Осложнения, возникающие в процессе ивл - искусственная вентиляция легких в интенсивной терапии. Искусственная вентиляция легких: аппарат, показания, проведение, последствия Аппарат искусственной вентиляции легких после операции

7970 0

Осложнения длительной ИВЛ чаще всего связаны с нарушением правил ее проведения или правил ухода за больным, с воздействием интубационной трубки на окружающие ткани.

Наиболее частыми являются осложнения со стороны легких, неравномерность вентиляции; интубация одного из главных бронхов (чаще правого) с развитием тотального ателектаза противоположного легкого; глубокая интубация с раздражением бифуркации трахеи концом трубки и возникновение при этом патологических кардиальных рефлексов; микроателектазы из-за поражения сурфактанта; развитие пневмонии.

Тяжелым осложнением проведения ИВЛ является незамеченное отсоединение коннекторов дыхательной аппаратуры. Возникающая при этом тяжелая гипоксия может закончиться быстрой смертью больного. Профилактика: неукоснительное соблюдение правила - больной при проведении ИВЛ должен находиться под неотступным наблюдением медперсонала.

При проведении ИВЛ чрезмерно большими дыхательными объемами возможно возникновение разрывов альвеол с развитием напряженного пневмоторакса. Это осложнение требует немедленного дренирования плевральной полости (во II межреберье по среднеключичной линии).

Вентиляция легких неоправданно большими дыхательными объемами может сопровождаться попаданием воздуха в желудок, раздуванием желудка попавшими в него газами с возможной последующей регургитацией и аспирацией жидкого содержимого желудка.

Длительное проведение ИВЛ может сопровождаться различными нарушениями гемодинамики. Продолжительная ИВЛ (особенно у пациентов пожилого и старческого возраста) быстро приводит к угнетению автоматизма дыхательного центра и к тяжелой дезадаптации, что может проявляться стойким апноэ при попытках прекратить ИВЛ. Длительная ИВЛ (особенно при неглубоком наркозе и при недостаточной антиноцицептивной блокаде) может вызвать образование в пищеварительном тракте стрессовых язв с тяжелым кровотечением.

Профилактика: поддержание во время ИВЛ достаточной глубины наркоза и обезболивания, введение в желудок антацидных средств (жженая магнезия, альмагели, блокаторы гистаминовых Н2- рецепторов - циметидин и др.).

Длительное нахождение интубационной трубки в верхних дыхательных путях может осложниться афонией или охриплостью голоса после экстубации, болями в горле, отеком трахеи, развитием гранулем, изъязвлений тканей, соприкасающихся с трубкой, вплоть до их некроза и эрозивного кровотечения, в отдаленном периоде - развитием фиброзно-некротического ларинготрахеобронхита с исходом в стенозирующий ларинготрахеит.

Сухоруков В.П.

Трахеостомия - современные технологии

Помимо знания методических и (пато-) физиологических основ прежде всего необходим некоторый опыт.

В стационаре вентиляция осуществляется через интубационную или трахеостомическую трубку. Если предполагается вентиляция дольше одной недели, следует наложить трахеостому.

Для понимания искусственной вентиляции, различных режимов и возможных настроек вентиляции в качестве основы можно рассмотреть нормальный дыхательный цикл.

При рассмотрении графика «давление/ время» становится понятно, как изменения единственного параметра дыхания могут влиять на дыхательный цикл в целом.

Показатели ИВЛ:

  • Частота дыхания (движений в минуту): каждое изменение частоты дыхания при неизменной продолжительности вдоха влияет на соотношение вдох/выдох
  • Соотношение вдох/выдох
  • Дыхательный объем
  • Относительный минутный объем: 10-350% (Galileo, ASV-режим)
  • Давление вдоха (P insp), примерные настройки (фирма Drager: Evita/Oxylog 3000):
    • IPPV: PEEP = нижний уровень давления
    • BIPAP: P tief = нижний уровень давления (=РЕЕР)
    • IPPV: P plat = верхний уровень давления
    • BIPAP: P hoch = верхний уровень давления
  • Поток (объем/время, tinspflow)
  • «Скорость подъема» (скорость нарастания давления, время до уровня плато): при обструктивных нарушениях (ХОБЛ, астма) необходим более высокий начальный поток («резкий подъем») для быстрого изменения давления в бронхиальной системе
  • Длительность плато поток → = плато → : фаза плато является фазой, во время которой происходит распространенный газообмен в различных участках легкого
  • PEEP (положительное давление в конце выдоха)
  • Концентрация кислорода (измеренная как фракция кислорода)
  • Пиковое дыхательное давление
  • Максимальная верхняя граница давления = граница стеноза
  • Разность давления между РЕЕР и P реак (Δр) = разница давления, необходимая для преодоления растяжимости (= эластичности = сопротивления сжатию) дыхательной системы
  • Триггер потока/давления: триггер потока или триггер давления служит «пусковым моментом» начала вспомогательного/поддерживающего давление дыхания при усиленных методах искусственной вентиляции. При запуске потоком (л/мин) для осуществления вдоха через дыхательный аппарат необходима определенная скорость потока воздуха в легких пациента. В случае, если триггером служит давление, для вдоха вначале должно быть достигнуто определенное отрицательное давление («вакуум»). Желаемый триггерный режим, включая порог срабатывания триггера, устанавливается на дыхательном аппарате и должен подбираться индивидуально на период проведения искусственной вентиляции. Преимуществом потокового триггера является нахождение «воздуха» в состоянии движения и более быстрое и легкое поступление вдыхаемого воздуха (= объема) пациенту, что уменьшает дыхательную работу. При инициации потоком до его появления (=вдох) необходимо достичь отрицательного давления в легких пациента.
  • Периоды дыхания (на примере прибора Evita 4):
    • IPPV: время вдоха - Т I время выдоха =Т Е
    • BIPAP: время вдоха - T hoch , время выдоха = T tief
  • АТС (автоматическая компенсация трубки): пропорциональное потоку поддержание давления для компенсации связанного с трубкой турбодинамического сопротивления; для поддержания при спокойном спонтанном дыхании необходимо давление около 7-10 мбар.

Искусственная вентиляция легких (ИВЛ)

Вентиляция с отрицательным давлением (ВОД)

Метод используется у пациентов с хронической гиповентиляцией (например, при полиомиелите, кифосколиозе, мышечных заболеваниях). Выдох осуществляется пассивно.

Наиболее известными являются так называемые железные легкие, а также грудные кирасные устройства в виде полужесткого приспособления вокруг грудной клетки и другие кустарные аппараты.

Данный режим вентиляции не требует интубации трахеи. Однако уход за пациентом затруднен, поэтому ВОД - метод выбора только в неотложной ситуации. Пациент может быть переведен на вентиляцию с отрицательным давлением как метод отлучения от ИВЛ после экстубации, когда минует острый период заболевания.

У стабильных пациентов, требующих проведения длительной вентиляции, может также использоваться метод «поворачивающейся кровати».

Вентиляция легких с перемежающимся положительным давлением

Искусственная вентиляция легких (ИВЛ): показания

Нарушение газообмена вследствие потенциально обратимых причин дыхательной недостаточности:

  • Пневмония.
  • Ухудшение течения ХОБЛ.
  • Массивные ателектазы.
  • Острый инфекционный полиневрит.
  • Церебральная гипоксия (например, после остановки сердца).
  • Внутричерепное кровоизлияние.
  • Внутричерепная гипертензия.
  • Массивное травматическое или ожоговое повреждение.

Существует два основных типа аппаратов для ИВЛ. Аппараты, регулируемые по давлению, вдувают воздух в легкие, пока не будет достигнут нужный уровень давления, затем инспираторный поток останавливается и после короткой паузы происходит пассивный выдох. Этот тип вентиляции имеет преимущества у больных с РДСВ, так как позволяет снизить пиковое давление в дыхательных путях без воздействия на производительность сердца.

Аппараты, регулируемые по объему, вдувают в легкие в течение установленного времени вдоха заданный дыхательный объем, поддерживают этот объем, а затем наступает пассивный выдох.

Назальная вентиляция

Назальная перемежающая вентиляция с ПДДП создает инициируемое дыхательными усилиями пациента положительное давление в дыхательных путях (ПДДП), допуская при этом возможность выдоха в атмосферу.

Положительное давление создается небольшим аппаратом и подается через плотно прилегающую носовую маску.

Часто используется как метод домашней ночной вентиляции у пациентов с тяжелыми костно-мышечными заболеваниями грудной клетки или обструктивным сонным апноэ.

С успехом может применяться как альтернатива обычной ИВЛ у пациентов, не нуждающихся в создании ПДДП, например, при приступе бронхиальной астмы, ХОБЛ с задержкой С02, а также при затрудненном отлучении от ИВЛ.

В руках опытного персонала система проста в управлении, но некоторые пациенты владеют этой аппаратурой не хуже медицинских работников. Метод не должен применяться не имеющим опыта его использования персоналом.

Вентиляция с положительным давлением в дыхательных путях

Постоянная принудительная вентиляция

Постоянная принудительная вентиляция подает установленный дыхательный объем с заданной частотой дыхания. Продолжительность вдоха определяется частотой дыхания.

Минутный объем вентиляции рассчитывается по формуле: ДО х частота дыхательных движений.

Соотношение вдоха и выдоха при обычном дыхании составляет 1:2, но при патологии может нарушаться, например при бронхиальной астме в связи с образованием воздушных ловушек требуется увеличение времени выдоха; при респираторном дистресс-синдроме взрослых (РДСВ), сопровождаемом снижением эластичности легких, полезно некоторое удлинение времени вдоха.

Требуется полная седатация пациента. При сохранении собственного дыхания пациента на фоне постоянной принудительной вентиляции спонтанные вдохи могут наслаиваться на аппаратные вдохи, что ведет к перераздуванию легких.

Длительное применение данного метода ведет к атрофии дыхательной мускулатуры, что создает трудности при отлучении от ИВЛ, особенно если сочетается с проксимальной миопатией на фоне глюкокортикоидной терапии (например, при бронхиальной астме).

Прекращение ИВЛ может происходить быстро или путем отлучения, когда функция управления дыханием постепенно передается от аппарата к пациенту.

Синхронизированная перемежающая принудительная вентиляция (СППВ)

СППВ легких позволяет пациенту дышать самостоятельно и эффективно вентилировать легкие, при этом происходит постепенное переключение функции управления дыханием от аппарата ИВЛ к пациенту. Метод полезен при отлучении от ИВЛ пациентов со сниженной силой дыхательных мышц. А также у пациентов с острыми заболеваниями легких. Постоянная принудительная вентиляция на фоне глубокой седатации уменьшает потребность в кислороде и работу дыхания, обеспечивая более эффективную вентиляцию.

Способы синхронизации отличаются в разных моделях аппаратов ИВЛ, но их объединяет то, что пациент самостоятельно инициирует дыхание через контур аппарата ИВЛ. Обычно аппарат ИВЛ устанавливают таким образом, чтобы пациент получил минимально достаточное число вдохов в минуту, и, если частота самостоятельного дыхания падает ниже установленной частоты аппаратных вдохов, аппарат ИВЛ производит принудительное дыхание с заданной частотой.

В большинстве аппаратов ИВЛ, осуществляющих вентиляцию в режиме СДППД, реализована возможность проведения нескольких режимов поддержки положительным давлением спонтанного дыхания, что позволяет уменьшить работу дыхания и обеспечить эффективную вентиляцию.

Поддержка давлением

Положительное давление создается в момент вдоха, что позволяет частично или полностью помочь осуществлению вдоха.

Этот режим может использоваться вместе с режимом синхронизированной принудительной перемежающейся вентиляции легких или как средство поддержания спонтанного дыхания при вспомогательных режимах вентиляции во время процесса отлучения от ИВЛ.

Режим позволяет пациенту установить собственную частоту дыхания и гарантирует адекватное расправление легких и оксигенацию.

Однако этот метод применим у пациентов с адекватной функцией легких при сохранении сознания и отсутствии утомления дыхательной мускулатуры.

Метод положительного давления в конце выдоха

ПДКВ представляет собой заданное давление, которое создается только в конце выдоха для поддержания объема легких, предупреждения коллабирования альвеол и дыхательных путей, а также для раскрытия ателектазированных и заполненных жидкостью отделов легких (например, при РДСВ и кардиогенном отеке легких).

Режим ПДКВ позволяет значительно улучшить оксигенацию за счет включения в газообмен большей поверхности легких. Однако платой за это преимущество является повышение внутригрудного давления, что может значительно уменьшить венозный возврат к правым отделам сердца и тем самым привести к снижению сердечного выброса. Одновременно повышается риск возникновения пневмоторакса.

Авто-ПДКВ возникает при неполном выходе воздуха из дыхательных путей перед очередным вдохом (например, при бронхиальной астме).

Определение и интерпретация ДЗЛК на фоне ПДКВ зависит от расположения катетера. ДЗЛК всегда отражает венозное давление в легких, если его значения превышают значения ПДКВ. Если катетер находится в артерии в верхушке легкого, где давление в норме низкое в результате воздействия гравитационных сил, определяемое давление является, скорее всего, альвеолярным давлением (ПДКВ). В зависимых зонах давление более точное. Устранение ПДКВ на момент измерения ДЗЛК вызывает значительные колебания показателей гемодинамики и оксигенации, и полученные значения ДЗЛК не будет отражать состояние гемодинамики при повторном переходе на ИВЛ.

Прекращение ИВЛ

Прекращение ИВЛ в соответствии со схемой или протоколом уменьшает продолжительность вентиляции и снижает частоту осложнений, а также расходы. У находящихся на искусственной вентиляции пациентов с неврологическими повреждениями отмечено, что при применении структурированной методики прекращения вентиляции и экстубации частота повторных интубаций снижается более чем на половину (12,5 по сравнению с 5%). После (само) экстубации у большинства пациентов не развиваются осложнения или не требуется повторной интубации.

Внимание: Именно при неврологических заболеваниях (например, синдром Гийена-Барре, миастении, высоком уровне повреждения спинного мозга) прекращение ИВЛ может быть затруднено и длительно в связи с мышечной слабостью и ранним физическим истощением или в связи с повреждением нейронов. Кроме того, повреждение спинного мозга на высоком уровне или ствола головного мозга может приводить к нарушению защитных рефлексов, что в свою очередь значительно усложняет прекращение вентиляции или делает его невозможным (повреждение на высоте С1-3 → апноэ, СЗ-5 → нарушение дыхания различной степени выраженности).

Патологические типы дыхания или нарушения механики дыхания (парадоксальное дыхание при отключении межреберных мышц) также могут частично затруднить переход к самостоятельному дыханию с достаточной оксигенацией.

Прекращение ИВЛ включает в себя пошаговое снижение интенсивности вентиляции:

  • Снижение F i O 2
  • Нормализация соотношения вдох - и доха (I: Е)
  • Снижение уровня PEEP
  • Снижение поддерживающего давления.

Приблизительно у 80% пациентов прекращение ИВЛ происходит успешно. Примерно в 20% случаев вначале прекращение не удается (- сложное прекращение ИВЛ). В определенных группах пациентов (например, при повреждении структуры легких при ХОБЛ) число неудач составляет 50-80%.

Существуют следующие методики прекращения ИВЛ:

  • Тренировка атрофированных дыхательных мышц → усиленные формы вентиляции (с пошаговым снижением аппаратного дыхания: частоты, поддерживающего давления или объема)
  • Восстановление истощенной/перегруженной дыхательной мускулатуры → контролируемая вентиляция чередуется с самостоятельной фазой дыхания (например, 12-8-6-4-часовой ритм).

Ежедневные попытки самостоятельного периодического дыхания сразу после пробуждения могут оказать положительное влияние на продолжительность вентиляции и пребывания в ОИТ и не становиться источником повышенного стресса для пациента (в связи со страхом, болью и т.д.). Кроме того, следует придерживаться ритма «день/ночь».

Прогноз прекращения ИВЛ можно сделать на основании различных параметров и индексов:

  • Индекс быстрого поверхностного дыхания
  • Данный показатель рассчитывается на основании частоты дыхания/объема вдоха (в литрах).
  • RSB <100 вероятность прекращения ИВЛ
  • RSB > 105: прекращение маловероятно
  • Индекс оксигенации: целевое значение P a O 2 /F i O 2 > 150-200
  • Окклюзионное давление дыхательных путей (р0,1): р0,1 - это давление на закрытый вентиль дыхательной системы в первые 100 мс вдоха. Оно является мерой основного дыхательного импульса (= усилие пациента) при самостоятельном дыхании.

В норме окклюзионное давление составляет 1-4 мбар, при патологии >4-6 мбар (-> прекращение ИВЛ/экстубация маловероятна, угроза физического истощения).

Экстубация

Критерии для выполнения экстубации:

  • Находящийся в сознании, способный к взаимодействию пациент
  • Уверенное самостоятельное дыхание (например, «Т-соединение/трахеальная вентиляция») в течение как минимум 24 часов
  • Сохраненные защитные рефлексы
  • Стабильное состояние сердца и системы кровообращения
  • Частота дыхания менее 25 в минуту
  • Жизненная емкость легких более 10 мл/кг
  • Хорошая оксигенация (PО 2 > 700 мм рт.ст.) при низком F i O 2 (< 0,3) и нормальном PСО 2 (парциальное давление кислорода может оцениваться на основании насыщения кислородом
  • Отсутствие значимых сопутствующих заболеваний (например, пневмонии, отека легких, сепсиса, тяжелой черепно-мозговой травмы, отека головного мозга)
  • Нормальное состояние метаболизма.

Подготовка и проведение:

  • Сообщить находящему в сознании пациенту о проведении экстубации
  • Перед экстубацией провести анализ газов крови «ориентировочные» показатели)
  • Приблизительно за один час до экстубации внутривенно ввести 250 мг преднизолона (профилактика отека голосовой щели)
  • Аспирировать содержимое из глотки/ трахеи и желудка!
  • Ослабить фиксацию трубки, разблокировать трубку и, продолжая отсасывать содержимое, вытянуть трубку наружу
  • Вводить пациенту кислород через носовой зонд
  • В течение следующих часов тщательно наблюдать за пациентом и регулярно контролировать газы крови

Осложнения искусственной вентиляции

  • Повышение частоты нозокомиальных пневмоний или связанных с вентиляцией пневмоний: чем дольше проводится вентиляция или чем дольше пациент интубирован, тем больше опасность нозокомиальных пневмоний.
  • Ухудшение газообмена с гипоксией вследствие:
    • шунта справа-налево (ателектазы, отек легкого, пневмония)
    • нарушения перфузионно-вентиляционного соотношения (бронхоконстрикция, накопление секрета, расширение легочных сосудов, например, под воздействием лекарств)
    • гиповентиляции (недостаточное собственное дыхание,утечка газа, неправильное подключение дыхательного аппарата, увеличение физиологического мертвого пространства)
    • нарушения функции сердца и кровообращения (синдром низкого сердечного выброса, падение объемной скорости кровотока).
  • Повреждение ткани легкого из-за высокой концентрации кислорода во вдыхаемом воздухе.
  • Гемодинамические нарушения, в первую очередь в связи с изменением объема легких и давления внутри грудной клетки:
    • уменьшение венозного возврата к сердцу
    • увеличение сопротивления сосудов легких
    • уменьшение конечного диастолического объема желудочков (снижение предварительной нагрузки) и последующее снижение ударного объема или объемной скорости кровотока; на гемодинамические изменения вследствие ИВЛ влияют характеристики объема и насосная функция сердца.
  • Снижение кровоснабжения почек, печени и селезенки
  • Снижение мочеотделения и задержки жидкости (с возникающими в результате отеками, гипонатриемией, снижением растяжимости легких)
  • Атрофия дыхательной мускулатуры с ослаблением дыхательного насоса
  • При интубации - пролежни слизистой оболочки и повреждения гортани
  • Связанное с вентиляцией повреждение легких вследствие циклического спадания и последующего раскрытия ателектазированных или нестабильных альвеол (альвеолярный цикл), а также перерастяжения альвеол в конце вдоха
  • Баротравма/объемная травма легких с «макроскопическими» повреждениями: эмфиземой, пневмомедиастинумом, пневмоэпикардом, подкожной эмфиземой, пневмоперитонеумом, пневмотораксом, бронхо-плевральными фистулами
  • Повышение внутричерепного давления в связи с нарушением венозного оттока от мозга и снижение кровоснабжения мозга в связи с вазозоконстрикцией сосудов мозга при (допустимой) гиперкапнии

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

Содержание

При нарушении дыхания у больного проводится искусственная вентиляция легких или ИВЛ. Ее применяют для жизнеобеспечения, когда пациент не может самостоятельно дышать или когда лежит на операционном столе под анестезией, которая вызывает нехватку кислорода. Выделяют несколько видов ИВЛ – от простой ручной до аппаратной. С первой может справиться практически любой человек, вторая – требует понимания устройства и правил применения медицинского оборудования­

Что такое искусственная вентиляция легких

В медицине под ИВЛ понимают искусственное вдувание воздуха в легкие с целью обеспечения газообмена между окружающей средой и альвеолами. Применяться искусственная вентиляция может в качестве меры реанимации, когда у человека серьезные нарушения самостоятельного дыхания, или в качестве средства для защиты от нехватки кислорода. Последнее состояние возникает при анестезии или заболеваниях спонтанного характера.

Формами искусственной вентиляции являются аппаратная и прямая. Первая использует газовую смесь для дыхания, которая закачивается в легкие аппаратом через интубационную трубку. Прямая подразумевает ритмичные сжимания и разжимания легких для обеспечения пассивного вдоха-выдоха без использования аппарата. Если применяется «электрическое легкое», мышцы стимулируются импульсом.

Показания для ИВЛ

Для проведения искусственной вентиляции и поддержания нормального функционирования легких существуют показания:

  • внезапное прекращение кровообращения;
  • механическая асфиксия дыхания;
  • травмы грудной клетки, мозга;
  • острое отравление;
  • резкое снижение артериального давления;
  • кардиогенный шок;
  • астматический приступ.

После операции

Интубационную трубку аппарата искусственной вентиляции вставляют в легкие пациента в операционной или после доставки из нее в отделение интенсивной терапии или палату наблюдения за состоянием больного после наркоза. Целями и задачами необходимости ИВЛ после операции считаются:

  • исключение откашливания мокроты и секрета из легких, что снижает частоту инфекционных осложнений;
  • уменьшение потребности в поддержке сердечно-сосудистой системы, снижение риска нижнего глубокого венозного тромбоза;
  • создание условий для питания через трубку для снижения частоты расстройства ЖКТ и возвращения нормальной перистальтики;
  • снижение отрицательного влияния на скелетную мускулатуру после длительного действия анестетиков;
  • быстрая нормализация психических функций, нормализация состояния сна и бодрствований.

При пневмонии

Если у больного возникает тяжелая пневмония, это быстро приводит к развитию острой дыхательной недостаточности. Показаниями применения искусственной вентиляции при этой болезни считаются:

  • нарушения сознания и психики;
  • снижение артериального давления до критического уровня;
  • прерывистое дыхание более 40 раз в минуту.

Проводится искусственная вентиляция на ранних стадиях развития заболевания, чтобы увеличить эффективность работы и снизить риск летального исхода. ИВЛ длится 10-14 суток, через 3-4 часа после ввода трубки делают трахеостомию. Если пневмония носит массивный характер, ее проводят с положительным давлением к концу выдоха (ПДКВ) для лучшего распределения легких и уменьшения венозного шунтирования. Вместе с вмешательством ИВЛ проводится интенсивная терапия антибиотиками.

При инсульте

Подключение ИВЛ при лечении инсульта считается реабилитационной мерой для больного и назначается при показаниях:

  • внутреннее кровотечение;
  • поражение легких;
  • патология в области дыхательной функции;
  • кома.

При ишемическом или геморрагическом приступе наблюдается затрудненное дыхание, которое восстанавливается аппаратом ИВЛ с целью нормализации утраченных функций мозга и обеспечения клеток достаточным количеством кислорода. Ставят искусственные легкие при инсульте на срок до двух недель. За это время проходит изменение острого периода заболевания, снижается отечность мозга. Избавиться от ИВЛ нужно по возможности, как можно раньше.

Виды ИВЛ

Современные методы искусственной вентиляции разделяют на две условные группы. Простые применяются в экстренных случаях, а аппаратные – в условиях стационара. Первые допустимо использовать при отсутствии у человека самостоятельного дыхания, у него острое развитие нарушения ритма дыхания или патологический режим. К простым методикам относят:

  1. Изо рта в рот или изо рта в нос – голову пострадавшего запрокидывают назад до максимального уровня, открывают вход в гортань, смещают корень языка. Проводящий процедуру становится сбоку, рукой сжимает крылья носа больного, отклоняя голову назад, другой рукой держит рот. Глубоко вдохнув, спасатель плотно прижимает губы ко рту или носу больного и резко энергично выдыхает. Больной должен выдохнуть за счет эластичности легких и грудины. Одновременно проводят массаж сердца.
  2. Использование S-образного воздуховода или мешка Рубена . До применения у больного нужно очистить дыхательные пути, после чего плотным образом прижать маску.

Режимы ИВЛ в реанимации

Аппарат искусственного дыхания применяется в реанимации и относится к механическому методу ИВЛ. Он состоит из респиратора и интубационной трубки или трахеостомической канюли. Для взрослого и ребенка применяют разные аппараты, отличающиеся размером вводимого устройства и настраиваемой частотой дыхания. Аппаратная ИВЛ проводится в высокочастотном режиме (более 60 циклов в минуту) с целью уменьшения дыхательного объема, снижения давления в легких, адаптации больного к респиратору и облегчения притока крови к сердцу.

Методы

Высокочастотная искусственная вентиляция делится на три способа, применяемые современными врачами:

  • объемная – характеризуется частотой дыхания 80-100 в минуту;
  • осцилляционная – 600-3600 в минуту с вибрацией непрерывного или прерывистого потока;
  • струйная – 100-300 в минуту, является самой популярной, при ней в дыхательные пути с помощью иглы или тонкого катетера вдувается кислород или смесь газов под давлением, другие варианты проведения – интубационная трубка, трахеостома, катетер через нос или кожу.

Помимо рассмотренных способов, отличающихся по частоте дыхания, выделяют режимы ИВЛ по типу используемого аппарата:

  1. Автоматический – дыхание пациента полностью подавлено фармакологическими препаратами. Больной полностью дышит при помощи компрессии.
  2. Вспомогательный – дыхание человека сохраняется, а подачу газа осуществляют при попытке сделать вдох.
  3. Периодический принудительный – используется при переводе от ИВЛ к самостоятельному дыханию. Постепенное уменьшение частоты искусственных вдохов заставляет пациента дышать самому.
  4. С ПДКВ – при нем внутрилегочное давление остается положительным по отношению к атмосферному. Это позволяет лучше распределять воздух в легких, устранять отеки.
  5. Электростимуляция диафрагмы – проводится через наружные игольчатые электроды, которые раздражают нервы на диафрагме и заставляют ее ритмично сокращаться.

Аппарат ИВЛ

В режиме реанимации или постоперационной палате используется аппарат искусственной вентиляции легких. Это медицинское оборудование нужно для подачи газовой смеси из кислорода и сухого воздуха в легкие. Используется принудительный режим с целью насыщения клеток и крови кислородом и удаления из организма углекислого газа. Сколько разновидностей аппаратов ИВЛ:

  • по виду применяемого оборудования – интубационная трубка, маска;
  • по применяемому алгоритму работы – ручной, механический, с нейроконтролируемой вентиляцией легких;
  • по возрасту – для детей, взрослых, новорожденных;
  • по приводу – пневмомеханический, электронный, ручной;
  • по назначению – общего, специального;
  • по применяемой сфере – отделение интенсивной терапии, реанимации, послеоперационное отделение, анестезиологии, новорожденных.

Техника проведения искусственной вентиляции легких

Для выполнения искусственной вентиляции врачи используют аппараты ИВЛ. После осмотра больного доктор устанавливает частоту и глубину вдохов, подбирает газовую смесь. Газы для постоянного дыхания подаются через шланг, связанный с интубационной трубкой, аппарат регулирует и держит под контролем состав смеси. Если используется маска, закрывающая нос и рот, аппарат снабжается сигнализационной системой, оповещающей о нарушении процесса дыхания. При длительной вентиляции интубационная трубка вставляется в отверстие через переднюю стенку трахеи.

Проблемы в ходе искусственной вентиляции легких

После установки аппарата искусственной вентиляции и в ходе его функционирования могут возникнуть проблемы:

  1. Наличие борьбы пациента с аппаратом ИВЛ . Для исправления устраняют гипоксию, проверяют положение вставленной эндотрахеальной трубки и саму аппаратуру.
  2. Десинхронизация с респиратором . Приводит к падению дыхательного объема, неадекватной вентиляции. Причинами считаются кашель, задержка дыхания, патологии легких, спазмы в бронхах, неправильно установленный аппарат.
  3. Высокое давление в дыхательных путях . Причинами становятся: нарушение целостности трубки, бронхоспазмы, отек легких, гипоксия.

Отлучение от искусственной вентиляции легких

Применение ИВЛ может сопровождаться травмами из-за повышенного давления, пневмонии, снижения работы сердца и прочих осложнений. Поэтому важно прекратить искусственную вентиляцию как можно быстрее с учетом клинической ситуации. Показанием для отлучения является положительная динамика выздоровления с показателями:

  • восстановление дыхания с частотой менее 35 в минуту;
  • минутная вентиляция сократилась до 10 мл/кг или меньше;
  • у пациента нет повышенной температуры или инфекции, апноэ;
  • показатели крови стабильны.

Перед отлучением от респиратора проверяют остатки мышечной блокады, сокращают до минимума дозу успокаивающих препаратов. Выделяют следующие режимы отлучения от искусственной вентиляции:

  • тест на спонтанное дыхание – временное отключение аппарата;
  • синхронизация с собственной попыткой вдоха;
  • поддержка давления – аппарат подхватывает все попытки вдоха.

Если у больного наблюдаются следующие признаки, его невозможно отключить от искусственной вентиляции:

  • беспокойство;
  • хронические боли;
  • судороги;
  • одышка;
  • снижение дыхательного объема;
  • тахикардия;
  • повышенное давление.

Последствия

После использования аппарата ИВЛ или другого метода искусственной вентиляции не исключены побочные эффекты:

  • бронхиты, пролежни слизистой бронхов, ;
  • пневмония, кровотечения;
  • снижение давления;
  • внезапная остановка сердца;
  • мочекаменная болезнь (на фото);
  • психические нарушения;
  • отек легких.

Осложнения

Не исключены и опасные осложнения ИВЛ во время применения специального аппарата или длительной терапии при помощи него:

  • ухудшение состояния больного;
  • потеря самостоятельного дыхания;
  • пневмоторакс – скопление жидкости и воздуха в плевральной полости;
  • сдавливание легких;
  • соскальзывание трубки в бронхи с образованием раны.

Видео

Внимание! Информация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Отлучение от аппарата ИВЛ, как правило, удается осуществить в пределах 2-24 часов после операции. У пациентов со значительным снижением функции левого желудочка и высоким давлением в легочной артерии (ЛА) может понадобиться более длительная ИВЛ, поскольку повышение P a C0 2 приводит к повышению давления в ЛА. Пробуждение вызывает вазоконстрикцию, повышение постнагрузки и тахикардию. Это обусловливает повышение потребности миокарда в кислороде.

Критерии прекращения ИВЛ и экстубации

Дыхательные критерии

Вентиляция и газообмен

Критерии отлучения от аппарата ИВЛ
  • P a 0 2 >10 кПа при Fi0 2 0,4, P a C0 2 <7 кПа;
  • артериальное рН > 7,35, или положительная динамика ацидоза известного генеза;
  • PEEP< 5 см H 2 0;
  • ясное сознание и спонтанное дыхание.
Критерии экстубации
  • Отрицательное давление на вдохе >-20 см H 2 O,
  • жизненная емкость > 10 мл/кг,
  • дыхательный объем > 5 мл/кг,
  • минутный объем вентиляции в покое > 8 л,
  • частота дыхания 10-25/мин,
  • СРАР < 5 см H 2 O.
Защищенные дыхательные пути

Адекватный кашель, эффективное удаление мокроты и других выделений

Комплайнс легких

Комплайнс должен быть выше 25 мл/см Н 2 О.

Гемодинамические критерии

Удовлетворительная картина на ЭКГ.

Сердечная недостаточность с отеком легких характеризуется нарушением газообмена и может прогрессировать после экстубации.

Отсутствие высокой инотропной поддержки.

Высокая инотропная поддержка означает, что функция миокарда после отлучения от ИВЛ может быстро декомпенсироваться.

Неврологические критерии

Пациент должен быть в сознании, сохранять способность сотрудничать и иметь адекватный кашлевой рефлекс.

Хирургические критерии

Адекватный гемостаз: кровопотеря по дренажам средостения < 1 мл/кг/час.

Адекватное обезболивание. Отсутствие запланированных в ближайшее время хирургических процедур.

Дополнительные факторы

Полиорганная недостаточность, почечная недостаточность с объемной перегрузкой, ОРДС – все это является относительными противопоказаниями к отлучению от ИВЛ. Должна поддерживаться нормотермия пациента. Дефицит оснований не является противопоказанием к отлучению от ИВЛ.

Процесс отлучения от ИВЛ

Непродолжительная ИВЛ после операций с ИК

Прекратите или минимизируйте введение наркотических анальгетиков. Снижайте частоту принудительных вдохов примерно на 2 дыхания в 15 минут-1 час. При частоте аппаратных вдохов 4/мин и Fi0 2 <0,5 следует сделать анализ газового состава артериальной крови. Если газообмен не нарушен, то пациента можно перевести в режим вентиляции с поддержкой давлением (примерно 10 см Н 2 О с последующим уменьшением) или в режим СРАР (5 см Н2О). При соответствии критериям экстубации экстубируйте пациента.

Пациенты, длительно находившиеся на ИВЛ

Процесс, описанный для пациентов после непродолжительной ИВЛ, совершается в течение значительно более длительного времени. Вентиляцию в режиме СРАР/ASB можно проводить через трахеостомическую трубку, перемежая такие сеансы по несколько часов с укорачивающимися периодами вентиляции в режиме Р-SIMV или BiPAP.

Экстубация

Под рукой необходимо иметь проверенное и готовое к работе оборудование для экстренной реинтубации. Подготовьте кислородную маску или носовые катетеры для дыхания после экстубации. Пациенты с классом сложности интубации III и IV могут быть экстубированы только в присутствии опытного анестезиолога. Пациент должен удовлетворять критериям экстубации (см. выше).

  • Приподнимите изголовье кровати на 45°.
  • Просанируйте эндотрахеальную трубку, полость рта и глотки.
  • При необходимости корригируйте возникшую в результате этого гипоксию.
  • Сдуйте манжету эндотрахеальной трубки и извлеките трубку.
  • Попросите пациента удалить оставшиеся в полости рта выделения, откашляться.
  • Наденьте на пациента лицевую маску (поток кислорода около 8 л/мин) или закрепите на лице носовые катетеры (поток кислорода 4 л/мин).
  • В течение 20 минут после экстубации за пациентом следует установить тщательное наблюдение, контролировать показания пульсоксиметра, проконтролировать газовый состав крови.
  • Не кормите и не поите пациента в течение первых 4 часов после экстубации, чтобы восстановилась чувствительность голосовых складок. После этого можно разрешить питье под наблюдением медперсонала.

Ведение пациента после экстубации

Доставка кислорода к тканям может быть снижена при нарушении функции внешнего дыхания или при нестабильной, скомпрометированной гемодинамике. В течение нескольких часов обеспечьте поступление 4-6 л 0 2 через лицевую маску или носовые катетеры.Большинство пациентов удается в итоге перевести на дыхание атмосферным воздухом.

Дыхание может быть нарушено болью и снижением комплайнса грудной клетки. Поверхностное дыхание, малоподвижность и плохое откашливание предрасполагают к ателектазам. Обеспечьте адекватную анальгезию, мобилизируйте пациента, проведите беседу. Небольшая подушка, прижимаемая пациентом к грудной клетке при кашле, помогает уменьшить боль и уменьшить движение грудины (поскольку удерживание рук в приведенном состоянии позволяет снизить тягу отведения за счет движения большой грудной мышцы).

Проблемы при отлучении от ИВЛ

Сонливость

У пациентов в сознании могут поддерживаться хорошие показатели дыхания и гемодинамики, а при засыпании может развиться апноэ, брадикардия и гипотензия. Это может быть связано с введением опиоидных анальгетиков. Избегайте введения налоксона, который может вызвать внезапную боль, тревожность, гипертензию и, в результате, кровотечение.

«Борьба с вентилятором»

Пациенты иногда не могут синхронизироваться с работой аппарата ИВЛ. Пациенты при пробуждении могут закусить ЭТ трубку, что приведет к гипоксемии. Кашель, рвота и борьба с вентилятором увеличивают внутригрудное давление, резко повышают ЦВД и могут снизить системное давление, что по картине напоминает тампонаду. Если пациент возбужден, показатели кровообращения и спонтанного дыхания нестабильны, повторно седируйте его, возможно, введите миорелаксанты и продолжите ИВЛ. Иногда ранняя экстубация также может улучшить состояние пациента.

Неудачи при отлучении от ИВЛ

В дополнение к причинам дыхательной недостаточности, указанным в статье Дыхательная недостаточность после кардиохирургических операций , неудачи при отлучении от ИВЛ могут быть вызваны ишемией миокарда, патологией со стороны клапанного аппарата сердца, несрастанием грудины, инсультом, выраженной нейропатией.

Трахеостомия

Обычно трахеостомия выполняется в плановом порядке при невозможности отлучить пациента от ИВЛ после 7-10 дней после операции. Трахеостомия может выполняться по обычной хирургической методике, а в ОИТР - по чрескожной методике (см. ниже).

Показания

  • Защита дыхательных путей
  • Длительная дыхательная поддержка
  • Туалет трахеобронхиального дерева (особенно у пациентов после пневмонэктомии).

Противопоказания

Относительными противопоказаниями являются инфекционный процесс в месте доступа, нестабильность гемодинамики.

Методика чрескожной трахеостомии

Чрескожная трахеостомия основана на модифицированной методике Сельдингера. Обычно проводится у определенной категории пациентов (худощавые пациенты с длинной шеей и хорошим разгибанием головы), выполняется реаниматологом. Примерно в половине ОИТР второй врач-интенсивист контролирует выполнение процедуры с помощью фибробронхоскопа, поскольку сама процедура характеризуется высоким риском перфорации задней стенки трахеи.

  • Выполняется преоксигенация пациента.
  • Шея располагается по средней линии, голова разгибается. Сдувается манжета ЭТ трубки, точно определяется средняя линия шеи. Это позволит избежать неправильной установки трахеостомической трубки в близлежащие мягкие ткани.
  • Перешеек щитовидной железы пересекает второе-четвертое кольцо трахеи. Верхний доступ (выше перешейка) позволяет избежать повреждения перешейка, но связан с бо льшим риском стеноза трахеи.
  • Большинство врачей, выполняющих эту процедуру, вводят трубку в трахею ниже 2-3 кольца.
  • Проводится инфильтрация тканей 1% растворам лидокаина (достаточно 10 мл) выполняется разрез кожи по средней линии шеи над 2-м кольцом трахеи.
  • В трахею вводится полая игла, по ней проводится проводник.
  • По проводнику в трахею вводятся расширители увеличивающегося диаметра до достижения размера выбранной трахеостомической трубки. В качестве альтернативы возможно введение по проводнику зажима-расширителя специальной конструкции.
  • Затем проводится медленное удаление ЭТ трубки, после чего станет возможным введение по проводнику трахеостомической трубки.
  • Закрепите трубку путем наложения швов на кожу и фиксации трубки этими швами.
  • Раздуйте манжету, подсоедините трубку к дыхательному мешку, сделайте несколько ручных вдохов и убедитесь в симметричном движении грудной клетки при вдохе. При необходимости аспирируйте выделения из дыхательных путей.

Осложнения

Осложнения при чрескожной трахеостомии развиваются в 5-7% случаев, что ниже, чем при традиционной хирургической методике. Использование фибробронхоскопа не влияет на частоту осложнений, но, возможно, позволяет предотвратить самые серьезные из них.

Нестабильность гемодинамики

Это довольно частое осложнение, вследствие широкого диапазона стимуляции автономной нервной системы во время этой процедуры.

Кровотечение

Кровотечение во время или сразу после введения трахеостомической трубки обычно связано с повреждением вен щитовидной железы. Корригируйте гипокоагуляцию. Если кровотечение не останавливается при длительном местном придавливании, показано хирургическое вмешательство. Позднее кровотечение из тканей вокруг трубки позволяет предположить эрозирование ткани щитовидной железы или сосудов шеи.

Неудача при введении трубки в трахею

Создания ложного хода можно избежать путем тщательного укладывания пациента и ориентации на поверхностные метки средней линии. Признаки неудавшейся интубации трахеи: невозможность вентиляции, отсутствие C0 2 в конце выдоха и нарастание подкожной эмфиземы. Потери контроля дыхательных путей можно избежать извлечением ЭТ трубки только до такой степени, когда станет возможным введение трахеостомической трубки, и отказ от дальнейшего извлечения ЭТ трубки до фиксации и проверки положения трахеостомической трубки.

Перфорация пищевода

Фибробронхоскопический контроль процедуры позволяет избежать повреждения задней стенки трахеи. Оставление ЭТ трубки на месте в процессе выполнения трахеотомии также помогает не допустить непреднамеренного повреждения задней стенки трахеи и пищевода.

Баротравма

Пневмоторакс, пневмомедиастинум и нарастающая эмфизема могут развиваться в результате прямого повреждения верхушки легкого, избыточного отрицательного внутриплеврального давления у пациента в сознании при попытках глубокого дыхания, а также избыточного положительного давления при ручной вентиляции. Лечение пневмоторакса описано в разделе «Лечение дыхательной недостаточности».

Трахео-безымянный свищ

Тяжелое позднее кровотечение позволяет предположить образование трахео-безымянной фистулы. Часто ему предшествует небольшое кровотечение, может наблюдаться пульсация трахеостомы. Для быстрого контроля кровопотери в неотложной ситуации следует прижать безымянную артерию к грудине путем удаления трахеостомы и введения пальца в стому. Контроль и защита дыхательных путей осуществляется путем эндотрахеальной интубации и раздуванием манжеты. Остановка кровотечения осуществляется через срединную стернотомию.

Трахео-пищеводный свищ

Эрозирование мембранозной части трахеи в месте давления манжеты в настоящее время встречается реже, так как повсеместное распространение получили манжеты низкого давления и контуры с легким весом. Устранение этого дефекта обычно откладывается до того времени, когда пациент не будет больше нуждаться в ИВЛ. Более глубокая установка трахеостомической трубки и расположение манжеты дистальнее свища обеспечивает защиту дыхательных путей от желудочного содержимого.

Инфекция

Высевание микроорганизмов из трахеостомической трубки означает клинически значимую инфекцию и должно лечиться. Воспаление подкожной клетчатки вокруг места введения трубки следует лечить с применением антибиотиков.

Непреднамеренная экстубация и потеря контроля дыхательных путей

При нахождении трахеостомической трубки в трахее более 7 дней введение новой трубки по старому ходу выполняется относительно легко. В отсутствие сформированного хода можно прибегнуть в оротрахеальной интубации. Если интубировать пациента не удается, выполните крикотироидотомию.

Стеноз и гранулематоз трахеи

Эти явления могут наблюдаться в месте введения трубки или в месте давления манжеты.