен подземный завод по производству точных приборов.

Во время второй мировой войны в Германии были размещены в подземном пространстве заводы, электростанции, склады продовольствия, оборудования, горючего, химические производства, хранилища культурных ценностей. К концу 50-х годов подземные промышленные предприятия имелись уже в 50 странах мира. В начале 70-х только в странах НАТО насчитывалось почти 450 подземных объектов. В 80-е годы их количество выросло по сравнению с 60-ми в 3. раза. Площадь некоторых подземных заводов достигла 800 тысяч м2 и более, а объем - более одного миллиона м3.

Наиболее широкая классификация направлений использования подземного пространства по назначению предлагается в работе. Подземные сооружения создаются в следующих отраслях и сферах деятельности: горном деле, городском строительстве, энергетике и нефтегазовой отрасли, аграрном секторе, транспорте, науке, медицине и др. Таким образом, количество наиболее распространенных направлений использования ресурса составляет более 30.

По целесообразности размещения под землей объекты можно разделить на следующие группы: традиционно подземные сооружения; сооружения, для которых размещение под землей имеет ряд технологических преимуществ, и сооружения, размещаемые под землей в целях экономии территории земной поверхности и улучшения состояния окружающей среды.

Подземные сооружения, не связанные с добычей полезных ископаемых, строятся на глубине 15-300 м. Однако отдельные хранилища углеводородов располагаются на глубине 1 км и более.

Строительство городских подземных сооружений в настоящее время развивается весьма быстро. Необходимость создания и все более активного использования подземного пространства в современных городах обусловлена следующими факторами: – стремлением к разуплотнению исторически сложившейся застройки и оздоровлению старых частей городов; – все более ощутимым недостатком свободных городских земель, пригодных для новой застройки, а также угрозой ликвидации лучших сельскохозяйственных районов, прилегающих к городам, с частичным, а в некоторых случаях и с полным уничтожением естественного природного окружения; – необходимостью радикального упорядочения городского движения с возможно более полным разделением пересекающихся транспортных потоков, а также потоков пешеходов и транспорта, с созданием систем непрерывного и скоростного, в том числе внеуличного рельсового сообщения, и с компактным решением пересадочных узлов; – дальнейшим развитием систем культурно-бытового и коммунального обслуживания с размещением соответствующих объектов в наиболее нужных местах (в том числе и у пунктов массовых скоплений населения) с одновременным повышением рентабельности этих учреждении; – сохранением архитектурных памятников и ансамблей, представляющих культурно-историческую ценность, и капитальной опорной городской застройки; – развитием разнообразных средств общественного, специального и индивидуального транспорта, для хранения и технического обслуживания которого требуются большие территории; – развитием средств инженерного оборудования города, коммунального и складского хозяйств. Автор описывает следующие причины развития подземного строительства в городах: недостаток земель и невозможность занятия новых (в силу экологических последствий расширения городов); более рациональное использование городских территорий; транспортные задачи и безопасность; расширение сети услуг; сохранение архитектуры; развитие инженерного оборудования города (коммуникаций и т.д.); гражданская оборона.

Среди преимуществ строительства городских подземных объектов отмечается, что оно позволяет экономно использовать наземную территорию, содействует упорядочиванию транспортного обслуживания населения и повышению безопасности дорожного движения, снижает уличный шум и загрязнение воздуха выхлопными газами автомобилей, способствует повышению художественно-эстетических качеств городской среды.

Городские подземные сооружения характеризуются относительно небольшой глубиной заложения, привязкой к конкретным поверхностным объектам и территориям, особой пространственной организацией, специфическим временным режимом использования и т.д. Поэтому для них создаются специальные подземные полости, отвечающие в каждом конкретном случае предъявляемым требованиям. Спектр направлений использования городского подземного пространства практически неограничен.

Одним из примеров современного уровня развития подземного строительства является столица Франции Париж. Площади подземных помещений здесь в 80-е годы составили: здания - 43 млрд м3; линии метро и скоростные магистрали - 16; водоотливные каналы, канализация, сети, коллекторы - 8; неиспользуемые в настоящее время пустоты - 6; национальное общество железных дорог - 3; подземные паркинги - 2,5; торговые центры - 1,5; подземные службы путей сообщения - 1,1; различные технические галереи - 0,6. Существует также намерение властей разместить в Париже под землей автомобильные дороги и оставить поверхность только для пешеходов.

В работе приводится анализ возможностей экономии энергии путем создания подземных помещений. В частности, указывается, что в США 37 % энергетического сырья используется в секторе жилых и коммерческих зданий, и их размещение под землей позволит уменьшить потребности этих зданий в энергии на 36-60 %. Так, в штате Миннесота сезонные колебания температуры составляют 75, а под землей - 11 градусов, и в случае внезапного прекращения подачи энергии потери будут составлять не более 1 градуса в день. В связи с этим Министерство энергетики США ведет работу по строительству подземных жилых и коммерческих зданий. В 1980 г. в США было построено более 3000 укрытых землей жилых и более 100 коммерческих помещений. Причем в этих домах живут достаточно обеспеченные люди.

В городском подземном строительстве известны случаи вторичного использования подземных полостей. Так, французский автор А.Р. Boiler описывает пример применения выработок, созданных при строительстве тоннелей метро, для городских телефонных сетей, автостоянок и других целей. Наибольший опыт вторичного использования горных выработок принадлежит США, где в г. Канзас-Сити из имеющихся там более 20 миллионов м2 выработок известняковых шахт используется около 2 миллионов м2 (около 10 %). Подземное пространство в г. Канзас-Сити осваивается в 10 раз быстрее, чем создается в результате добычи известняка, что обусловлено высокими потребностями в нем. При этом 85 % используется под склады различного назначения и холодильники, 7 % - под производственные объекты, 5 % - под офисы, 3 % - под предприятия сферы обслуживания. Там размещаются приборные и сборочные заводы телевизоров, городской промышленный парк, две международные торговые зоны, хранилища ценной документации, комплексные хранилища - холодильники и зернохранилища.

В зависимости от назначения и характера использования выделяют следующие группы и виды подземных или полуподземных городских сооружений, помещений и устройств : – инженерно-транспортные сооружения - пешеходные и транспортные тоннели, перегонные тоннели и станции метрополитена, скоростного трамвая и городских участков железных дорог, автостоянки и гаражи, тоннели и станции движущихся тротуаров и другого перспективного непрерывного транспорта, отдельные помещения и вокзалы; – предприятия торговли и общественного питания - торговые залы и подсобно-вспомогательные помещения кафе-буфетов, столовых, закусочных и ресторанов, торговые киоски, магазины, отдельные помещения или секции универсальных магазинов, торговых центров и рынков; – зрелищные, административные и спортивные здания и сооружения - кинотеатры обычные и залы хроники, выставочные и танцевальные залы, биллиардные, отдельные помещения театров и цирков, залы заседаний и конференц-залы, книгохранилища, архивы, запасники музеев, стрелковые тиры, залы игр и аттракционов, плавательные бассейны; – объекты коммунально-бытового обслуживания и связи - приемные пункты, ателье и мастерские бытового обслуживания, парикмахерские, бани и бассейны, прачечные, почтовые отделения, – сберегательные кассы, автоматические телефонные станции; – объекты складского хозяйства - продуктовые и промтоварные склады, овощехранилища, холодильники, ломбарды, различного рода резервуары для жидкостей и газов, склады горюче-смазочных и других материалов; – объекты промышленного назначения и энергетики - отдельные лаборатории, цехи и производства (особенно те, в которых необходима защита от пыли, вибрации, перемены температур и других внешних воздействий), тепловые и гидроэлектростанции, промышленные котельные, промышленные склады и хранилища; – объекты инженерного оборудования - трубопроводы водоснабжения, канализации, теплоснабжения, газоснабжения (вплоть до молокопроводов молочных заводов или керосинопроводов в аэропортах), водостоки и ливнестоки, кабели различного назначения, мусоропроводы, общие коллекторы подземных сетей, электротяговые подстанции, хозяйственно-бытовые устройства - вентиляционные и калориферные камеры, бойлерные и котельные, газорегуляторные пункты и газораздаточные станции, станции перекачки сточных вод, трансформаторные подстанции, очистные и водозаборные сооружения.

Конструктивные и объемно-планировочные решения подземных и полуподземных сооружений во многом предопределяются глубиной их заложения от поверхности земли. В связи с этим известны : – сооружения глубокого заложения (на отметках I ниже 10-15 м от уровня поверхности земли), строительство которых обычно осуществляется закрытыми тоннельными способами (без вскрытия поверхно-сти). Сооружения глубокого заложения рассчитываются обычно на значительное горное давление; – сооружения мелкого заложения (на отметках вы- 1 ше 10-15 м от уровня земли), возводимые с полным 1 или частичным вскрытием поверхности, а также закрытым способом; – замкнутые сооружения, образованные перекры-’ тиями большой площади и лишенные естественного света и проветривания. К такого рода полуподземным сооружениям относятся объекты, расположенные на поверхности земли или частично заглубленные. По объемно-планировочной схеме различают одноуровневые и многоуровневые подземные сооружения: – одно-, двухпролетные, простейшего типа; – сооружения, создаваемые по сложным планировочным схемам (в том числе и криволинейные в плане); – зальные (многопролетные); – сооружения комбинированных типов.

В зависимости от функциональной и композиционной взаимосвязи с другими зданиями известны: – подземные сооружения и подземные части зданий, решенные в виде отдельных сооружений; – комплексы подземных сооружений и подземных частей зданий различного назначения; – развитые комплексы подземных сооружений различного назначения, связанные единым объемно-планировочным решением с их наземными объемами и являющиеся составной частью общественных, административных, культурно-просветительных и других зданий или их комплексов.

В соответствии с условиями расположения в городе могут быть выделены: – подземные сооружения, расположенные под городскими улицами и площадями, скоростными дорогами, путями рельсового транспорта и различного рода проездами; – подземные сооружения, расположенные под незастроенными участками, в том числе под скверами и бульварами; – подземные сооружения и подземные части зданий, расположенные непосредственно под жилыми, административными и общественными зданиями или их комплексами; – отдельные подземные сооружения или части сооружений, входящие в состав развитых комплексов инженерно-транспортного назначения, которые могут располагаться под городскими улицами, площадями и зданиями различного назначения.

В перспективе создание новых экологически безопасных технологий строительства, отвечающих требованиям защиты геологической среды, позволит разместить в Москве ниже земной поверхности до 70 % общего объема гаражей, 60 % складов, 50 % архивов и хранилищ, 30% учреждений культурно-бытового обслуживания. Подземное пространство под Манежной площадью в Москве стало объектом комплексного многоцелевого назначения. Оно включает в себя археологический музей и офисы, торговый центр и предприятия общественного питания (бары, рестораны, кафе и т.д.), стоянки автомобилей и гаражи. На поверхности расположена пешеходная зона, а озелененное пространство сливается с Александровским садом. Общая площадь застройки комплекса - примерно 70 тысяч м2. В нее вписывается сеть подземных сооружений (коллектор реки Неглинки, три линии метрополитена, подземные пешеходные переходы).

Перечень размещаемых в городском подземном пространстве объектов определяется исходя из санитарно-гигиенических и психофизиологических требований. Так, в работах приводится следующее время нахождения людей в зданиях: концертные залы, театры, музеи, библиотеки - 3-4 (до 5) ч; магазины, кафе, рестораны, кинотеатры - 1-2 ч; сооружения транспортного характера - несколько минут; ряд сооружений (склады, вспомогательные и т.д.) эксплуатируются с минимальным участием человека.

В качестве принципов построения и организации городских подземных сооружений автор выделяет следующие: все подземные сооружения должны в перспективе составлять единую пространственно-временную систему; более сложное зонирование по сравнению с поверхностными зданиями, их взаимосвязи в пространстве, необходимость коммуникаций с учетом препятствий и топографических и геологических условий и др.

Одной из основных проблем использования городского подземного пространства является то, что при высокой плотности его использования существует опасность влияния процессов строительства и эксплуатации подземных сооружений друг на друга и на поверхностные объекты. Для городских подземных сооружений не всегда имеется возможность создания значительного поверхностного комплекса и поэтому все необходимые процессы должны располагаться под землей.

Рассмотрим детально основные направления использования городского подземного пространства.

Среди подземных сооружений городов сеть инженерных коммуникаций (коммунальные сети) является одной из наиболее важных. Основными инженерными коммуникациями, которые обеспечивают нормальные условия повседневной жизни современного крупнейшего города, можно назвать следующие: линии питьевого водоснабжения; линии хозяйственного (промышленного) водоснабжения; бытовая канализация; ливневая канализация; газопроводы; трубопроводы теплофикации; трубопроводы горячего водоснабжения; кабели и линии связи; электрические линии различного напряжения; трубопроводы пневмопочты; трубопроводы пневматического удаления мусора; топливопроводы; кабели регулирования уличного движения; кабели электрифицированных железных дорог; кабели освещения и др.

Иногда могут встречаться и другие системы подземных коммуникаций, главным образом, на промышленных и даже на сельскохозяйственных предприятиях, в частности, керосинопроводы или молокопроводы.

Подземные инженерные коммуникации обычно сооружают раздельно, чаще всего в разное время в отдельных траншеях, на различной глубине от поверхности, в зависимости от характера ранее уложенных коммуникаций, определенных физических свойств грунта, уровня грунтовых вод, природно-климатических и других условий.

Поперечные сечения, пропускная способность, или мощность подземных инженерных коммуникаций, также различны. Так называемые магистральные трубопроводы (главный кабель, водовод большого сечения, главный коллектор и т.д.) обслуживают, как правило, большие площади. От них отходят распределительные трубопроводы, которые в свою очередь снова разветвляются и прокладываются вблизи отдельных обслуживаемых ими зданий и сооружений и посредством отдельных вводов питают их.

Большая часть подземных инженерных коммуникаций, за исключением бытовой и ливневой канализации, располагается обычно на небольшой глубине - до 3 м.

В транспортных целях создаются тоннели: пешеходные, автомобильные, железнодорожные, судоходные и тоннели метрополитена. Проводятся они для преодоления гор, водоемов и других препятствий в местах прохождения транспортных путей. В настоящее время существуют достаточно развитые технологии тоннелестроения, позволяющие обеспечивать устойчивость этих сооружений к воздействию горного давления, водопритока и других факторов в течение тысячелетий.

Для крупнейших городов нашей страны наиболее перспективен внеуличный, преимущественно подземный пассажирский рельсовый транспорт. Линии скоростного внеуличного рельсового транспорта в городах могут быть классифицированы по видам используемых транспортных средств, по принципиальной схеме развития трасс, по характеру эксплуатации, глубине заложения, объемно-планировочному решению станций, вестибюлей и других помещений.

По видам используемых транспортных средств различают метрополитен и скоростной трамвай, а в отдельных случаях - городские железные дороги, экспрессные (сверхскоростные) линии метрополитена и монорельсовые дороги. Соответствующие сети могут иметь подземные и полуподземные участки.

В зависимости от принципиальной схемы развития внеуличного рельсового транспорта его линии могут трассироваться в виде одного или нескольких диаметров (или хорд), объединенных кольцевыми или полукольцевыми линиями. В городах, развивающихся в длину, линии внеуличного рельсового транспорта прокладываются преимущественно в продольном, наиболее нагруженном в транспортном отношении направлении.

В соответствии с характером эксплуатации различают сети внеуличного рельсового транспорта с независимым (замкнутым) движением поездов по отдельным, не связанным между собой линиям (в Москве и Ленинграде), с переходом части поездов с одной линии на другую (в Лондоне и Нью-Йорке) и комбинированные сети.

По объемно-планировочному решению станций известны сооружения одноплатформенные - с центральной пассажирской платформой островного типа, двух-платформенные - обычно с береговыми платформами и многоплатформенные, встречающиеся чаще всего только в пересадочных узлах или в подземных железнодорожных станциях.

Особенностями подземных транспортных сооружений являются их жесткая привязка к транспортным путям, а также специфическая вытянутая форма. Это направление использования подземного пространства - одно из наиболее распространенных и выгодных с точки зрения получения прибыли.

В Москве в 1998 г. построено около 300 подземных пешеходных переходов, много транспортных (коммуникационных) тоннелей, протяженность линий метрополитена составила 240 км. Проектируется и строится метро в Омске, Челябинске, Уфе, Казани и Красноярске.

Транспортные тоннели в городах классифицируются по назначению, протяженности, конфигурации в плане, организации движения и конструктивной схеме, глубине заложения, месту расположения в городской застройке.

По назначению различают тоннели, предназначенные для смешанного (автомобильного и рельсового) или только автомобильного движения. В зарубежной практике встречаются тоннели, рассчитанные только на движение легковых автомобилей.

По протяженности транспортные тоннели подразделяются на короткие с длиной тоннельной перекрытой части до 300 м и протяженные (более 300 м), нуждающиеся в принудительно-вытяжной вентиляции.

В соответствии с конфигурацией в плане различают прямолинейные, криволинейные, разветвляющиеся и взаимно пересекающиеся (на разных уровнях) тоннели; слияние транспортных потоков или их пересечения в одном уровне в транспортных тоннелях не допускается.

По организации движения известны тоннели для одностороннего и двухстороннего движения (во встречных направлениях), а по конструктивной схеме - однопро-летные, двухпролетные и многопролетные; количество полос движения по условиям безопасности в тоннеле должно быть не менее двух.

В зависимости от глубины заложения известны тоннели мелкого заложения (глубиной до 10-15 м), создаваемые обычно со вскрытием поверхности, и тоннели глубокого заложения (глубиной более 10-15 м), проводимые подземными горными способами.

По месту расположения в городе различают тоннели обычного типа, проложенные под улицами, проездами, застройкой и площадями, а также горные и подводные.

Транспортные тоннели могут быть представлены в виде отдельных сооружений, входить в состав развитых в плане и профиле пересечений городских улиц и дорог в нескольких уровнях или быть элементами многоуровневых общественно-транспортных и других комплексов различного назначения.

Создание третьего автотранспортного кольца столицы связано с прокладкой части магистрали под землей.

Необходимость устройства внеуличного, в том числе и подземного перехода, определяется либо категориями пересекаемых улиц и дорог, либо количественными соотношениями потоков пешеходов и транспорта. Во всех тех случаях, когда пешеходы не имеют возможности пересечь проезжую часть в течение разрешающих сигналов светофоров, следует либо сократить объем движения в данном узле, либо найти возможность устройства транспортного пересечения в разных уровнях или внеуличного перехода.

Пешеходные переходы классифицируются по ряду признаков: по отношению к потокам транспорта и к поверхности земли; планировочной схеме; количеству ярусов и глубине заложения; функциональной и композиционной взаимосвязи с городской застройкой; оборудованию учреждениями обслуживания; устройствам для перемещения пешеходов по вертикали.

По отношению к потокам движения городского транспорта и к поверхности земли пешеходные переходы подразделяются на уличные, трассированные в уровне проезжей части, и внеуличные, расположенные под уровнем проезжей части или над ней. В зависимости от расположения относительно поверхности земли вне-уличные переходы могут быть наземными, надземными и подземными.

По планировочной схеме различают внеуличные переходы следующих типов: линейные (коридорные), од-нопролетные или двухпролетные, простейшего типа; сооружения, строящиеся по развитым планировочным схемам, в том числе и изогнутые в плане; зальные (многопролетные); сооружения комбинированных типов, создаваемые по относительно сложным схемам.

Подземные и полуподземные внеуличные переходы могут быть запроектированы в одном, двух или нескольких ярусах как полностью изолированных перекрытиями, так и объединенных общим открытым пространством. Конструктивное и объемно-планировочное решения подземного перехода во многом предопределяет глубина его заложения.

В связи с этим известны: – подземные сооружения глубокого заложения, строительство которых осуществляется подземными способами (без вскрытия поверхности); такие сооружения рассчитываются обычно на значительное горное давление от вышележащих пород; – подземные сооружения мелкого заложения, строительство которых ведется со вскрытием поверхности; – замкнутые сооружения, образованные перекрытиями большой площади и лишенные естественного света и проветривания, а также сооружения, частично заглубленные, например, на перепадах рельефа.

В зависимости от функциональной и композиционной взаимосвязей с городской застройкой различают внеуличные переходы, решенные в виде отдельных сооружений; переходы, построенные в комплексе с другими транспортными зданиями и сооружениями (пересечениями улиц и дорог в разных уровнях, входами в метро, вокзалами различного назначения и др.); переходы, являющиеся составным элементом общественных, административных, жилых и прочих зданий и их комплексов.

По оборудованию переходов учреждениями обслуживания известны переходы, предназначенные только для «транзитного» пешеходного движения, переходы с отдельными учреждениями и устройствами попутного обслуживания (телефоны-автоматы, газетные и книжные киоски, театральные билетные кассы и пр.), переходы с развитым составом учреждений попутного обслуживания (торговля, бытовое обслуживание, общественное питание).

В зависимости от используемых устройств и механизмов для перемещения пешеходов по вертикали различают переходы с лестничными и пандусными сходами, а также переходы, оборудованные различными типами эскалаторов или ленточными подъемниками непрерывного действия.

Одним из самых быстро развивающихся направлений городского подземного строительства является сооружение подземных гаражей. Так, в работе описан гараж в Женеве (Швейцария) на 530 машин площадью 3500 м2 и глубиной 25 м. Авторы считают, что с учетом всех затрат стоимость места в подземном гараже приблизительно равна стоимости места в гараже на поверхности.

Даже в наиболее благоприятных климатических условиях каждый легковой автомобиль находится в движении в среднем не более 1-1,5 ч в сутки (300-400 ч в год). Следовательно, каждый автомобиль находится на стоянках примерно 22-23 ч в сутки; это обстоятельство следует учитывать.

Необходимо обеспечить такое размещение гаражей Для постоянного хранения машин, чтобы предельный путь от дома до этих сооружений не превышал 600-800 м, т. е. затраты времени на подход к ним не были более 8-10 мин. Стоянки должны находиться на расстоянии 200-250 м от жилья. Только такое размещение мест хранения автомобилей исключает необходимость пользования подвозящим транспортом. Приближение мест хранения автомобилей к жилищу является не только удобным для владельцев, но и экономически оправданным. В противном случае для каждой машины потребуется не одно, а два места: первое - постоянное в капитальном гараже, примерно 2-3 км от дома; второе - открытая стоянка непосредственно у жилища, на ближайших улицах, на внутриквартальных проездах или хозяйственных площадках.

В зарубежной практике нередко используются на-земно-подземные гаражи. Например, в Будапеште на площади Мартинелли с многоэтажным административным зданием объединен наземно-подземный гараж рам-пового типа на 400 мест. Гараж имеет восемь наземных и два подземных яруса и построен в очень стесненном месте. В состав гаража входят встроенная автозаправочная и полуподземная станции обслуживания, рассчитанные, главным образом, на обслуживание «городских» автомобилей, въезжающих на стоянку, а также транзитных машин. Для ведомственных автомобилей выделен специальный подземный этаж с самостоятельным въездом и выездом.

Исходя из необходимости экономии городской территории или сохранения сложившегося характера застройки для определенной части автомобилей могут предусматриваться подземные или полуподземные гаражи и стоянки. При этом значительно сокращаются санитарные разрывы до жилых и общественных зданий. Размеры разрывов в этом случае исчисляются не от наружных стен, а от мест выделений вредных выбросов и источников шума, т.е. от въездов в гаражи и вентиляционных шахт. Верхний ярус (покрытие) подземных или полуподземных автостоянок может использоваться для озеленения или открытого хранения машин. Например, по этому принципу в жилом районе «Сите-Модель» в Брюсселе наряду с многочисленными открытыми автостоянками на 830 мест сооружен одноярусный подземный гараж на 180 автомобилей и 80 мотоциклов. Этот гараж соединен подземными переходами непосредственно с лифтовыми холлами трех больших многоэтажных жилых зданий. Въезд в гараж отнесен от входов в жилые дома на 20-25 м. В этом же районе сооружены отдельно стоящие бензозаправочная и станция технического обслуживания.

Широкое распространение подземные гаражи и стоянки получают в новых многоэтажных жилых комплексах США. Так, в Лос-Анджелесе, в новом районе «Сенчюри Сити», построены два 27-этажных жилых здания-башни на 308 квартир. Под ними размещен подземный гараж на 525 машин. В этой же части города возведено два 20-этажных жилых дома «Сенчюри Парк апар-тмент» на 485 квартир. Под домами сооружен подземный гараж на 700 автомобилей.
В подземном пространстве могут также размещаться части вокзалов и другие сооружения магистрального и пригородного транспорта.

В соответствии с решением привокзальной площади и перрона могут быть выявлены следующие разновидности вокзалов: – одноярусные, когда движение пассажиров и транспорта на перроне осуществляется в одном уровне (при этом сами здания вокзалов могут быть многоэтажными); – многоярусные, когда движение пассажиров и транспорта на перроне организовывается в разных уровнях (надземном и наземном, наземном и подземном); в современной практике распространены преимущественно многоярусные решения крупных вокзальных комплексов, в том числе и с использованием подземного пространства.

В зависимости от расположения пассажирского здания по отношению к перрону различают железнодорожные вокзалы берегового, островного и тупикового типов. Наиболее распространены вокзалы берегового типа, для которых характерно наличие островных пассажирских платформ с выходами на них по пешеходным тоннелям. Такие тоннели устраивают не только на больших станциях, но и на станциях со средним или даже малым пассажирооборотом. В последние годы тоннели используются и на пригородных платформах. При скорости поездов 120-160 км/ч, следующих с минутными интервалами по нескольким путям (иногда с переменным направлением движения), сооружение тоннелей становится практически необходимым на всех магистральных железнодорожных направлениях, особенно на остановочных пунктах с достаточно мощными пассажиропотоками. Тоннели для пешеходов сооружаются как по оси платформ, так и в их торцах в зависимости от основных направлений путей подхода пассажиров.

По системе «сэндвич» построены многоярусные автовокзалы в Нью-Йорке, в Детройте и других городах США. Обычно верхний ярус таких вокзалов отводится для дальних автобусов, промежуточный - для пассажиров, а нижний - для местных автобусов. Нижний ярус при этом бывает частично или полностью заглублен.

В Москве функционирует крупнейший в Европе московский торгово-рекреационный комплекс «Охотный ряд». На строящемся Московском международном деловом центре «Москва-Сити» предусматривается заглубление на 3 этажа, начинается строительство большого подземного сооружения на Конюшенной площади в Санкт-Петербурге. Крупнейшей подземной строительной площадкой конца XX в. в Москве стала площадь Курского вокзала.

Во многих крупных городах Западной Европы и США можно встретить комплексы многоэтажных жилых домов с широким использованием подземного пространства. В Париже, на улице Фландер, на территории в 2 га построена группа жилых трехэтажных зданий. Первые этажи зданий заняты общественными помещениями (магазинами самообслуживания, почтой, сберкассой и др.). Под зданиями и двором сооружены три подземных яруса общей площадью около 20 000 м2, которые предназначены для размещения подземной стоянки машин и служебно-технических и подсобно-складских помещений.

Во многих крупных современных гостиницах используется не только подземная часть самого здания, но и подземная часть двора. В подземных ярусах размещаются гаражи-стоянки, торговые помещения, склады, комнаты обслуживающего персонала, залы ресторанов и другие помещения.

В здании гостиницы «Мареки» в Хельсинки (Финляндия) используется несколько подземных уровней, предназначенных не только для подсобно-технических помещений и автостоянок, но и для размещения небольших торговых предприятий, ресторанов, баров, кафе-закусочных, танцевальных залов и др. В этом сооружении суммарная полезная площадь подземных помещений и устройств превышает объем наземной части.

В городах Японии до 1975 г. было построено подземных предприятий торговли общей площадью более 400 тысяч м2.

Основные причины подземного размещения магазинов и предприятий питания заключаются в растущей потребности в торговых сооружениях в городах, необходимости их приближения к потребителям, удорожании и нехватки земель в центральной части города, увеличении людских потоков в подземном пространстве и т.д.

Многие культурные объекты не нуждаются в дневном свете и могут быть успешно размещены в подземном пространстве.

Характерными примерами застройки подземных пространств являются также последовательно производимые расширения инфраструктуры, которые становятся необходимыми из-за недостатка места, защиты окружающей среды или обеспечения «неприкосновенности» местности. Расширение университетов, университетских кварталов все больше мотивируется растущими потребностями. При этом путем застройки подземных пространств увеличение имеющихся полезных площадей может быть достигнуто без ущерба для озелененных территорий, спортивных и игровых площадок. Так расширили университет г. Хьюстона (штат Техас, США). При этом не пострадали озелененные территории на поверхности. К старому главному зданию университета было пристроено подземное сооружение площадью около 5 тысяч м2, в котором имеются лекционные аудитории, учебные классы, читальный зал, столовые, лаборатории. Так была решена характерная университетская проблема. Потребность в расширении университетов - всемирно наблюдаемое явление, а ведь у каждого университета есть такие озелененные территории, спортивные площадки и дворы, застройка которых возможна только с ущербом для университетской жизни; под ними же, однако, имеется неограниченная возможность для строительства. Наибольшим резервом расширения является формирование подземного пространства.

Путем подземного размещения спортивных сооружений также может быть сэкономлено большое количество площадей на поверхности для мест отдыха и озеленения. Строящиеся после второй мировой войны по всей Европе жилые районы были очень скупо обеспечены спортивными сооружениями. Центральные и наиболее представительные спортивные сооружения по большей части предназначены только для спортивных состязаний и для абсолютного большинства населения недоступны.

В энергетике подземное пространство используется для стоительства в нем частей электростанций или хранилищ энергии в различной форме. Размещаются такие объекты, как правило, либо в местах добычи энергии, либо в местах ее потребления (т.е. в городах). Их геометрические характеристики и требования к массиву горных пород являются весьма специфическими.

В настоящее время все большую популярность приобретает подземный способ хранения нефти (нефтепродуктов) и газа. Отмечается, что в северных странах в настоящее время более 50 % хранилищ нефти и газа - подземные.

Главной целью организации таких хранилищ является удовлетворение потребностей потребителей данных продуктов в периоды сезонного или вызванного другими причинами изменения спроса или предложения. В работе указывается, что в северных штатах США в холодные зимние дни спрос на газ в 2-10 раз превышает норму. Таким образом, подземные хранилища позволяют обеспечивать газом население и способствуют более равномерной работе газопроводов и соответственно снижению расходов общества. В связи с этим подземные хранилища нефтепродуктов должны находится в непосредственной близости от потребителя, а их объем - соответствовать максимальной разнице между спросом и предложением на эту продукцию.

Использование подземного пространства в аграрных целях производится преимущественно для производства или хранения соответствующих продуктов. Основными предпосылками этому являются сокращение сельскохозяйственных земель и рост потребностей общества в сельскохозяйственной продукции (в связи с ростом численности населения на планете). С другой стороны, подземные полости имеют относительно стабильные климатические характеристики, что дает возможность круглогодичного производства и хранения продуктов питания. В настоящее время известны случаи подземного разведения форели, выращивания грибов и овощей, хранения зерна, производства продуктов животноводства и пр. Считается также, что возможно подземное выращивание деревьев для производства древесины.

Основной предпосылкой создания подземных научно-исследовательских лабораторий является защищенность подземного пространства от различных поверхностных факторов: механических, электромагнитных колебаний и т.д. Поэтому в подземных условиях проводят исследования, которые требуют достаточно высокой точности измерений, постоянства климатических характеристик, а также те, которые могут представлять опасность для поверхностных объектов (например, ускорение заряженных частиц). Это достаточно узкий и специфичный круг задач. Сооружения такого рода являются большой редкостью и создаются с особой тщательностью.

Основные причины размещения в подземных условиях хранилищ водных ресурсов - предотвращение изъятия под водохранилища земельных территорий и защита водных ресурсов от влияния антропогенных факторов и окружающей среды. К преимуществам подземных хранилищ воды относят более высокую безопасность хранения, постоянную температуру воды, скрытность хранения, предотвращение испарений, низкую стоимость обслуживания данных сооружений.

В городских условиях возможно также строительство подземных складов. Различают подземные склады ак^ тивного и пассивного складирования. При активном, систематически осуществляемом складировании, когда ежесуточно перерабатывается большое количество продуктов и материалов, необходимы хорошо спланированные, значительные по размерам разгрузочные и погрузочные площадки и непосредственная связь складов с железнодорожными коммуникациями. Подобный склад (полезной площадью около 5 га) расположен вблизи г. Канзас-Сити (США). Часть склада используется для хранения замороженных продуктов в количестве 25 000 т при температуре до - 32 °С. Стоимость строительства склада составила примерно 10 % стоимости наземного холодильника такой же вместимости.

В течение двух последних десятилетий в крупнейших городах мира все большее внимание уделяется проектированию и строительству не только отдельных общественных и административных зданий, но и градостроительных комплексов. В них включены разнородные учреждения обслуживания, проектируемые в тесной взаимосвязи с транспортными сооружениями и, как правило, требующие широкого использования подземного (вместе с наземным) пространства. Примеры - комплексы Курский, Манежный, Сити, элитные дома с подземными гаражными и магазинными комплексами и др.

Таким образом, происходящее в настоящее время интенсивное развитие городской подземной инфраструктуры обусловлено рядом факторов. Известны классификации подземных сооружений по различным признакам. Опыт подземного строительства в нашей стране и мире значителен.


Подземное пространство - город растет вглубь

Каждый город непрерывно растет, увеличивая свою площадь. Предоставляя человеку возможность самым выгодным образом реализовать свои способности, городские условия создают невероятно большую концентрацию населения. Одновременно меняется уровень жизни и благосостояния. Здания, сооружения и инфраструктура со временем оказываются устаревшими, не соответствующими растущим запросам и потребностям городского населения.

Рост концентрации населения требует все новых площадей для новых зданий, дорог, обслуживающих сооружений и всего того, что нужно человеку для жизни. Со временем город становится экономически неэффективным. Растянутые транспортные коммуникации увеличивают стоимость продукции городских предприятий. С ростом площади значительно растут расходы на отопление, уборку мусора и водоснабжение.

В развитии города однажды наступает этап, когда дальнейший его рост требует радикального пересмотра концепции использования городского пространства. Еще в древних городах, зажатых крепостными стенами, начали строить многоэтажные здания. Одновременно для различных целей использовали и объем подземного пространства.

Изменения температуры воздуха влияют на состояние лишь поверхностного слоя грунта (только до глубины 0,3м). Дальше начинается область, в которой какие-либо изменения происходят очень и очень медленно. На каждые 33 метра в глубь планеты прирост температуры составляет 1°С.

Подземным сооружениям неведомо воздействие внешних факторов: осадков, метелей и ураганов. Там всегда стабильный влажностно-температурный режим, благоприятный для хранения, который очень легко поддерживать в нужных пределах.

За тысячелетия развития человеческая цивилизация накопила богатый опыт освоения и использования подземной среды. В основном в целях хранения продуктов и прочего имущества. Вряд ли найдется хоть что-нибудь, что не размещали бы под землей. Церкви, военные заводы и арсеналы, больницы и госпитали, рестораны, гостиницы и даже кладбища.

Катакомбам Парижа 18 столетий. Общая длина подземных помещений составляет 300 км, занимаемая площадь 800 гектаров. В них добывали строительный камень и гипс. Дальнейшие разработки были запрещены только Наполеоном из-за угрозы обвалов. Именно здесь хоронили умерших во время эпидемий. Катакомбы использовались для жилья и размещения винных погребов. Во времена хиппи молодежь устраивала здесь праздники и дискотеки, после чего городские службы закрыли все входы под землю.

Из современного опыта наиболее показательно использование подземного пространства в городе Канзас-Сити (США). Все известняковые шахты разрабатываются с учетом будущего использования выработанного объема. Подземные помещения сдают в аренду и продают под офисы фирм и как производственные площади. Горные породы обладают хорошей вибро- и акустической изоляцией. Такие условия - основное требование при размещении производства оптических деталей и высокоточных приборов. Калибровочные и юстировочные работы на поверхности приходилось проводить только в ночное время из-за транспортного шума. По этой причине практичные американцы опустили производство на глубину 183 метра.

Стоимость извлеченной породы составляет лишь небольшую часть стоимости освобожденного пространства. Некоторое время даже рассматривались предложения сваливать известняк в реку. Доходы от его продажи значительно ниже по сравнению с прибылями от эксплуатации помещений.

Во время холодной войны под крупными городами в Китае создали целую сеть бомбоубежищ. Казалось бы впустую были затрачены огромные материальные и трудовые ресурсы. Однако после начала в Китае реформ эти площади стали использовать в коммерческих целях. В расположенных под землей ресторанах даже справляют свадьбы и юбилеи.

Использование подземного пространства зависит от геологических и сейсмических условий в районе города. Не возникает особых трудностей при разработке полостей в скальной породе и известняках. Для Беларуси характерны обводненные осадочные грунты и главная угроза для подземных сооружений исходит от воды. Тем не менее строительство минского метро показало, что при надлежащем качестве работ возможна успешная борьба с этим злом.

Основной смысл освоения подземного пространства - экономия площади поверхности в городской черте. Особенно это впечатляет, если рассматривать проблемы роста необходимых площадей под автостоянки.

Непонятно, каким образом, но исторически сложилось так, что подвальные помещения наших многоэтажек не используются в качестве гаражей. Мы относимся к этому спокойно и привыкли к несовпадению места хранения автомобиля с местом жительства его хозяина. Иногда расстояние может быть больше километра. При такой логике обычная поездка - целый ритуал. Нужно добраться до стоянки, причем в любую погоду, забрать автомобиль, подогнать его к подъезду и только потом воспользоваться плодами всеобщей автомобилизации.

Такое положение вещей - строительство отдельно стоящих гаражей при острой жилищной проблеме вызывает удивление. На каждый двухуровневый гараж требуется столько же стройматериалов, сколько и на фундамент многоэтажного здания такой же площади. Каждый новый гаражный кооператив - это несколько закопанных в землю фундаментов. Было бы понятно, если одновременно строили бы здания с подземными стоянками, но этого не происходит. Такая практика процветает на всем пространстве СНГ.

В 1990 году в бывшем СССР на каждых 17,9 человека приходился один легковой автомобиль. В то же время в Европе этот показатель составлял 2,9 человека на 1 авто, а в США 1,9 человека. Вполне понятно, что будет происходить дальнейшее насыщение страны автомобилями до европейских стандартов. Когда-нибудь их количество возрастет в 6 раз, а следовательно, площадь автостоянок и гаражей увеличится таким же образом.

По данным специалистов АО Белпромпроект, стоимость строительства многоэтажных зданий с подземным гаражом возрастает всего лишь на несколько процентов. В основном это расходы на строительство въезда, вентиляцию и дополнительную звукоизоляцию.

Самое удивительное состоит в отсутствии каких-либо ограничений на проектирование и строительство со стороны строительных норм и правил. Нет каких либо особых препятствий со стороны пожарных. Ограничения начинаются, если количество этажей гаража более двух. Тогда предъявляются повышенные требования к надежности путей эвакуации автомобилей.

Практически существующая ситуация не объяснима с точки зрения здравого смысла. Хранение автомобилей под открытым небом приводит к ускоренной коррозии кузова и деталей. Кроме этого, запуск холодного двигателя при отрицательной температуре равнозначен износу при пробеге в 200 км. В свою очередь это ведет к более частым покупкам запчастей. А так как у нас все чаще обзаводятся иномарками, из государства утекает столь необходимая валюта.

В холодное время нужно несколько минут, чтобы довести температуру двигателя до необходимой. Эти несколько минут при каждом запуске- тысячи тонн бензина. А сколько проблем возникает, когда температура опускается ниже минус 30° С. Для многих это становится непреодолимым препятствием, и они вынуждены пользоваться общественным транспортом. Подобных проблем для метрополитена не существует. Его работа абсолютно не зависит от внешних факторов.

Вместе с началом строительства метро возникла возможность серьезного освоения подземного пространства города. Первый серьезный эксперимент проектировщики сделали при проектировании станции "Октябрьская". В подземном переходе к универсаму "Центральный" разместили помещения касс по предварительной продаже билетов. Основываясь на этом опыте, при последующем проектировании начали делать ставку на расширение возможностей эксплуатации преимуществ подземных площадей.

По мнению главного инженера АП Минскметропроект Г. А. Евсевьева метрополитен нужно рассматривать как зону создания подземной инфраструктуры для размещения социальных служб города и помещений вспомогательного характера. Комплексное использование подземного пространства экономит наземные площади. Это выход для разгрузки центра города, где стоимость земли значительно выше, чем на окраинах. Такой подход к проблеме дает возможность снизить расходы по строительству самого метрополитена.

Дело в том, что минское метро имеет небольшую глубину заложения. Несущую способность конструкций и, следовательно, их стоимость обусловливает нагрузка, создаваемая грунтом над станцией. Больше глубина - больше вес грунта, больше нагрузка и выше расходы на строительные конструкции. Стремление снизить эту статью расходов приводит к созданию над станцией помещений. Логика проста - вес воздуха ничтожен по сравнению с грунтовой засыпкой.

При таком подходе стоимость строительства падает, архитектуру станций можно делать более ажурной. Выручка от эксплуатации созданных подземных помещений становится дополнительным источником финансирования.

Исходя из таких логических предпосылок строился участок перегонных туннелей за станцией метро "Фрунзенская". Вместо грунтовой засыпки спроектировали и построили два подземных этажа площадью по 2 000 м2 каждый. Предполагалось, что верхний из них будет использоваться для торговых помещений. На нижнем этаже должны были разместиться склады товаров. Была предусмотрена возможность установки грузовых лифтов. К сожалению, до сих пор не удалось найти покупателей или арендаторов для этих площадей. Были предложения использовать эти помещения в качестве гаражей. Главный инженер "Минскметропроекта" относится к этому сдержанно. С точки зрения торговли место очень выгодное. Рано или поздно потребитель найдется.

Лучше обстоит ситуация на строительстве станции "Партизанская". Над станцией расположен торговый зал размерами 21 на 105 метров. Примерно таких же размеров запроектирован и строящийся подземный комплекс перед универмагом "Беларусь". Со станцией метро "Партизанская" и подземными переходами под ул. Жилуновича и партизанским проспектом комплекс будет связан также подземными переходами. Финансирует работы "Ареса-Сервис", она же является владельцем строящегося комплекса. Покупатель для помещений над самой станцией еще не найден.

После завершения строительства город будет располагать значительным торговым комплексом. Его образуют сама станция, как транспортная система, гостиница "Турист", универмаг "Беларусь" и подземные торговые площади.

Подобный более масштабный проект был подготовлен для привокзальной площади. По замыслу проектировщиков под ней должен был располагаться подземный этаж с камерами хранения, кафе и прочими обслуживающими службами. Здесь же хотели оборудовать подземные автостоянки и стоянки такси. Пассажиры могли бы, не поднимаясь на поверхность, покинуть здание вокзала. Строительство этого привокзального комплекса отложено из-за нехватки финансирования.

Легче обстоит дело с созданием и расширением вспомогательных мест в подземных переходах. Коммерческие организации быстро оценили возможности и выгоды попутной торговли. Здесь налицо одно из преимуществ подземного пространства. В подземных переходах не так страшны мороз и жара. Покупателю и продавцу нет дела до идущих на поверхности дождей или метелей.

Основываясь на этих преимуществах, построен развитый пешеходный переход на выходе со станции "Пушкинская". Кроме прочих торговых точек здесь расположилась и аптека.

Совмещение развитых подземных переходов с созданием подземных этажей над станциями будет продолжено. Подобный опыт используют при строительстве станций на продолжении первой очереди метро в Уручье. Таким же образом проектируются станция "Каменная горка" в микрорайоне Запад и станция "Могилевская" в микрорайоне улицы Ангарская.

Метростроители уже освоили центр города с его плотной исторической застройкой. Теперь очередь жилых микрорайонов. Особый интерес проектировщиков вызывает техническая зона метрополитена. Это площадь полосой в 40 метров от оси каждого туннеля. По существующим правилам в этих пределах запрещено какое-либо строительство в момент ведения подземных работ. В новых жилых кварталах более свободно, чем в центре города.

Эти обстоятельства позволяют создавать развитую подземную инфраструктуру. Здесь предполагается строительство подземных гаражей и автостоянок. Одновременно под землю можно опустить сооружения вспомогательного характера и склады. Технические возможности позволяют вести подобное строительство - вопрос упирается в возможности финансирования.

Тенденции в мировом градостроительном опыте свидетельствуют в пользу развития подземной инфраструктуры. Она обеспечивает возможности кардинальных архитектурных решений, предоставляющих дополнительные удобства жителям городов.

Ошибки при строительстве подземных сооружений значительно труднее исправить. Следует учитывать, что в каждом конкретном случае освоение подземного пространства ведется с учетом местных условий, существующего опыта и потребностей города. Одновременно развиваются производственный и технологический потенциалы. Использование последних научно-технических достижений может привести к значительному развитию этой области градостроительства.

Виктор ОСАДЧИЙ

Конюхов Д.С.

Использование подземного пространства. Учеб. пособие для вузов. 2004.

В учебном пособии приводится широкий обзор истории освоенияподземного пространства в различных странах мира, подробно рассматриваются все существующие типы подземных сооружений, экологические аспектыстроительства и использования подземных сооружений. Большое внимание уделено повторному использованию ранее построенных подземных объектов иотработанных горных выработок. Для студентов строительных и архитектурных вузов и факультетов.

ПРЕДИСЛОВИЕ

Инженерное освоение подземного пространства — это одно из важнейших направлений, обеспечивающих устойчивостьразвития современного общества. Учебное пособие, которое вы держите в руках, предназначено для студентов высших учебных заведений, обучающихся понаправлению подготовки дипломированных специалистов 653 500 «Строительство» (специальности: 290 300«Промышленное и гражданское строительство», 291 400 «Проектирование зданий») и бакалавров по направлению 550 100«Строительство». В нём приводится обзор истории освоения подземного пространства в различных странах мира, включая Россию,рассматриваются практически все типы существующих в настоящее время в мире подземных сооружений, даются многочисленные примеры архитектурно-планировочных решений подземных объектов, построенных в последние годы. Отдельное внимание уделяется экологическим аспектам взаимодействия подземного сооружения с окружающей его природной и городской средой, комплексному использованию подземного пространства, а также повторному использованию ранее построенных подземных объектов различного назначения и отработанных горныхвыработок. В книге рассматриваются проблемы надёжности идолговечности подземных сооружений и излагается современная теория рисков применительно к подземному строительству. Подготовка и издание этого пособия стали возможными во многом благодаря постоянной помощи и поддержке деканафакультета Гидротехнического и специального строительства,заведующего кафедрой Подземного строительства игидротехнических работ МГСУ, доктора техн. наук, профессора М.Г. Зерцалова. Автор искренне благодарит рецензентов: докторов техн. наук, профессоров И.Я. Дормана и В.Е. Меркина за ценные советы и замечания при подготовке рукописи.

ВВЕДЕНИЕ

В последние годы во всём мире всё большее внимание при планировке и застройке крупных городов и городов-мегаполисов уделяется проблемам освоения подземного пространства, атакже строительству подземных объектов за пределами городской черты, обеспечивающих нормальное функционированиекрупных населённых, в особенности промышленных, центров. Такие проблемы, как дефицит городских территорий, постоянный рост населения городов, скопление на дорогах больших масстранспортных средств, неспособность городской инфраструктуры справиться с постоянно возрастающими нагрузками иухудшение экологической обстановки требуют всё более активногоиспользования подземного пространства, в том числе дляразмещения транспортных и инженерных систем, объектов торговли и бытового обслуживания, складов и автостоянок и т.п. Согласно современным исследованиям, в большинстве случаев подземные сооружения, несмотря на значительные затраты при ихвозведении, являются наиболее оптимальными решениями многихвопросов функционирования города.

Подземное пространство города — это пространство под дневной поверхностью земли, используемое как «одно из средств преодоления тенденции расширения города, предмет разработок новых концепций создания и сохранения естественной среды обитания, достижения приоритетов эколого-экономического благополучия и устойчивого развития, создания условийжизнедеятельности людей в экстремальных условиях» [РАСЭ, 1996]. Подземное пространство города включает: подземныетранспортные сооружения, размещение промышленных предприятий и предприятий обслуживания населения, подземные городские сети и сооружения инженерного оборудования, сооруженияспециального назначения. Комплексное освоение подземного пространства (рис. 1) характерно для крупных городов и городов- мегаполисов, в основном, в зонах общегородского центра ицентрах муниципальных районов, в зонах наиболее важныхтранспортных узлов и пересечений, на территориях промышленного и коммунально-складского назначения. Одним из аспектовкомплексного освоения подземного пространства являетсярациональное использование наземной территории, в частности:

строительство зданий и сооружений в условиях стеснённой городской застройки;

сохранение территории зелёных зон и мест отдыха,устройство в сложившейся застройке озеленённых и благоустроенных участков;

повышение художественно-эстетических качеств городской среды, сохранение исторически ценной территории;

сохранение и восстановление уникальных объектовландшафтной архитектуры;

доступность наиболее важных объектов городского значения и мест трудовой деятельности горожан, экономия времени;

улучшение транспортного обслуживания, повышениебезопасности движения, снижение уличных шумов;

сокращение длины инженерных коммуникаций;

защита населения в периоды возможных природных итехногенных аварий и катастроф.

Во всех мировых столицах ведётся активное освоениеподземного пространства. Не являются исключением и крупныегорода нашей страны, в первую очередь Москва иСанкт-Петербург. По сути дела, на наших глазах создаётся новая подземная инфраструктура крупных городов, в ходе проектирования истроительства которой необходимо учитывать целый ряд факторов, и, прежде всего, влияние техногенных процессов на экологию подземного пространства и состояние гидрогеологической среды.

Гиперконцентрация населения, инфраструктуры ипромышленного производства приводит к огромной перегрузкегеоэкологической и гидрогеологической сред крупных городов и вызывает в них необратимые изменения. На территории Москвы подвоздействием техногенных факторов развивается гравитационное идинамическое уплотнение пород, сдвижение пород в массиве,гидростатическое взвешивание и сжатие рыхлых водовмещающих пород, механическая и химическая суффозия. Наиболее активно воздействие города проявляется в поверхностных слоях земной коры на глубинах до 60—100 м, однако, в отдельных случаях, это воздействие может проявляться и на глубинах до 1500—2000 м от дневной поверхности*. Наиболее существенное влияние нагеоэкологическую среду оказывают: воздействие наземнойтехносферы города, создание подземных выработок, откачкаподземных вод, нарушение инфильтрационного баланса грунтовых вод. Нарушение природного баланса грунтовых вод, например,приводит к изменению напряжённо-деформированного состояния породного массива и уплотнению пород в пределах депрессионных воронок, образующихся при водопонижении. Это, в свою очередь, вызывает деформации земной поверхности истановится причиной многочисленных аварийных ситуаций. Всёвышеперечисленное свидетельствует о том, что на территории Москвы протекают значительные изменения геологической среды иприродный ресурсный потенциал уже, практически, не в состоянии обеспечить своё самовосстановление. Примерно 48 %территории города находится в районах геологического риска, 12 % — в районах потенциального геологического риска и лишь 40 %территории характеризуются как стабильные. На настоящий момент «освоение подземного пространства является ключом к сохранению окружающей среды, а такжефактором, оказывающим благоприятное влияние на сохранениесреды обитания человека в крупных городах» [Петренко, 1998].

Этого благоприятного влияния можно достичь за счёт:

— более полного использования подземного пространства, как среды обитания человека;

— расширения области применения «экологичных» способов строительства подземных сооружений;

— контроля за просадками дневной поверхности и ихпредотвращение;

— нестандартных архитектурно-планировочных решений с учётом экологических требований при использованииподземного пространства.

Среди большого количества объектов подземнойинфраструктуры существенная роль отводится системам исооружениям транспортного назначения. К их числу принято относить:

объекты городского скоростного внеуличного пассажирского рельсового транспорта (метрополитен, скоростной трамвай,городская железная дорога);

пересечения городских улиц и дорог в разных уровнях,транспортные тоннели, подводные тоннели, подземные пешеходные переходы и т.д.;

объекты, связанные с хранением и обслуживаниемавтомобильного транспорта (гаражи для постоянного храненияавтотранспорта, гостевые автостоянки-паркинги);

многофункциональные, многоуровневые объекты икомплексы различного назначения, взаимосвязанные с наземнымизданиями, а также сооружениями и устройствами транспортногоназначения с различными формами использования подземногогородского пространства (вокзалы, торговые центры, станцииметро и т.д.).

Среди подземных систем специализированногопассажирского транспорта в городах нашей страны преобладаютметрополитены. В настоящее время метрополитены эксплуатируются истроятся в десяти городах России: Екатеринбурге, Казани,Красноярске, Москве, Нижнем Новгороде, Новосибирске, Омске,Санкт-Петербурге, Самаре, Челябинске, а проектируется — в Уфе. В последние годы всё более широкое распространениезавоёвывает тенденция создания новых транспортных линий,призванных обеспечить связь деловых, культурно-исторических и торговых центров между собой и с районами массовой жилой застройки, расположенными на окраинах крупных городов. Это позволит увеличить скорость сообщения и улучшить качество обслуживания пассажиров. К таким линиям, в первую очередь, относятся «мини-метро», имеющие меньшие размеры туннелей и станций «в свету», более короткие расстояния между станциями, более низкие скорости движения подвижного состава. Дополняя уже существующие сети метрополитена, проектируются системы «метро центра», которые позволяют создавать более удобные связи для внутрицентровых перевозок. Также в Москвепланируется создание сети экспрессных линий метрополитена. Такиесистемы существуют во многих крупных городах мира: Париже, Лондоне, Нью-Йорке и многих других (рис. 2). Интеграцияразличных внеуличных систем рельсового транспорта позволяет приблизить пассажиров к наиболее посещаемым местам города. Каркасом современного города является улично-дорожная сеть, которая также взаимосвязана с проблемами освоения ииспользования подземного пространства. В Москве многиетранспортные пересечения в разных уровнях решены сиспользованием тоннелей. Использование разноуровневых пересечений (вчастности, тоннельного типа) упорядочивает условия движениягородского наземного транспорта, сокращает уровень транспортных шумов и загрязнения воздуха выхлопными газамиавтомобилей, снижает число дорожно-транспортных происшествий.

С подземными транспортными системами непосредственно связана ещё одна градостроительная проблема — организация постоянного и временного хранения автомобильного транспорта. При решении этой проблемы необходимо, сочетая различные приёмы и максимально учитывая всю совокупность конкретных условий, применять новые технологии использованияподземного пространства, являющиеся особенно перспективными дляпереуплотнённых и реконструируемых центральных районовгородов-мегаполисов.

Комплексное использование подземного пространствасдерживает дальнейший рост территорий крупных городов ипозволяет решать совместно градостроительные, транспортные,инженерные и социальные проблемы, улучшатьархитектурно-планировочную структуру городов, освободить поверхность земли от многих сооружений вспомогательного характера, рационально использовать городские территории для жилищногостроительства, создать места отдыха горожан, улучшатьсанитарно-гигиеническое состояние города, сохраняя архитектурныепамятники — эффективно размещать объекты инженерногооборудования и т.д.

1. ИСТОРИЧЕСКИЙ ОБЗОР ИНЖЕНЕРНОГО ОСВОЕНИЯ ПОДЗЕМНОГО ПРОСТРАНСТВА

1.1. Краткий исторический обзор подземного строительства в мире

Освоение человеком подземного пространства началось в глубокой древности. Прототипом подземных сооружений можно считать естественные пещеры и пустоты в скальных породах,используемые нашими предками. Пещера стала первым жилищем человека, защищавшим его от непогоды и хищников. Примерно в

то же время человек начал подземным способом разрабатывать горные породы для получения различных полезных ископаемых. В.М. Слукиным [Слукин, 1991] предлагается периодизация подземных сооружений по эпохам:

1) поздний палеолит и неолит (до 4 тысячелетия до н.э.);

2) древний мир (4 тысячелетие до н.э. — IV вв. н.э.);

3) средневековье (V—XI вв.);

4) новое время (после XII вв.).

Российским обществом спелеостологических исследований разработан «Кадастр искусственных пещер и подземныхархитектурных сооружений на территории Евразийского иАфриканского континентов»*. В зависимости от культурно-цивилизационных факторов, исторических предпосылок, основного родазанятий населения и проч. в «Кадастре» выделяются восемь спелеостологических стран Старого Света.

1. Восточнославянская. Целиком располагается натерритории СНГ и занимает достаточно однородную, с точки зрения культуры освоения подземного пространства, территорию:большую часть России, Белоруссии, Украины, север Казахстана. На этой территории с древности сооружались подземные объекты культурного и бытового назначения, культовые сооружения,убежища, фортификационные подземные ходы, рудники икаменоломни.

2. Западноевропейская. Занимает территорию Европы, стран Балтии, Северо-Западной Белоруссии, Закарпатья. Этатерритория характеризуется широким и прагматичным использованием подземного пространства* уже многие тысячелетия здесьприменяются подземные выработки, оборонительные сооружения,убежища, хозяйственные сооружения, некрополи.

3. Переднеазиатская. Включает Бессарабию, Горный Крым и Кавказ. Для этой территории с глубокой древности характерно комплексное использование больших групп подземных объектов различного назначения: жилых, хозяйственных,оборонительных, транспортных, культовых — входящих в пещерные города и подземные монастыри. На этой территории находятся широко известные в мире подземные города-монастыри (Каппадокия, Турция); большие подземные комплексы оборонительного ихозяйственного назначения.

4. Среднеазиатская. Располагается на территориисреднеазиатских государств СНГ, восточного Азербайджана, Ирана иСеверного Афганистана. Освоение подземного пространства здесь началось со строительства в предгорьях водоподводящих систем — кяриязов, суммарной протяженностью в десятки тысяч километров. В горных районах с 15 тысячелетия до н.э.развивалось горнорудное дело. Кроме этого в этом районе находятподземные ходы оборонительного назначения, а такжемусульманские и буддийские культовые пещеры.

5. Южноазиатская. Занимает полуостров Индостан иприлегающие районы. Характеризуется развитием горного дела,наличием подземных цистерн, группами крупных подземных храмов с высеченными в скале архитектурными элементами —колоннами, скульптурами и проч.

6. Восточноазиатская. В основном, находится на территории Китая. Уникальные достижения древней и средневековой науки Китая способствовали созданию оригинальных и разнообразных подземных сооружений: пещерных храмов, некрополей,водоводов, транспортных коммуникаций. Особенно интенсивнымразвитием характеризовалось жилищное строительство — и в наше время в пещерных поселениях Китая проживают десяткимиллионов человек

7. Североафриканская. Находится на территории Древнего Египта и стран Северной Африки. В основном характеризуется подземными сооружениями культового назначения: гробницами и храмами, а также подземной добычей полезных ископаемых. В Ливии и Алжире сохранились сетчатые водособирающиеподземные системы, напоминающие кяриязы; в Эфиопии —оригинальные подземные храмы. В странах Северной Африки для защиты от жары жители периодически сооружали подземные жилища.

8. Экваториальноафриканская. На территории ЧёрнойАфрики к югу от Сахары к настоящему времени не обнаруженоникаких признаков подземного строительства. В Восточной Африке, видимо, вследствие культурного взаимообмена с Индией,Египтом и арабскими странами, подземным способомразрабатывались полезные ископаемые. Первое свидетельство постройки тоннеля, зафиксированное в исторических документах, относится к 2 150 году до нашей эры. Это был подводный пешеходный тоннель протяжённостью 900 м и размерами в свету 4 х 3,6 м под рекой Евфрат в Вавилоне,соединявший царский дворец с храмом Юпитера. На время строительства русло реки шириной 180 м было отведено в сторону и все работы произведены насухо в открытом котловане. Стены и свод тоннеля состояли из кирпичной кладки на битумномвяжущем.

Подземные сооружения многократно упоминаютсяисториком Геродотом. В частности, им описываются подземныефрагменты египетских пирамид (около 2500 года до н.э.), подземные покои египетской царицы Нитокрис (около 700 года до н.э.),тоннель длиной около 1600 м на острове Самос в Эгейском море, пройденный в известняке с помощью молотков и зубил. Вот что пишет сам Геродот об этом сооружении: «Сквозной тоннель в горе высотой в 150 оргий*, начинающийся у её подошвы свыходами по обеим сторонам. Длина тоннеля 7 стадий, а высота и ширина по 8 футов. Под этим тоннелем по всей его длине они прокопали канал глубиной в 20 локтей и 3 фута ширины, через который в город по трубам проведена вода... Строителем этого водопроводного сооружения был Евпалий, сын Навстрофа. В течение многих веков этот тоннель считался неизвестным и вновь был открыт лишь в 1882 году. При его обследовании было выяснено, что трасса тоннеля состоит из двух прямых,соединённых обратными кривыми. К первому тысячелетию до н.э. историки относят подземные города на территории современных Грузии и Армении. В Грузии, недалеко от города Гори, сохранился древний подземный город Уплисцихе (рис. 1.1), сообщавшийся с р. Курой с помощьютоннеля. Для сбора грунтовых и атмосферных вод использовалась система шахт, соединявшихся между собой подземными ходами, проложенными на глубине около 50 м от поверхности земли.

Подземные выработки возводились без обделки и лишь в отдельных случаях закреплялись каменной кладкой. Около 50 года до н.э. римлянами был пробит тоннель длиной около 5 км для отвода воды из озера Фучино. Согласно историку Плинию, тоннель строился в течение 11 лет, работы велись встречными забоями примерно из 40 шахт. В начале 1-го века н.э. римлянами был построен тоннельдлиной 900 м и шириной 8 м на дороге Неаполь — Понцуоли.Тоннель проложен под холмом Посилипо, сложенным извулканического туфа. Высота тоннеля у входного и выходного портала составляет 25 м, а к середине она постепенно уменьшается.

Предполагается, что вертикальные раструбы предназначались для улучшения освещения дневным светом. Около 300 года н.э. на территории современной Турции был построен тоннель, выполнявший одновременно функцииводопровода и подземного судоходного канала. При императоре Адриане римлянами был сооружен тоннель для водоснабжения Афин. В период турецкого владычествачисленность населения города резко упала, тоннель был заброшен и вновь запущен в эксплуатацию спустя столетия — в 1840 году. В 1925 году афинский водопровод был расширен иреконструирован, вследствие чего старый римский тоннель продолжаетэксплуатироваться до сих пор.

Древние славяне в середине и второй половине 1-готысячелетия н.э. в качестве основного вида жилища использовалиполуподземные сооружения — землянки (рис. 1.2). К VIII—IX векам относятся катакомбные погребения в Хазарии. Основу этого погребального сооружения составляли катакомбы, вырытые в твердом грунте на склонах холмов. Каждая катакомба состояла из двух частей — коридорного входа ипогребальной камеры.

В Грузии на скалистом обрыве высотой 105 м на левом берегу р. Куры в XII—XIII вв. был высечен подземный комплекс Вардзиа. Комплекс представляет собой 8 этажей пещер, пройденных в вулканических туфах на участке шириной около 500 м (рис. 1.3). В центре пещерного комплекса находится церковь УспенияБогоматери, относящаяся, по росписи стен, к 1184—1186 годам. К западу от церкви расположена колокольня. Между ними, а также западнее и восточнее, находятся сотни общественных, культовых и жилых помещений, связанных коридорами, площадками илестницами. Для водоснабжения комплекса его строителями был пробит тоннель протяжённостью 3,5 км, по дну которого пролегали два гончарных трубопровода. Вода по ним шла самотёком.

Пропускная способность этого водопровода составляла более 160 000 л/сут. Между 400-ми и 1400-ми годами историками отмечаетсяпочти тысячелетний застой в европейском тоннелестроении. Здесь необходимо отметить, что данный временной перерыв относится, в первую очередь, к строительству объектов общественного(промышленного и гражданского) назначения. Строительствоподземных сооружений оборонного и специального назначения не прерывалось практически никогда. Более подробно это вопрос будет рассмотрен в следующих разделах на примере освоения подземного пространства России, стран СНГ и Москвы. Начиная с XIII в. на юго-востоке Нидерландов широкоераспространение получила подземная добыча известняка для строительства. Всего зарегистрировано около 250 каменоломен, восновном, частного характера, площадью от нескольких десятков метров до 100 га [Бреулс, 1998]. Большинство этих выработок, расположенных на глубине 20—25 м, сосредоточено в долина Зихен и Зассен в 10 км от Маастриха. Добывая камень, рабочие прокладывали глубокие шахты к пласту известняка. Придостижении пласта прорезали отдельный ход со ступенями, идущий к кухне, сараю или хозяйственной постройке на дневной поверхности. По окончании строительства выработки использовались как хранилища, колодцы (при повышении уровня грунтовых вод), убежища на время многочисленных войн. На стенах шахтнаходят рисунки всадников и солдат, изображённых в униформеармий практически всех стран мира, проходивших за истекшие 7 веков через территорию Нидерландов. В 1450 году было начато строительство тоннеля на дороге между Ниццей и Генуей. Вскоре работы были приостановлены и возобновлены лишь через 300 лет. Однако в 1794 годустроительство было полностью прекращено и над незаконченнымтоннелем устроена дорога.

В конце XV в. на территории Московского Кремля былопроложено несколько водопроводных тоннелей с обделкой изкаменной кладки. В XVI в., в период правления Ивана Грозного, в Москве велось активное подземное строительство. В частности, в 1657 году В. Азначеевым была предпринята попыткастроительства подводного тоннеля под р. Москвой. В XVII в. в Пскове и Великом Новгороде было проложено несколько подземныхходов протяжённостью до 200 м с деревянным и каменнымкреплением свода и стен.

В XVII—XIX вв. во Франции было пройдено несколькосудоходных тоннелей:

в 1679—1681 годах на участке Лангедокского канала,соединявшего р. Гаронна со Средиземным морем, тоннель длиной 164 м, высотой 8,2 м и шириной 6,7 м, пересекающий возвышенность Мальпас к северу от Пиренеев (Мальпасский тоннель, впервые в истории тоннельного дела, был пройден с применением пороха);

в 1784—1838 годах в разделительном бьефе канала Нивернэ между реками Сана и Луара были построены три судоходных тоннеля общей протяжённостью около 1500 ми шириной 7 м;

в 1787—1789 годах на Центральном канале между реками Луара и Сена был сооружён тоннель Торси длиной 1276 м,шириной 2,6 м и высотой 2,9 м;

в 1802—1809 годах на Сен-Кантенском канале между реками Уаза и Шельда были пройдены два тоннеля: Рикеваль, длиной 5670 м, и Тронкуа, длиной 1098 м. Ширина этих тоннелей — 8 м.

В общей сложности, к началу XIX в. во Франции былипостроены около 40 судоходных тоннелей. Не отставала от Франции и её историческая соперница — Англия: в период с 1766 по 1769 годы на канале, соединяющем каменноугольные копи с Манчестером, были пройдены 5судоходных тоннелей, самый протяжённый из которых — Харкэстль, — имел длину 2632 м, ширину 2,7 м и высоту 3,7 м. В 1825—1827 годах параллельно ему был пройден ещё одинтоннель длиной 2675 м, шириной 4,3 м и высотой 4,9 м. Всего за тот же период времени, что и во Франции, в Англии были построены около 60 судоходных тоннелей.

В США первый судоходный тоннель длиной 137 м, шириной 6,1 м и высотой 5,5 м был построен в 1818—1821 годах на Шюйкильском канале. В 1828 году в Пенсильвании был сооружёнсудоходный тоннель Лебанон длиной 223 м, шириной 5,5 м ивысотой 4,6 м.

Вторую четверть XIX в. можно считать началом эпохипромышленного тоннелестроения. Наряду с судоходными, активно возводилась железнодорожные тоннели. Первый из них был проложен в 1826—1830 годах в Англии на линии Ливерпуль- Манчестер, длина его составляет 1190 м. В тоже время воФранции был построен железнодорожный тоннель на линии Роанн — Андрезье. В США первый железнодорожный тоннель былсооружён в 1831-1833 годах на линии Аллегэни—Портэдж вПенсильвании. Длина тоннеля составила 270 м, высота 5,8 м,ширина 6,1 м.

«Отцом тоннелестроения» М. Брюннелем в 1825 году был предложен метод щитовой проходки, с помощью которого вмягких породах под р. Темзой был прорыт тоннель протяженностью 450 м (рис. 1.4). Строительство было завершено в 1832 году.

Инженерами Барлоу и Трейтхедом в 1869 году был сооружёнвторой подводный тоннель под Темзой длиной 450 м и внутренним диаметром 2 м. Для его проходки был использован щиткругового сечения с обделкой из чугунных сегментов. Этот щит является прообразом современных тоннелепроходческих щитов.

Важным этапом становления эпохи промышленноготоннелестроения является сооружение Лондонского метрополитена,открытого для движения в 1862 году. Первый участок имелпротяжённость всего 3,6 км, однако уже в 1863 году парламентскаякомиссия одобрила сооружение 30-ти километровой подземной окружной железной дороги. Она была введена в эксплуатацию в 1884 году и на одном из ответвлений включила в себя тоннель Брюннеля, оказавшийся самым старым участком Лондонского метро. В 1890 году на подземной части Южно-Лондонскойлинии была введена электрическая тяга поездов. До этого поезда ходили на паровой тяге и тоннели были заполнены паровозным дымом и копотью.

Первые методы механизации проходческих работ былиразработаны в середине XIX в. во время строительства протяжённых альпийских тоннелей. Первым из них стал двухпутный Мон-Сенисский тоннель между Францией и Италией протяжённостью 12 850 м. Работы были начаты в 1857 году, но продвигалиськрайне медленно. Для увеличения скорости проходки былисконструированы бурильные машины, работающие от сжатого воздуха, а в январе 1861 года здесь впервые было применено механическое бурение. Движение в тоннеле было открыто 17 сентября 1871 года.

Второй альпийский тоннель — Сен-Готард, — начали строить в сентябре 1871 года (рис. 1.5). Двухпутный тоннель длинойоколо 16 300 м проходит в сильно нарушенных гранитах, гнейсах, сланцах и др. породах. При его сооружении порох впервые был заменён динамитом, применены гидравлические бурильныемашины и механическая откатка породы. Строительство былозавершено в 1882 году.

Дальнейшее совершенствование методов проходкипозволило пройти двухпутный Альбергский железнодорожный тоннель длиной 10 270 м между долинами рек Инн и Рейн за четыре года: с 1880 по 1884 годы.

Значительно более грандиозный Симплонский тоннельмежду Италией и Швейцарией, протяжённостью 19 780 м, былпостроен в период с 1898 по 1906 годы. Значительная длинасооружения заставила его проектировщиков отказаться от принятой для всех остальных альпийских тоннелей двухпутной схемыдвижения и заменить её двумя параллельными однопутнымитоннелями, расположенными на расстоянии 17 м один от другого.

В этот же период времени были сооружены ещё около 10 альпийских тоннелей протяженностью от 6100 м до 14 600 м. Наибольшую трудность вызвало строительствотоннеля Лечберг. Строительство было начато в 1906 году и до июля 1908 года проходило нормально. 24 июля 1908 года произошёл внезапный прорыв воды в тоннель и участок протяжённостью 150 м был заполнен жидкой массой песка, ила и щебня. При проведении обследования было выявлено, что тоннель пересёк тектонический разлом, заполненный аллювиальнымиотложениями. Через этот разлом прошла вода из р. Кордер,расположенной на высоте 180 м над трассой тоннеля. Строителями было принято решение обойти место прорыва, что увеличило общую длину сооружения на 870 м.

Немного раньше тоннеля Лечберг на севере Италии был пройден однопутный тоннель Гатико протяжённостью 3 310 м. При его строительстве впервые были применены вертикальные кессоны для проходки участка длиной 344 м в слабыхводоносных грунтах.

Первые железнодорожные тоннели в России былисооружены в 1859 — 1862 годах на железной дороге «Санкт-Петербург- Варшава».

В 1892 году в Грузии было завершено строительствочетырёхкилометрового тоннеля через Сурамский перевал.Строительство в трещиноватых породах с большим горным давлением, в основном, велось способом опёртого свода. В этом тоннеле,впервые в России, была применена гидравлическая машина длябурения шпуров. Расчёт свода, как «упругой арки», был выполнен по предложению проф. Л.Ф. Николаи. По окончании Первой мировой войны в Италии на линии Флоренция—Болонья был выстроен железнодорожный тоннель протяжённостью 18 510 м. В 1923—1927 годах в штате Колорадо (США) был сооружён однопутный Моффатский тоннель сечением 4,8x7,2 м и длиной 9 800 м. Начатый в 1922 году, почти одновременно с ним,тоннель Шилизу в Японии, протяжённостью 9 700 м, был завершён лишь в 1931 году.

В сложных гидрогеологических условиях велосьстроительство Таннского тоннеля длиной 7 800 м, расположенного нажелезной дороге Токио—Кобэ. Строительство было начато в 1918 году и завершено в 1934 году. В 1936—1941 годах в Японии под Симонесским проливом был построен один из первых в мире протяжённых подводных тоннелей. Его длина составила 6 330 м.

В 1939 году в Кардифоре (США) был построен, по-видимому первый в мире, подземный гараж. Заглублённый под одну из площадей города на 10,7 м, он одновременно являлся убежищем для населения на особый период. С 1940 года в США начинают активно использоваться заброшенные выработки в известковых карьерах в качестве холодильников для длительного хранения скоропортящихся пищевых продуктов. Исследования,проведённые американскими специалистами, показывают, что вподземных известковых выработках в течение длительного временисохраняются постоянная температура и влажность. В случаеотключения приборов охлаждения температура в подземных складских помещениях поднимается на 3 °С в течение 60 дней.

А в 1948 году в г. Наантали (Финляндия) было сооружено одно из первых в мире подземных нефтехранилищ.До начала Второй мировой войны в Германии шлоинтенсивное строительство подземных заводов. Для этого использовались:

существующие горные выработки с расширением отдельных участков до необходимых размеров;

горизонтальные горные выработки внутри холмов или гор;

подземные и полуподземные сооружения, возводимые вглубоких котлованах (нередко использовались глубокие овраги, тальвеги и прочие естественные углубления).

Одним из наиболее крупных был завод для производстваракетных установок ФАУ-1 и ФАУ-2 в Нордхаузе (Тюрингия),расположенный внутри большого холма. Завод состоял из двухпараллельных тоннелей длиной 2,3 км и шириной 12,5 м,расположенных на расстоянии 1,4 км один от другого. Тоннелисоединялись друг с другом 46-ю поперечными выработками. Общаяполезная площадь подземного пространства составляла около 15 га. По окончании Второй мировой войны строительствоподземных заводов приобрело широкий размах в Великобритании. Для этого, обычно, использовались заброшенные горные выработки. Например, в одной из заброшенных шахт, существовавшей ещё в Первую мировую войну, был размещён подземный завод поизготовлению деталей самолётов. Общая полезная площадь завода составляла около 6 км2.

Говоря об истории подземного строительства, нельзя обойти вниманием такой немаловажный аспект, как строительствоподземных гидротехнических сооружений, отличающихсянаибольшей сложностью и трудоёмкостью по сравнению спромышленными и гражданским объектами. Так, можно привестиследующее сопоставление: площади поперечного сечения камерныхвыработок для машинных залов, уравнительных резервуаров ираспределительных устройств подземных ГЭС нередко превышают 1 000 м2 , гидротехнических тоннелей — 200 м2 , в то время как площадь поперечного сечения перегонных, тоннелейметрополитена составляет 20—25 м2 [Мостков, Орлов, Степанов, 1986]. В качестве примера приведём проект подземного машинного зала Рогунской ГЭС (рис. 1.6). Подземный машинный зал Рогунской ГЭС длиной 320 м, шириной 27 м и высотой 64 м запроектирован на глубине 500 м от поверхности земли. В непосредственнойблизости от него — помещение силовых трансформаторов шириной 20 м, высотой 38 м и длиной 180 м, отделённое от машинного зала скальным целиком шириной 38 м. Общий объём подземных выработок на Рогунском гидроузле — около 5,3 млн. м3, а ихпротяжённость — около 60 км.

...