Урок по дисциплине «Материаловедение» на тему «Чугуны. Серый и белый чугун. Хим. состав, структура, маркировка и область применения

Чугун начали применять много десятилетий назад. Этот материал обладает особыми эксплуатационными характеристиками, которые отличаются от свойственных стали. Производство чугуна, несмотря на появление большого количества различных сплавов, налажено во многих странах. Для того чтобы определить свойства чугуна, следует рассмотреть особенности его химического состава, от чего зависят те или иные физические качества.

Химический состав чугуна является важным фактором, который во многом определяет механические свойства получаемых отливок. Кроме этого, на многие свойства оказывает влияние механизмы первичной и вторичной кристаллизации.

Рассматривая химический состав чугуна следует отметить, что в него, кроме железа и углерода, обязательно входят следующие элементы:

  1. Кремний (концентрация не более 4,3%). Данный элемент оказывает благоприятное воздействие на чугун, делая его более мягким и улучшая его литейные свойства. Однако слишком высокая концентрация может сделать материал более восприимчивым к пластичной деформации.
  2. Марганец (не более 2%). За счет добавления этого элемента в состав существенно увеличивается прочность материала. Однако слишком большая концентрация может стать причиной хрупкости структуры.
  3. Сера относится к вредным примесям, который могут существенно ухудшать эксплуатационные качества материала. Как правило, концентрация серы в составе чугуна не превышает показателя 0,07%. Сера становится причиной появления трещин при нагреве состава.
  4. Фосфор содержится в составе в концентрации менее 1,2%. Повышение концентрации фосфора в составе становится причиной появления трещин при охлаждении состава. Кроме этого, данный элемент становится причиной ухудшения других механических качеств.

Как и во многих других составах, наиболее важным из химических элементов чугуна является углерод. От его концентрации и вида зависит разновидность материала. Структура чугуна может существенно различаться в зависимости от применяемой технологии производства.

Физический свойства

Чугун получил широкое распространение благодаря привлекательным физическим качествам:

  1. Стоимость материала существенно ниже стоимости других сплавов. Именно поэтому его применяют для создания самых различных изделий.
  2. Рассматривая плотность чугуна, отметим, что данный показатель существенно ниже, чем у стали, за счет чего материал становится намного легче.
  3. Температура плавления чугуна может несколько различаться в зависимости от его структуры, в большинстве случаев составляет 1 200 градусов Цельсия. За счет включения в состав различных добавок температура плавления чугуна может существенно повышаться или уменьшаться.
  4. При выборе материала многие уделяют внимание тому, что цвет чугуна может несколько отличаться в зависимости от структуры и химического состава.

Температура кипения чугуна также во многом зависит от химического состава. Для того, чтобы рассмотреть физические свойства материала, следует уделить внимание каждой его разновидности. Иная структура и химический состав становятся причиной придания иных физико-механических качеств.

Технология производства

Выплавка чугуна проводится на протяжении нескольких десятилетий, что связано с его уникальными эксплуатационными качествами. Большое количество разновидностей сплавов определяет применение особых правил маркировки. Маркировка чугунов проводится следующим образом:

  1. Литейные обозначаются буквой Л.
  2. Серый получил широкое распространение, для его обозначения применяется сочетание букв «СЧ».
  3. Ковкий обозначают КЧ.
  4. Предельный или белый обозначают буквой П.
  5. Антифрикционный или серый обозначают АЧС.
  6. Легированные чугуны могут обладать самым различным химическим составом и обозначаются буквой «Ч».

Технология производства чугуна предусматривает проведение нескольких этапов, которые позволяют получить требуемую структуру. Рассматривая процесс получения чугуна, отметим следующие моменты:

  1. Производство проводится в специальных доменных печах.
  2. Легированный и жаростойкий чугун могут получаться при использовании в качестве сырья железной руды.
  3. Технология представлена в восстановлении оксидов железа руды. В результате перестроения кристаллической решетки и изменения структуры на выходе получается материал, который называют чугуном.
  4. Рассматривая способы производства, отметим, что особенности технологии также заключаются в применяемых материалах – коксах. Под коксом подразумевают природный газ или термоантрацит, выступающие в качестве топлива.
  5. Изготовление чугуна предусматривает отпуск железа в твердой форме при применении специальной печи. На данном этапе получается жидкий чугун.

Оборудование для производства чугуна может существенно отличаться. Кроме этого, применяемая технология производства во многом определяет то, какой будет получен материал. Примером можно назвать производство ВЧШГ, которое связано с приданием структуре необычную форму.

Разновидности чугуна

Существует довольно большое количество разновидностей рассматриваемого материала. Классификация чугунов во многом зависит от структуры и химического состава. Выделяют следующие виды чугуна:

  1. . Эта разновидность материала характеризуется низкой пластичностью и высокой вязкостью, а также хорошей обрабатываемостью резанием. В составе углерод содержится в виде графита. Область применения – машиностроение; производство деталей, работающих на износ. Как показывает практика, концентрация фосфора может варьироваться в достаточно большом диапазоне: от 0,3 до 1,2%. За счет особого химического состава материал обладает высокой текучестью и часто применяется в художественном литье. Антифрикционный чугун обходится в относительно невысокую стоимость, что также определяет его широкое распространение.
  2. . За счет того, что в этом составе углерод представлен в качестве цементита, структура характеризуется чрезвычайной хрупкостью и повышенной твердостью, а также низкими литейными свойствами и плохой обрабатываемостью резанием. Стоит учитывать, что белый чугун применяется для переделки в сталь или изготовлении ковкого. Очень часто его называют предельным.
  3. Половинчатый характеризуется повышенной устойчивостью к износу, что связано с распределением углерода на цементитную и свободную основу. Часто эта разновидность материала применяется в машиностроении и станкостроении.
  4. Легированный. Для того чтобы придать особые свойства чугуну также проводится его легирование. Легированный чугун обладает повышенной износостойкостью, коррозионной стойкостью за счет включения в состав никеля и хрома, а также меди. Подобные варианты исполнения чугуна получают свое название в зависимости от того, как легирующий элемент использовался при их изготовлении.
  5. Высокопрочный чугун производится путем введения в состав жидкого серого чугуна различных элементов, к примеру, магния и кальция. В результате легирования меняется форма графита – он напоминает шар и при этом не меняет кристаллическую решетку. Стоит учитывать, что по своим свойствам этот металл напоминает углеродистую сталь, применяется, в основном, при изготовлении различных износостойких деталей.
  6. Ковкий. Получают его при переплавке белого чугуна, который следует нагреть до высокой температуры и выдерживать в подобном состоянии. В некоторых случаях для придания составу особых качеств проводится добавление легирующих элементов. Основными свойствами можно назвать высокую вязкость и повышенную степень пластичности. Получил широкое распространение в машиностроительной промышленности.
  7. Специальный. Представляет собой сплав, в который входит большое количество марганца и кремния. Зачастую применяется для удаления кислорода из стали при его производстве или переплавке, за счет чего понижается температура плавления.

Каждая разновидность чугуна обладает своей особой структурой и химическим составом, которые и определяют область применения.

Применение

Из-за особых физико-механических качеств применение чугуна стало возможно в самых различных сферах:

  1. Для производства различных деталей в машиностроительной отрасли. На протяжении многих лет именно этот сплав применяется при изготовлении самых различных деталей для двигателя внутреннего сгорания. При этом автопроизводители проводят изменение основных свойств материала путем его легирования, что необходимо для достижения уникальных качеств. Кроме этого, большое распространение получили тормозные колодки из данного сплава.
  2. Изделия из чугуна могут выдерживать воздействие низкой температуры. Поэтому материал применяется при производстве техники и инструментов, которые эксплуатируются в жестких климатических условиях.
  3. Ценится чугун в металлургической области. Это связано с невысокой стоимостью, которая во многом зависит от концентрации углерода и особенностей получаемой структуры. Высокие литейные качества также делают материал более привлекательным. Получаемые изделия характеризуются высокой прочностью и износостойкостью.
  4. На протяжении нескольких последних десятилетий рассматриваемый сплав широко применяется при изготовлении сантехнического оборудования. Это связано с высокими антикоррозионными способностями, а также возможностью получения изделий самой различной формы. Примером можно назвать чугунные ванны и радиаторы, различные трубы, батареи и мойки. Несмотря на появление материалов, которые могли бы заменить чугун, подобные изделия пользуются большой популярностью. Это связано с тем, что они сохраняют первозданный вид на протяжении длительного периода эксплуатации.
  5. Применяется сплав и для изготовления различных декоративных элементов, что связано с высокими литейными качествами. Примером можно назвать решетку для перил, различные статуэтки и многое другое.



Кроме этого, область применения зависит от нижеприведенных свойств рассматриваемого материала:

  1. Некоторые марки обладают высокой прочностью, которая характерна для стали. Именно поэтому материал применяется даже после появления современных сплавов.
  2. Чугунные изделия могут на протяжении длительного периода сохранять тепло. При этом тепловая энергия может равномерно распространяться по материалу. Эти качества стали использоваться при изготовлении отопительных радиаторов или других подобных изделий.
  3. Принято считать, что чугун – экологически чистый материал. Именно поэтому его часто применяют при изготовлении различной посуды, к примеру, казана.
  4. Высокая стойкость к воздействию кислотно-щелочной среды.
  5. Высокая гигиеничность, так как все загрязняющие вещества могут легко удаляться с поверхности.
  6. Рассматриваемый материал характеризуется достаточно длительным сроком службы при условии соблюдения рекомендаций по эксплуатации.
  7. Входящие в состав химические вещества не могут нанести вреда здоровью.

В заключение отметим, что давно открытая технология производства рассматриваемого материала на протяжении многих лет оставалась практически неизменной. Это связано с тем, что при относительно невысоких затратах можно было получить большой объем расплавленного сплава. На сегодняшний день часто проводится производство материала из лома, что позволяет еще в большой степени снизить себестоимость получаемого продукта.

Сплавы железа с углеродом, в которых содержание углерода более 1,7% называются чугунами.

Чугуны различаются по структуре, способам изготовления, химическому составу и назначению.
По структуре чугуны бывают серые, белые и ковкие. По способам изготовления-обыкновенные и модифицированные.
По химическому составу чугуны различают не легированные и легированные, т. е. такие, в составе которых имеются специальные примеси.

Серый чугун

Серый чугун наиболее широко применяется в машиностроении для отливок из него различных деталей машин. Он характеризуется тем, что углерод в нём находится в свободном состоянии в виде графита. Поэтому серый чугун хорошо обрабатывается режущими инструментами. В изломе он имеет серый и темно-серый цвет. Получается серый чугун путём медленного охлаждения после плавления или нагревания. Получению серого чугуна также способствует увеличение в его составе содержания углерода и кремния.
Механические качества серого чугуна зависят от его структуры.
По структуре серый чугун бывает:
  1. феррито-графнтовый,
  2. феррито-дерлито-графитовый и
  3. перлито-графитовый.

Если серый чугун быстро охлаждать после плавления, то он отбеливается, т. е. становится очень хрупким и твердым. Серый чугун в несколько раз лучше работает на сжатие чем на растяжение.

Серый чугун достаточно хорошо сваривается с применением предварительного подогрева и в качестве присадочного мате риала специальных чугунных стержней с повышенным содержанием углерода и кремния. Сварка без предварительного подогрев затруднена вследствие отбеливания чугуна в зонах шва.

Белый чугун

Белый чугун применяется в машиностроении в значительна меньших количествах, чем серый. Он представляет собой сплав железа с углеродом, в котором углерод находится в виде химического соединения с железом. Белый чугун очень хрупкий и твёрдый. Он не поддаётся механической обработке режущими инструментами и применяется для отливки деталей, не требующих обработки, или подвергается шлифованию абразивными кругами. В машиностроении применяется белый чугун как обыкновенный, так и легированный.

Сварка белого чугуна весьма затруднительна в связи с образованием трещин при нагреве и охлаждении, а также из-за неоднородности структуры, образующейся в месте сварки.

Ковкий чугун

Ковкий чугун обычно получают из отливок белого чугуна путем длительного томления их в печах при температуре 800-950°С, Существуют два способа получения ковкого чугуна: американский и европейский.

При американском способе томление производится в песке при температуре 800-850°С. При этом углерод из химически связанного состояния переходит в свободное состояние в виде графита, располагаясь между зёрнами чистого железа. Чугун приобретает вязкость, почему и называется ковким.

При европейском способе томление отливок производится в железной руде при температуре 850-950°. При этом углерод из химически связанного состояния с поверхности отливок переходит в железную руду и таким путём поверхность отливок обезуглероживается и становится мягкой, почему и чугун называется ковким, хотя сердцевина остается хрупкой.

В обозначениях марок ковкого чугуна после букв пишется число, показывающее среднюю величину предела прочности при разрыве в кг/мм2, а затем число, показывающее удлинение в %.

Например КЧ37-12 обозначает ковкий чугун, с пределом прочности, равным 37 кг/мм2, и удлинением 12%.
Сварка ковкого чугуна сопряжена с затруднениями в связи с отбеливанием чугуна в зоне шва.

Модифицированный чугун

Модифицированный чугун отличается от обычного серого чугуна тем, что в нем большее количество углерода находится в виде графита, чем в сером чугуне.

Модифицирование заключается в том, что при плавлении чугуна в жидкий металл добавляется некоторое количество присадок, способствующих выделению углерода в виде графита при затвердевании и охлаждении. Этот процесс модификации при одинаковом химическом составе чугуна значительно повышает механические свойства чугуна и является весьма важным. Обозначение марок модифицированного чугуна подобно обозначению марок серого чугуна.

Серый чугун имеет низкие хар-ки механич. св-в при испытаниях на растяжение. Включения графита играют роль концентраторов напряжений. Твёрдость и прочность при испытаниях на сжатие, зависящие от свойств металлической основы, у чугуна достаточно высоки. Серый чугун с пластинчатой формой графита имеет ряд преимуществ. Он позволяет получать дешёвое литьё, т.к. при низкой стоимости обладает хорошей жидкотекучестью и малой усадкой. Мех. св-ва серых чугунов зависят от метал­лической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на пер­литной основе, а наиболее плас­тичными - серые чугуны на ферритной основе. Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введе­нии в сплав кремния около 5% цементит серого чугуна практически пол­ностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная струк­тура с включениями графита. При дальнейшем уменьше­нии содержания кремния формируется структура серо­го чугуна на перлитной осно­ве с включениями графита.

Включения графита делают стружку ломкой, след-но, чугун хорошо обрабатывается резанием. Благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами. Чугун имеет высокие демпфирующие св-ва, хорошо гасит вибрации и резонансные колебания. Маркируется серый чугун буквами СЧ и цифрами, характеризующими величину временного сопротивления при испытаниях на растяжение. Н-р, СЧ10 содержит (3,5…3,7)% С, (2,2…2,6)% Si, (0,5…0,8)% Mn, P<0,3% и S<0,15%, d В =100МПа, твёрдость <190НВ. СЧ35 d В =350МПа, твёрдость <275НВ.

Серые чугуны - это литейный чугун. Серый чугун поступает в произ­водство в виде отливок. Серый чугун является дешевым конструкцион­ным материалом. Он обладает хорошими литейными свойствами, хоро­шо обрабатывается резанием, сопротивляется износу, обладает способ­ностью рассеивать колебания при вибрационных и переменных на­грузках. Свойство гасить вибрации называется демпфирующей способ­ностью. Демпфирующая сп-ть чугуна в 2-4 раза выше, чем у ста­ли. Высокая демпфирующая сп-ть и износостойкость обуслови­ли применение чугуна для изготовления станин различного оборудова­ния, коленчатых и распределительных валов тракторных и автомо­бильных двигателей и др. Выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ): СЧ 10(143-29), СЧ 15(163-229), СЧ 20(170-241), СЧ 25(180-250), СЧ 30(181-255), СЧ 35(197-269), СЧ 40(207-285), СЧ 45(229-289).

По физико-механическим характеристикам серые чугуны условно можно разделить на четыре группы: малой прочности, повышенной проч­ности, высокой прочности и со специальными свойствами.

Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших кол-в никеля и хрома, молибдена и иногда титана или меди.

Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Модификаторы - ферросили­ций, силикоалюминий, силикокальций и др. - добавляют в количестве 0,1 -0,3% от массы чугуна непосредственно в ковш во время его заполне­ния.

Серый и белый чугуны резко различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатыва­ются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ков­кого чугуна.

Белые чугуны используются как износостойкие конструкционные материалы. В таких чугунах весь углерод находится в связанном состоянии с карбидообразующими элементами (хром, марганец, бор, титан). При введении 5-8% Cr образуется карбид цементитного типа (Fe,Cr) 3 C, а при содержании более 10% Cr образуются сложные и твердые карбиды (Fe,Cr) 7 C 3 и (Fe,Cr) 23 C 6 . Для придания чугуну большей вязкости, жаро- или коррозионной стойкости в его состав вводят никель.

1. ОПРЕДЕЛЕНИЕ

Чугуном принято называть железоуглеродистые сплавы, содер-жащие углерод при нормальных условиях кристаллизации выше пре-дела растворимости в аустените и эвтектику в структуре. В соот-ветствии с диаграммой состояния железоуглеродистых сплавов чугуном являются сплавы, содержащие углерода более 2%. Эвтектика в структуре этих сплавов в зависимости от условий ее образования может быть карбидной или графитной.

Приведенное определение, лежащее в основе классификации обычных железоуглеродистых сплавов, не всегда является доста-точным.

В самом деле, карбидная эвтектика имеется не только в чугунах, но и в высоколегированных сталях, содержащих мало углерода (менее 2%), например в быстрорежущих сталях. Сложным является вопрос и с графитной эвтектикой, поскольку вторичный и эвтектоидный графит не выделяются отдельно. По одной только структуре бывает трудно правильно отличить графитизированный чугун от графитизированной стали. Поэтому часто приходится прибегать к допол-нительным определениям. В частности, характерной особенностью чугуна являются лучшие литейные и худшие пластические свойства по сравнению, со сталью, что является следствием высокого содер-жания углерода (значительно большего предела растворимости в аустените). Общепринятые границы между чугуном и сталью при содержании углерода в 2% и более носят условный характер неза-висимо от степени легирования и характера структуры.

Структура чугуна остается важнейшим классификационным при-знаком, так как она определяет его основные свойства. Структура графитизированных чугунов состоит из металлической основы, пронизанной графитными включениями. Последние очень благо-приятно влияют на износостойкость и циклическую вязкость чугуна.

К важнейшим классификационным признакам относятся также механические свойства (а для чугунов специального назначения и специальные свойства), состав отливок, технология производства, конструкция отливок и области их применения.

Прочностные свойства чугуна определяются характером метал-лической основы и степенью ослабления этой основы графитными включениями. К последним относятся прежде всего количество, форма и характер распределения графитных включений.

2. КЛАССИФИКАЦИЯ ПО ХИМИЧЕСКОМУ СОСТАВУ

В чугунах, кроме железа и углерода, содержится (в качестве обычно определяемых постоянных примесей) кремний, марганец, фосфор и сера. Чугуны содержат также незначительные количества кислорода, водорода и азота.

По химическому составу чугуны делятся на нелегированные и легированные.

Нелегированными считаются чугуны, в которых количество мар-ганца не превосходит 2% и кремния 4%. При наличии этих элементов в больших количествах или при содержании специальных примесей чугуны считаются легированными. Принято считать, что в малолегированных чугунах количество специальных примесей (Ni, Сr, Сu и т. п.) не превосходит 3%.

При малом и умеренном легировании стремятся улучшить общие свойства чугуна —однородность структуры, сохранение прочности и упругости при нагреве до относительно невысоких температур — 300—400°, повышение износостойкости, повышение прочности и т.д.

При среднем, повышенном и высоком легировании чугун приобре-тает специальные свойства, так как значительно меняется состав твердых растворов и карбидов. В этом случае наибольшее значение приобретает изменение характера металлической основы. Путем легирования можно получить непосредственно в литом состоянии мартенсит, игольчатый троостит и аустенит. Это повышает коррозионностойкость, жаростойкость и меняет магнитные свойства.

3. КЛАССИФИКАЦИЯ ПО СТРУКТУРЕ И УСЛОВИЯМ ОБРАЗОВАНИЯ ГРАФИТА

По степени графитизации, формам графита и условиям их обра-зования различают следующие типы чугунов:

б) половин-чатый,

в) серый с пластинчатым графитом,

г) высокопрочный с шаровидным графитом и

д) ковкий.

Характер металлической основы чугуна определяется степенью графитизации, состоянием легирования и видом термической обра-ботки.

По степени графитизации белый чугун является почти неграфитизированным, половинчатые чугуны являются малографитизированными, а остальные чугуны —значительно графитизированными (рис.1).

Рис 1. Схема классификации чугунов по степени графитизации, виду излома, форме и условиям образования графита

В белых и половинчатых чугунах обязательно наличие ледебу-рита, а в значительно графитизированных чугунах ледебурита не должно быть.

Структура чугуна в одной отливке может быть различной и при-надлежать к разным типам чугуна; иногда даже специально доби-ваются получения различных структур в разных слоях, например при производстве отбеленных прокатных валков и дробильных шаров. Наружные слои состоят из белого чугуна, переходные слои из поло-винчатого чугуна, сердцевина из значительно графитизированного чугуна.

Рассмотрим подробнее главнейшие особенности перечисленных чугунов.

а) Белый чугун. Белым называется чугун, у которого почти весь углерод находится в химически связанном состоянии. Белый чугун весьма тверд, хрупок и очень трудно обрабатывается резцами (даже из твердых сплавов).

Рис. 2. Структура белого чугуна (ледебурит, перлит и вторичный цементит)

На рис. 2 показана микроструктура нелегированного белого доэвтектического чугуна, состоящая из ледебурита, перлита и вто-ричного цементита. В легированных или термообработанных чугунах вместо перлита может быть троостит, мартенсит или аустенит.

Отливки из белого чугуна из-за большой твердости и хрупкости имеют ограниченное применение. Они применяются как износо-стойкие, коррозионностойкие и жаростойкие.

Белым чугун называется потому, что вид излома у него светло-кристаллический, лучистый (рис. 3).

Рис. 3. Вид излома белого чугуна.

б) Половинчатый чугун. Половинчатый чугун характерен тем, что наряду с карбидной эвтектикой в структуре имеется и графит. Это означает, что количество связанного углерода превосходит его предельную растворимость в аустените в реальных условиях затвер-девания.

Структура половинчатого чугуна — ледебурит + перлит + гра-фит. В легированных и термически обработанных чугунах можно получить мартенсит, аустенит или игольчатый тростит.

Половинчатым чугун называется потому, что вид излома у него представляет собой сочетание из светлых и темных участков кристал-лического строения. Половинчатый чугун тверд и хрупок; приме-нение изделий из половинчатого чугуна ограничено. Чаще всего эта структура встречается в отбеленных отливках в качестве пере-ходной зоны между отбеленным слоем и графитизированной частью.

в) Серый чугун (СЧ). Серый чугун наиболее распространенный машиностроительный материал. Главное отличие серого чугуна заключается в том, что графит в плоскости шлифа имеет пластин-чатую форму (рис. 4). Когда пластинки очень дисперсны, графит назы-вают дисперсным или точечным Получение пластинчатой формы графита не требует термо-обработки или обязательного модифицирования.

Пластинчатый графит раз-личают по степени изолирован-ности, характеру расположения, форме и размерам пластинок

Рис. 4 . Пластинчатый графит (прямолинейный). х100

Рис. 5. Пластинчатый графит, колониями большой степени изолированности. х100.

На рис. 5 показан пластинчатый графит, расположенный коло-ниями большой степени изолированности, а на рис. 6 малой степени изолированности. Последний графит (дисперсный) расположен между дендритами и называется междендритным точечным. На фиг. & показан междендритный пластинчатый графит, а на рис. 8 розеточный графит.

Рис. 6. Пластинчатый графит, колониями малой степени изолированности. х100.

Рис. 7. Междендритный графит. х100.

Рис. 8.Розеточный графит. х100.

Рис. 9. Завихренный графит. х100.

Рис. 10. Структура серого чугуна (сорбит, графит и фосфиды) х400.

Рис. 11. Перлито-ферритный серый чугун. х100 .

Рис. 12. Шаровидный графит. х400.

Рис. 13. Перлитный высокопрочный. х400 .



Рис. 14. Перлито-ферритный высокопрочный чугун. х100 .

Рис. 15. Ферритный высокопрочный чугун. х200.

Графит на рис. 4 называется прямолинейным, или крупным: в отличие от завихренного, показанного на рис. 9.

По преимущественной длине сечений на шлифе графитные вклю-чения делятся на десять групп, указанных ниже.

Вид излома серого чугуна в значительной степени зависит от количества графита —чем больше графита, тем темнее излом.

Отливки из серого чугуна производятся любой толщины.

Вследствие сильного ослабляющего действия пластинок графита серому чугуну свойственны почти полное отсутствие относительного удлинения (менее 0,5%) и весьма низкая ударная вязкость.

В связи с тем, что серый чугун независимо от характера металли-ческой основы имеет низкую пластичность, большей частью стре-мятся к получению его с перлит-ной основой, поскольку перлит значительно прочнее и тверже фер-рита. Снижение количества пер-лита и повышение за счет этого количества феррита приводят к потере прочности и износостой-кости без повышения пластичности. Не дают также большой пластичности легирование серого чугуна и получение аустенитной основы.

Рис. 16. Хлопьевидный и крабовидный графиты.

Рис. 17. Ковкий чугун с ферритной основой.

На рис. 10 показана структура перлитно-графитного серого чугуна, а на рис. 11 структура перлитно-ферритного серого чугуна с примерно равным количеством перлита и феррита.

г) Высокопрочный чугун с шаровидным графитом (ВЧ). Прин-ципиальное отличие высокопрочного чугуна от других видов чугуна заключается в шаровидной форме графита, (рис. 12), которая полу-чается главным образом путем введения в жидкий чугун специаль-ных модификаторов (Mg, Се). Поэтому высокопрочный чугун часто называют магниевым, хотя в ГОСТе он назван «высокопрочным». Размеры и количество графитных включений бывают различными.

Шаровидная форма графита является наиболее благоприятной из всех известных форм. Шаровидный графит меньше других форм графита ослабляет металлическую основу. Металлическая основа высокопрочного чугуна бывает в зависимости от требуемых свойств перлитной (рис. 13), перлитно-ферритной (рис. 14) и ферритной (рис. 15). Путем легирования и термообработки можно получить аустенитную, мартенситную или игольчато-трооститную основу.

Отливки из высокопрочного чугуна так же, как и серого чугуна, могут производиться любой толщины.

д) Ковкий чугун (КЧ). Главное отличие ковкого чугуна заклю-чается в том, что графит в нем имеет хлопьевидную или шаровидную форму. Хлопьевидный графит бывает различной компактности и дис-персности (рис. 16 Л, Б, В, Г), что отражается на механических свойствах чугуна.

Промышленный ковкий чугун производится главным образом с ферритной основой; в ней однако всегда имеется перлитная кайма. В последние годы стали широко применяться чугуны с феррито-перлитной и перлитной основой. Чугун с ферритной основой (рис. 17) обладает большой пластичностью.

Излом у ферритного ковкого чугуна черно-бархатистый; с уве-личением количества перлита в структуре излом становится значи-тельно светлее.

Соответственно можно классифицировать чугуны по характеру шихты, способу плавки и способу обработки жидкого чугуна.

Большое влияние на свойства чугуна оказывает также состояние формы и характер заливки в нее. По способу получения отливок чугунное литье можно разделить на кокильное (измельчение струк-туры за счет ускоренного охлаждения), центробежное (плотная структура), армированное (упрочнение отливок) и т. п.

Значительное изменение свойств достигается термообработкой отливок. С помощью термической обработки можно изменить сте-пень дисперсности металлической основы и ее характер вплоть до превращения ее в игольчато-трооститную и мартенситную. До неко-торого предела можно изменить количество связанного углерода, а при химико-термической обработке можно в поверхностных слоях изменить и состав чугуна. По виду термической обработки можно разделить отливки на отожженные, нормализованные, улучшенные, поверхностно-закаленные, азотированные и т. п.

6. КЛАССИФИКАЦИЯ ПО ВИДАМ ОТЛИВОК И ОБЛАСТЯМ ИХ ПРИМЕНЕНИЯ

Чугунные отливки по видам отливок и областям их применения можно делить на станочные, цилиндровые, автомобильные, подшип-никовые, прокатные валки из отбеленного чугуна и т. п.

Из приведенных классификаций наиболее четкой является клас-сификация по структуре, наименее четкой является классификация по видам отливок, поскольку чугуны с одинаковой структурой и одинаковым составом могут быть пригодны для различных видов отливок и отраслей машиностроения.

Необходимо отличать главнейшие (определяющие) признаки клас-сификации — форма графита от уточняющих признаков, к которым относится характер металлической основы, способ изготовления и т. п. Например, мало сказать серый чугун (пластинчатый графит), надо уточнить, какой серый чугун по металлической основе, как он получен (модифицированием или термической обработкой), леги-рован ли и чем он легирован.

Была впервые освоена в Китае еще в Х веке, после чего нашла широкое распространение в других странах мира. Основа чугуна - это сплав железа с углеродом и другими компонентами. Отличительной особенностью является то, что в своем составе чугун содержит более 2 % углерода в виде цементита, чего нет в других металлах. Ярким представителем такого сплава можно назвать белый чугун, который используется в машиностроении для изготовления деталей, в промышленности и в быту.

Внешний вид

Сплав обладает белым цветом на изломе и характерным металлическим блеском. Структура белого чугуна - мелкозернистая.

Свойства

В сравнении с другими металлами, железоуглеродистый сплав имеет такие характеристики и свойства:

  • высокая хрупкость;
  • повышенная твердость;
  • высокое удельное сопротивление;
  • низкие литейные свойства;
  • низкая обрабатываемость;
  • хорошая тепловая стойкость;
  • большая усадка (до 2 %) и плохое заполнение ;
  • низкая ударная устойчивость;
  • высокая износостойкость.

Металлическая масса обладает большой коррозийной стойкостью в соляной или азотной кислоте. Если в структуре имеются свободные карбиды, то при помещении чугуна в серную кислоту будет наблюдаться коррозия.

Белые чугуны, в составе которых имеется меньший процент углерода, считаются более устойчивыми сплавами к высоким температурам. За счет повышенной механической прочности и вязкости, что появляются при воздействии высоких температур, минимизируется образование трещин в отливках.

Состав

Железоуглеродистый сплав считается более дешевым материалом, в сравнении со сталью. Белый чугун содержит в себе железо и углерод, что находятся в химически связанном состоянии. Избыточный углерод, который не присутствует в твердом растворе железа, содержится в объединенном состоянии в виде карбидов железа (цементит), а в легированном чугуне в виде специальных карбидов.

Виды

В зависимости от количества содержания углерода в белый чугун подразделяется на такие виды:

  1. Доэвтектический вмещает от 2,14 % до 4,3 % углерода и после полного охлаждения приобретает структуру перлита, вторичного цементита и ледебурита.
  2. Эвтектический содержит 4,3 % углерода и обладает структурой в виде светлого фона цементита, который усеян темными зернами перлита.
  3. Заэвтектический имеет от 4,3 % до 6,67 % углерода в своем составе.

Применение

Исходя из вышеперечисленных свойств, можно сделать вывод, что практиковать термическую и механическую обработку белого чугуна не имеет смысла. Свое основное применение сплав нашел только в виде отливки. Следовательно, наилучшие свойства белый чугун получает только при соблюдении всех условий отливки. Данный способ обработки активно применяется, если необходимо изготовить массивные изделия, которые должны обладать высокой поверхностной твердостью.

Помимо этого, производится отжиг белого чугуна, в результате чего получают ковкие чугуны, что служат для изготовления тонкостенного литья, например:

  • автомобильных деталей;
  • изделий для сельского хозяйства;
  • деталей для тракторов, комбайнов и др.

Сплав также используют для изготовления плит с ребристой или гладкой поверхностью, а также активно применяют для и серого чугуна.

Применение белых чугунов в сельском хозяйстве в виде конструктивного металла довольно ограничено. Чаще всего железоуглеродистый сплав используется для изготовления деталей гидромашин, пескометов и других механизмов, которые могут функционировать в условиях повышенного абразивного изнашивания.

Отбеленные чугуны

Данный сплав считается разновидностью белых чугунов. Добиться отбела на 12-30 мм возможно с помощью быстрого охлаждения поверхности железоуглеродистого сплава. Строение материала: поверхностная часть выполнена из белого, серый чугун в сердцевине. Из такого материала изготавливают колеса, шары для мельниц, которые крепятся в станках для обработки листового проката.

Легирующие элементы сплава

Специально введенные легирующие вещества, добавленные в состав белого чугуна, способны придать большую износостойкость и прочность, коррозийную стойкость и жароупорность. В зависимости от количества добавленных веществ, различают такие :

  • низколегированный сплав (до 2,5 % вспомогательных веществ);
  • среднелегированный (от 2,5 % до 10 %);
  • высоколегированный (более 10 %).

В сплав могут добавлять легирующие элементы:

  • хром;
  • сера;
  • никель;
  • медь;
  • молибден;
  • титан;
  • ванадий,
  • кремний;
  • алюминий;
  • марганец.

Легированный белый чугун обладает улучшенными свойствами и часто используется для отливки турбин, лопаток, мельниц, деталей для цементных и обычных печей, лопастей перекачивающих машин и др. Обрабатывается железоуглеродистый сплав в двух печах, что позволяет довести материал до определенного химического состава:

  • в вагранке;
  • в электроплавильных печах.

Отливки, выполненные из белого чугуна, подвергаются отжигу в печах для стабилизации необходимых размеров и снятия внутреннего напряжения. Температура отжига может повышаться до 850 градусов. Процесс нагрева и остывания в обязательном порядке должен производиться медленно.

Маркировка или обозначение белого чугуна с примесями начинается с буквы Ч. Какие именно легирующие элементы вмещаются в составе сплава, можно определить по последующим буквам маркировки. В названии могут быть цифры, которые обозначают количество в процентном выражении дополнительных веществ, что вмещаются в белом чугуне. Если в маркировке имеется обозначение Ш, то это обозначает, что в структуре сплава имеется графит шаровидной формы.

Виды отжига

Для образования белого чугуна в промышленности применяется скорое охлаждение сплава. На сегодня активно применяются такие основные виды отжига углеродистого сплава:

  • смягчающий отжиг применяется преимущественно для увеличения в составе чугуна феррита;
  • отжиг для снятия внутренних напряжений и минимизации фазовых превращений;
  • графитизирующий отжиг, по итогу чего возможно получить ;
  • нормализация при температурном режиме 850-960 градусов, в результате чего получают графит и перлит, а также увеличивается износостойкость и прочность.

Дополнительна информация

На сегодня доказано, что прямой зависимости не существует между износоустойчивостью и твердостью углеродистого сплава. Только за счет строения, а именно расположения карбидов и фосфидов в виде правильной сетки или в виде равномерных включений, достигается повышенная износоустойчивость.

На прочность белого чугуна наиболее интенсивно оказывает влияние количество углерода, а твердость зависит от карбидов. Наиболее большой прочностью и твердостью отличаются те чугуны, которые обладают мартенситной структурой.