Потери электрической и тепловой энергии при транспортировке. Нормативно-правовые аспекты взаимоотношений потребителей тепловой энергии с энергоснабжающими организациями

Существует два основных вида источников тепловой энергии (теплоносители - пар и горячая вода): котельные и ТЭЦ.

Если ТЭЦ является источником и тепловой и электрической энергии, то котельная вырабатывает только теплоту.

Котельная - это совокупность устройств, состоящая из котлов, вспомогательного оборудования и систем хранения, подготовки и транспорта топлива; подготовки, хранения и транспорта воды; золо- и шлакоудаления, а также сооружений для очистки дымовых газов и воды.

Главный элемент любого источника тепловой энергии - котельная установка, служащая для выработки пара или горячей воды. Котельная установка - это совокупность котла и вспомогательного оборудования. Котел -это конструктивно объединенный в одно целое комплекс устройств для получения пара или нагрева воды под давлением за счет тепловой энергии от сжигания топлива. Котлы подразделяются на паровые, водогрейные и паро - водогрейные.

Паровые котлы делятся на энергетические и котлы промышленной теплоэнергетики.

Энергетические котлы входят в состав тепловых электростанций и служат для получения перегретого водяного пара различных давлений и температур. Котлы промышленной теплоэнергетики служат для выработки насыщенного или перегретого пара низких и средних параметров. Этот пар используется либо в качестве технологического в производственных процессах предприятия, либо для приготовления горячей воды на нужды отопления, вентиляции, кондиционирования и горячего водоснабжения (ГВС).

Водогрейные котлы могут устанавливаться как на ТЭЦ, так и в котельных. Нагретая в них вода используется для тех же нужд.

Паровые котлы классифицируются по целому ряду признаков: конструкции, компоновке поверхности нагрева, производительности, параметрам пара, виду применяемого топлива, способу подачи и сжигания топлива, давлению дымовых газов.

Широко распространенными паровыми котлами являются вертикально-водотрубные котлы типа ДКВР, предназначенные для производства насыщенного пара давлением 1,4 МПа. Паропроизводительность их составляет 4; 6,5; 10; 20 т/ч при работе на твердом топливе и увеличивается в 1,3... 1,5 раза при работе на мазуте и газе. В настоящее время взамен ДКВР выпускается новая серия котлов производительностью от 2,5 до 25 тонн насыщенного или перегретого пара в час типов КЕ (для слоевого сжигания твердого топлива) и ДЕ (для работы на мазуте и газе).

В промышленной теплоэнергетике используются также паровые котлы П - образной компоновки типов ГМ50-14/250, ГМ50-1, БК375-39/440. Котлы типа ГМ могут работать на газе или мазуте, а БКЗ - также и на твердом топливе.

Паровые котлы различаются по конструкции, типу, производительности, параметрам пара и виду применяемого топлива.

Котлы малой (до 25 т/ч) и средней (160...220 т/ч) производительности с давлением пара до 4 МПа применяются в производственных и отопительных котельных для получения тепловой энергии в виде пара, идущего на технологические и отопительно - бытовые нужды.

Котлы производительностью до 220 т/ч имеют естественную циркуляцию без промежуточного перегрева пара и применяются на промышленных теплоэнергетических установках и ТЭЦ.

Водогрейные котлы предназначены для подготовки теплоносителя в виде горячей воды для технологического использования и бытового (отопление, вентиляция, кондиционирование и горячее водоснабжение).

Водогрейные котлы могут быть чугунными секционными и стальными водотрубными.

Чугунные секционные водогрейные котлы, например, типов КЧ-1, «Универсал», «Братск», «Энергия» и др. отличаются размерами и конфигурацией чугунных секций; мощность этих типов котлов - 0,12... 1 МВт.

Стальные водогрейные котлы имеют маркировку ТВГ, ПТВМ и КВ. Эти котлы отпускают воду с температурой до 150°С и давлением 1,1... 1,5 МПа, теплопроводностью от 30 до 180 Гкал/ч (35...209 МВт).

Котлы типа ПТВМ работают на газе и мазуте. Котлы типа KB являются унифицированными, предназначенными для работы на твердом, газообразном и жидком топливе. В зависимости от вида и способа сжигания топлива котлы KB делятся на КВТС (слоевые механизированные топки), КВТК (камерная топка для сжигания пылевидного топлива), КВГМ (для сжигания газа и мазута).

Теплоэлектроцентрали (ТЭЦ) - это станции комбинированной выработки электрической и тепловой энергии. Перегретый пар от котла подается на лопатки паровой турбины, закрепленные на роторе. Под воздействием энергии пара ротор турбины вращается. Этот ротор жестко связан при помощи соединительной муфты с ротором электрогенератора, при вращении которого вырабатывается электроэнергия. Пар, частично отдавший свою энергию в турбине, поступает потребителям либо для технологического использования, либо для нагрева воды, подаваемой потребителям.

На ТЭЦ применяются теплофикационные турбины с промежуточными теплофикационными отборами пара и турбины с противодавлением.

Тепловая схема ТЭЦ с противодавлением турбин показана на рис. 5, где: 1 - паровой котел, 2 - паровая турбина, 3. электрический генератор, 4 -потребитель теплоты, 5 - конденсатный насос, 6 - деаэратор, 7 - питательный насос.

Тепловая схема ТЭЦ с теплофикационными турбинами показана на рис. 6, где 1, 2, 3, 4 соответствуют обозначениям рис. 5, 5 - сетевой насос, 6-конденсатор, 7 - конденсатный насос, 8 - деаэратор, 9 - питательный насос.


Рисунок 5. Рисунок 6.

ТЭЦ с турбинами с противодавлением характеризуется тем, что производство электроэнергии здесь жестко связано с отпуском тепловой энергии, работа такой станции целесообразна только при наличии крупных потребителей теплоты с постоянным расходом ее в течение года, например, предприятий химической или нефтеперерабатывающей промышленности.

ТЭЦ с теплофикационными турбинами лишены этого недостатка и могут одинаково эффективно работать в широком диапазоне тепловых нагрузок. В тепловой схеме имеется конденсатор, а пар для подогрева воды отпускается из промежуточных ступеней турбины. Количество пара и его параметры регулируются, такие отборы называются теплофикационными в отличие от отборов, используемых для регенеративного подогрева питательной воды.

Для теплоснабжения городов и населенных пунктов используются отопительные котельные. Они бывают:

а) индивидуальные (домовые) или групповые для отдельных зданий или группы зданий. Теплопроизводительность таких котельных 0,5...4 МВт, вид котлов - водогрейные чугунные секционные, температура теплоносителя 95...115°С, КПД на каменном угле - 60-70%, на газе и мазуте- 80-85%;

б) квартальные для теплоснабжения квартала или микрорайона. Теплопроизводительность - 5...50 МВт, вид котлов - стальные паровые типа ДКВР или ДЕ и водогрейные типов КВТС, КВГМ, ТВГ, температура теплоносителя 13О...15О°С, КПД на каменном угле - 80-85%, на газе и мазуте - 85-92%;

в) районные для теплоснабжения одного или нескольких жилых районов. Теплопроизводительность - 70...500 МВт, вид котлов - стальные водогрейные типов ПТВМ, КВТК, КВГМ, температура теплоносителя 150...200°С, КПД на каменном угле - 80-88%, на газе и мазуте - 88-94%; или паровые типа ДКВР, ДЕ, ГМ-50.

Если котельная помимо нужд отопления и горячего водоснабжения (ГВС) I отпускает пар, то такая котельная называется промышленно-отопительной. Если котельная обеспечивает тепловой энергией в виде пара и горячей воды только нужды предприятия, то такая котельная называется промышленной. Котельные могут быть также только с водогрейными котлами (водогрейная котельная), только с паровыми котлами (паровая котельная) и с паровыми и водогрейными котлами (паро-водогрейная котельная). Пример отопительной котельной с паровыми котлами показан на упрощенной схеме рис. 7.

Рисунок 7.

Здесь 1 - питательный насос, 2 - паровой котел, 3-паровая редукционная установка (РУ), 4 - транспорт пара на технологические нужды предприятия, 5 - трубопровод подпитки тепловой сети, 6 - сетевой насос, 7 - теплообменники подогрева сетевой воды, 8 - тепловая сеть, 9 -деаэратор.

Тепловая сеть - это система прочно и плотно соединенных между собой участков стальных труб (теплопровод), по которым теплота с помощью теплоносителя (пара или, что чаще, горячей воды) транспортируется от источников (ТЭЦ или котельных) к потребителям теплоты.

Теплотрассы бывают подземные и надземные. Надземная прокладка тепловых сетей используется при высоком уровне грунтовых вод, плотной застройке районов прокладки теплотрассы, сильно пересеченном рельефе местности, наличии многоколейных железнодорожных путей, на территориях промышленных предприятий при наличии уже имеющихся энергетических или технологических трубопроводов на эстакадах или высоких опорах.

Диаметры трубопроводов тепловых сетей колеблются от 50 мм (распределительные сети) до 1400 мм (магистральные сети).

Около 10% тепловых сетей проложены надземно. Остальные 90% тепловых сетей проложены под землей. Около 4% проложены в проходных каналах и тоннелях (полупроходных каналах). Около 80% тепловых сетей проложены в непроходных каналах. Около 6% тепловых сетей уложены бесканально. Это самая дешевая укладка, но, во - первых, наиболее подверженная повреждениям и, во - вторых, она требует больших затрат при ремонте, особенно в условиях прокладки в кислых влажных грунтах Северо - Запада.

Тепловая энергия используется в процессе отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения, пароснабжения.

Отопление, вентиляция, кондиционирование воздуха служат для создания комфортных условий для проживания и трудовой деятельности людей. Объем потребления тепловой энергии для этих целей определяется сезоном и зависит прежде всего от температуры наружного воздуха. Для сезонных потребителей характерным является относительно постоянный суточный расход теплоты и значительные его колебания по временам года.

Горячее водоснабжение - бытовое и технологическое - круглогодичное. Оно характеризуется относительно постоянным расходом в течение года и независимостью от температуры наружного воздуха.

Пароснабжение применяется в технологических процессах обдувки, пропарки, паровой сушки.

Отопление может быть местным или централизованным. Простейшим видом местного отопления является печь дровяного отопления, представляющая собой кирпичную кладку с топкой и системой газоходов для удаления продуктов сгорания. Выделенная в процессе сгорания теплота нагревает кладку, которая в свою очередь отдает теплоту помещению.

Местное отопление может осуществляться с помощью газовых отопительных приборов, имеющих малые размеры и вес и высокую эффективность.

Применяются также поквартирные системы водяного отопления. Источник теплоты - водонагревательный аппарат на твердом, жидком или газообразном топливе. Вода нагревается в аппарате, подается в отопительные приборы и, охладившись, возвращается в источник.

В системах местного отопления в качестве теплоносителя может использоваться воздух. Аппараты нагрева воздуха называются огневоздушными или газовоздушными агрегатами. В помещениях воздух подается вентиляторами через систему воздуховодов.

Большое распространение получило местное отопление электрическими приборами, выпускаемыми в виде переносных аппаратов различных конструкций. В некоторых случаях применяются стационарные электроотопительные приборы с вторичными теплоносителями (воздухом, водой).

На предприятиях в производственных помещениях местное отопление практически не используется, однако в административных и бытовых помещениях оно может применяться (в основном электроприборы).

Централизованной называется система отопления с одним общим (центральным) источником теплоты. Это система отопления отдельного здания, группы зданий, одного или нескольких кварталов и даже небольшого города (например, для отопления и горячего водоснабжения города Сосновый Бор Ленинградской области используется один источник теплоты - Ленинградская атомная электростанция).

Отличаются системы также видом передачи теплоты воздуху помещения: конвективное, лучистое; типом нагревательных приборов: радиаторные, конвертерные, панельные.

На рис. 8 показана двухтрубная система центрального водяного отопления, в которой вода поступает в нагревательные приборы по горячим стоякам, а отводится по холодным. В этом случае температура воды получается одинаковой во всех приборах, независимо от их расположения.

Обозначения рис. 8: 1 - котельная, 2 - главный стояк, 3 -нагревательные приборы, 4 - расширительный бачок, 5 - горячая магистраль, 6 - горячий стояк, 7 - холодный стояк, 8 - обратная магистраль.

Рисунок 8.

Однотрубная система центрального отопления (рис. 9) отличается от двухтрубной тем, что вода поступает в приборы отопления и отводится от них по одному и тому же стояку. Схема однотрубной системы может быть проточной (рис. 9, а), с осевыми замыкающими участками (рис. 9, б), со смешанными замыкающими участками (рис. 9, в). Обозначения те же, что на рис. 8.

Рисунок 9.

В проточных системах вода последовательно проходит через все приборы стояка, в системах с осевыми замыкающими участками вода частично проходит через приборы, частично через замыкающие участки, общие для двух приборов одного этажа, в системах со смешанными замыкающими участками вода ответвляется через два замыкающих участка.

В однотрубных системах температура воды снижается в направлении ее движения, то есть приборы верхних этажей горячее приборов нижних этажей. В этих системах несколько меньше расход металла на стояки, но требуется установка замыкающих участков.

Нагревательные приборы, устанавливаемые в обогреваемых помещениях, изготавливаются из чугуна и стали и имеют различные конструктивные формы от гладких труб, изогнутых или сваренных в блоки (регистры), до радиаторов, ребристых труб и отопительных панелей.

Вода для горячего водоснабжения должна быть такого же качества, как и питьевая, так как она используется для гигиенических целей. Температура воды должна быть в пределах 55.. .60°С.

Различают местное и центральное горячее водоснабжение. Местное горячее водоснабжение осуществляется с помощью водонагревательных аппаратов автономного и периодического действия с устройством распределения и разбора горячей воды. Водонагреватели работают на твердом топливе (угле, дровах), на газе и могут быть электрическими. По принципу действия водонагреватели делятся на емкостные и проточные.

Система центрального горячего водоснабжения применяется для объектов тепловой мощностью свыше 60 кВт. Система является частью внутреннего водопровода и представляет собой сеть трубопроводов, распределяющих горячую воду между потребителями.

Рисунок 10.

На рис. 10 показана система центрального горячего водоснабжения с рециркуляцией, где 1 - водонагреватель первой ступени, 2 - водонагреватель второй ступени, 3 - подающая магистраль, 4 - водоразборные стояки, 5 -циркуляционные стояки, 6 - отключающие вентили, 7 - циркуляционная магистраль, 8 - насос.

Циркуляционные стояки предотвращают остывание воды в стояках при отсутствии водоразбора. Источником тепла служат водонагреватели (бойлеры), располагаемые в тепловом вводе здания или в групповом тепловом пункте.

Вентиляция служит для введения чистого воздуха в помещение и удаления загрязненного с целью обеспечения требуемых санитарно-гигиенических условий. Подаваемый в помещение воздух называется приточным, удаляемый - вытяжным.

Вентиляция может быть естественной и принудительной. Естественная вентиляция происходит под действием разности плотностей холодного и теплого воздуха, его циркуляция идет либо по специальным каналам, либо через открытые форточки, фрамуги и окна. При естественной вентиляции напор невелик и соответственно мал воздухообмен.

Принудительная вентиляция осуществляется с помощью вентиляторов, которые подают воздух и удаляют его из помещения с высокой эффективностью.

По виду организации воздушного потока вентиляция бывает общеобменной и местной. Общеобменная обеспечивает обмен воздуха во всем объеме помещения, а местная - в отдельных частях помещения (на рабочих местах).

Система вентиляции, только удаляющая воздух из помещения, называется вытяжной, система вентиляции, только подающая воздух в помещение, называется приточной.

В жилых домах применяется, как правило, общеобменная естественная вытяжная система вентиляции. Наружный воздух поступает в помещения путем инфильтрации (через неплотности в ограждениях), а загрязненный внутренний воздух удаляется через вытяжные каналы здания. Потери тепловой энергии от поступления холодного наружного воздуха восполняются системой отопления и составляют величину 5.. .10% нагрузки отопления в зимний период.

В общественных и производственных зданиях обычно устраивается приточно-вытяжная принудительная вентиляция, причем расход тепловой энергии учитывается отдельно.

Кондиционирование воздуха - это придание ему заданных свойств независимо от наружных метеорологических условий. Это обеспечивается специальными аппаратами - кондиционерами, которые очищают воздух от пыли, подогревают его, увлажняют или осушают, охлаждают, перемещают, распределяют и автоматически регулируют параметры воздуха.

Широкое распространение получили системы кондиционирования для производственных помещений на приборостроительных, радиоэлектронных, пищевых, текстильных предприятиях, к воздушной среде которых предъявляются высокие требования.

Основная задача кондиционера - термовлажностная обработка воздуха: зимой воздух следует подогреть и увлажнить, летом - охладить и осушить.

Воздух нагревается в калориферах, охлаждается в поверхностных или контактных охладителях, аналогичных по устройству калориферам, но в трубах охлаждения циркулирует холодная вода или хладоноситель (аммиак, фреон).

Осушение воздуха получается в результате контакта с поверхностью охладителя, температура которого ниже точки росы воздуха - на этой поверхности выпадает конденсат.

Для орошения воздуха используются форсунки подачи воды или смоченные поверхности с лабиринтными ходами.

Тема 4. Потребители тепловой энергии.

Систем теплоснабжения

Эффективность внедрения автономных

Критическая ситуация с обеспечением энергоресурсами, увеличением цен на их приобретение до мировых требует незамедлительных мер по активному внедрению энерго- и ресурсосберегающих технологий на уровне государственной политики.

Одним из направлений, позволяющих решить эту проблему, является децентрализация теплоснабжения путем внедрения систем автономного теплоснабжения (САТ), эффективность которых подтверждена многолетним опытом эксплуатации их во многих европейских странах.

Под САТ принято понимать система отопления и горячего водоснабжения с источником тепла, расположенным на отапливаемом объекте (на крыше или в чердачном пространстве), или в непосредственной близости от него.

Значительный экономический эффект от внедрения САТ перед централизованным теплоснабжением достигается за счёт следующих факторов:

Отсутствие капитальных затрат на строительство здания котельной и приобретение дорогостоящего инженерного оборудования;

Отсутствие значительных капитальных затрат на строительство, эксплуатацию и устранение аварийных ситуаций многокилометровых теплотрасс, срок службы которых не превышает 10-12 лет вместо нормативных 25 лет;

Отсутствие теплопотерь и затрат энергии на транспортирование теплоносителя по тепловым сетям;

Отсутствие многочисленного персонала для обслуживания котельных теплосœетей и сооружений на них.

Украина является первой из постсоветских государств, в разработке новых нормативов ʼʼкрышныхʼʼ котельных установок. В 1993 г в ᴦ. Белая Церковь была смонтирована на 9-ти этажном жилом доме первая ʼʼкрышнаяʼʼ котельная в Украинœе. Анализ работы котельной за 10 лет показал, что обустройство дома автономным источником позволит обеспечить качественное отопление дома, при этом сэкономив до 35 % газа, 75 % электроэнергии, 50 % эксплуатационных затрат по сравнению с действующим централизованным теплоснабжением.

Вопросы для самоконтроля:

1. Что принято называть системой теплоснабжения?

2. Какие задачи стоят перед теплоснабжением?

3. Назовите источники тепловой энергии.

4. Как классифицируются системы теплоснабжения исходя из источника теплоснабжения.

5. Проведите сравнительную характеристику различных источников теплоснабжения.

Вопросы темы:

1. Потребители тепла.

2. Классификация потребителœей тепла.

3. Неравномерность потребления тепловой энергии.

На теплоснабжение зданий расходуется около 40 % всœего добываемого в стране топлива. В жилых и общественных зданиях тепловая энергия затрачивается на обеспечение комфортных условий пребывания людей в помещениях, соответствующих современному уровню развития техники теплоснабжения, а также на коммунально-бытовые и санитарно-гигиенические цели. В промышленных зданиях тепловая энергия, кроме того, необходима по условиям технологии для обеспечения требуемого теплового режима при изготовлении отдельных видов продукции и проведения ряда производственных операций.

Учитывая зависимость отрода теплопотребления всœе потребители делятся на коммунально-бытовые и технологические. К ним относятся потребители тепловой энергии для целœей отопления и вентиляции зданий, а также для подогрева воды на санитарно-гигиенические и бытовые цели. Инженерными устройствами, распределяющими тепловую энергию в зданиях, являются системы отопления, вентиляции, кондиционирования воздуха и горячего водоснабжения и теплотехническое оборудование, крайне важно е по технологии производства продукции.

Система отопления обеспечивает заданный тепловой режим в помещениях в холодное время года путем компенсации теплопотерь через наружные ограждающие конструкции здания.

Система вентиляции создает требуемую чистоту воздуха в рабочей зоне производственных зданий, необходимый воздушный и тепловой режим в общественных зданиях путем соответствующей организации воздухообмена в помещениях.

Система кондиционирования воздуха применяется для создания в помещениях микроклимата͵ удовлетворяющего повышенным санитарно-гигиеническим или технологическим требованиям, путем обеспечения строго заданных температуры, влажности, подвижности и чистоты воздуха в рабочей зоне.

Система горячего водоснабжения предназначена для подогрева и транспортирования воды к местам водоразбора на хозяйственно-бытовые или производственные нужды.

Технологическое теплотехническое оборудование является потребителœем тепловой энергии в виде подогретой воды или водяного пара и включает как специальные теплопроводы, так и теплообменные аппараты, а иногда и электрокотлы.

Каждое устройство обеспечивает один из видов теплопотребления и имеет свой режим работы, который определяется расходом тепловой энергии в течение заданного промежутка времени, к примеру, одного часа рабочей смены, суток, месяца, сезона или года.

По расходу тепловой энергии в течение часа всœе потребители делятся на равномерно потребляющие (отопление, вентиляция) и неравномерно потребляющие (подогрев воды, технологические нужды).

По продолжительности непрерывного использования тепловой энергии в течение определœенного периода года всœе потребители объединяются в две основные группы: с сезонным потреблением (отопление, вентиляция) и с годовым потреблением (подогрев воды, технологические нужды). Режим работы сезонных потребителœей зависит от климатических условий (наружной температуры t н и влажности воздуха, скорости и направления ветра) и характеризуется неравномерностью теплопотребления как в течение отопительного сезона, так и в течение каждого месяца. У годовых потребителœей при сравнительно постоянном расходе теплоты в течение сезона, месяца и недели режим работы резко изменяется не только по часам суток, но и по дням недели.

Совместное действие потребителœей с различными режимами их работы предъявляет определœенные требования к виду, количеству и потенциалу теплоносителя, циркулирующего в наружных теплопроводах. Выбор рационального варианта схемы теплоснабжения объекта производится по суммарной тепловой нагрузке отдельных инженерных устройств всœех зданий и технологических потребителœей. Тепловую нагрузку, или потребность в тепловой энергии, обычно рассчитывают в характерные промежутки времени: час, сутки, месяц, сезон или год, причем расчетным расходом теплоты является часовой.

По расчетному расходу выбирают тип источника тепловой энергии, мощность теплоподготовительного оборудования и диаметры трубопровода. Учитывая зависимость отизменения тепловой потребности в течение суток, месяца, сезона и года разрабатывают соответствующие режимы отпуска тепловой энергии – эксплуатационные режимы работы теплоснабжающих устройств. При этом учитывают концентрацию тепловых потребителœей, удаленность потребителœей от теплоисточников, геометрическую высоту зданий и рельеф местности.

Месячный, сезонный и годовой расходы тепловой энергии используют в технико-экономических расчетах при сравнении вариантов систем теплоснабжения. Расходы тепловой энергии на отопление, вентиляцию и горячее водоснабжение принимают по типовым или индивидуальным проектам соответствующих зданий и сооружений. Расход тепловой энергии на производственные процессы учитывают по технологическим проектам данных производств. При отсутствии проектов расчетный расход теплоты определяется раздельно для каждого потребителя. Расчетный расход тепловой энергии здания квартала, города включает расход на отопление, вентиляцию, горячее водоснабжение и на технологические нужды.

Учитывая зависимость оттребований, предъявляемых к надежности и качеству теплоснабжения, а также к виду и параметрам теплоносителя, системы централизованного теплоснабжения подразделяются:

а) по виду транспортируемого теплоносителя – паровые, водяные и смешанные;

б) по числу параллельно проложенных теплопроводов – одно-, двух-, трех- и многотрубные;

в) по использованию теплоносителя в системах горячего водоснабжения и технологических потребителœей – закрытые (замкнутые) и открытые (разомкнутые).

Водяные двух- и четырехтрубные системы применяют для теплоснабжения жилых и общественных зданий. Двухтрубные системы бывают как закрытыми, так и открытыми, как правило, с местными тепловыми подстанциями. Четырехтрубные системы, как правило, закрытые, причем до центральной тепловой подстанции тепловые сети выполняют двухтрубными, после ЦТП до здания – четырехтрубными. Режим работы двухтрубных тепловых сетей устанавливается из условия обеспечения тепловой энергией всœех потребителœей. В четырехтрубных сетях к двум магистралям (подающей и обратной) подсоединяют системы отопления и к двум (подающей и циркуляционной) – системы горячего водоснабжения.

Для теплоснабжения промышленных предприятий применяются системы всœех типов: паровые одно- и многотрубные, водяные, как правило, трехтрубные, в которых первый трубопровод – подающей для отопления и вентиляции, второй – подающий с постоянной температурой теплоносителя в течение года для горячего водоснабжения и производственных нужд, а третий – обратный общий.

В закрытой системе теплоснабжения система горячего водоснабжения и другие потребители присоединœены к тепловым сетям через теплообменные аппараты, в которых подогревается водопроводная вода (или воздух), поступающая на водоразбор.
Размещено на реф.рф
Теплоноситель в этой системе отдает часть тепловой энергии и полностью возвращается к источнику.

В открытой системе теплоснабжения вода, предназначенная для горячего водоснабжения и технологических нужд, забирается непосредственно из тепловой сети. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в этой системе используется не только тепловая энергия теплоносителя, но и собственно теплоноситель. Часть теплоносителя, не использованная у потребителœей (в системах отопления и вентиляции), возвращается в котельную.

Однотрубные системы как водяные, так и паровые являются только открытыми. В них теплоноситель полностью используется у потребителя, удовлетворяя последовательно всœе тепловые нужды. При максимальных температуре воды или давлении пара теплоноситель отдает часть теплоты в системах отопления и вентиляции и, кроме того, используется для горячего водоснабжения и технологических нужд. При однотрубных системах требуются меньшие капитальные вложения на строительство тепловых сетей. С повышением потенциала теплоносителя, к примеру, при давлении пара более 1,1 МПа и температуре воды до 180 – 200 0 С экономичность их возрастает.

Для теплоснабжения городов и жилых посœелков наибольшее распространение получили водяные двухтрубные (открытые и закрытые) системы теплоснабжения.

В открытых системах значительно упрощаются узлы присоединœения систем горячего водоснабжения к тепловым сетям, упрощается схема автоматизации, а главное обеспечивается длительная эксплуатационная надежность трубопроводов системы горячего водоснабжения. Поступление в них воды, прошедшей умягчение и дегазацию в котельной, исключает коррозию внутренней поверхности стенок труб. К недостаткам этой системы следует отнести возможную повышенную цветность воды, особенно при присоединœении радиаторных систем отопления к тепловым сетям по зависимой схеме, а также в случае ремонта тепловых вводов.

В закрытых системах водопроводная вода, подогреваемая в теплообменных аппаратах и поступающая в систему горячего водоснабжения, как правило, не подвергается химической обработке, крайне важно сложное и дорогостоящее оборудование, требующее высококвалифицированного обслуживания и занимающее много места. По этой причине трубопроводы системы горячего водоснабжения подвержены коррозии из-за наличия в водопроводной воде кислорода и углекислоты. В них часто появляются свищи, а в водоподогревателях на стенках труб, по которым проходит водопроводная вода, откладывается накипь, резко снижающая эффективность и приводящая к быстрому выходу их из строя. При водоснабжении объекта из артезианских скважин, когда вода имеет повышенное содержание солей жесткости по сравнению с водой из открытых водоемов, очистка водоподогревателœей от накипи требуется через каждые четыре – шесть месяцев.

Вопросы для самоконтроля:

1. Как классифицируются потребители тепла?

2. Назовите потребителœей тепла.

3. В чем заключается неравномерность потребления тепловой энергии?

4. Как выбирается выбор варианта схемы теплоснабжения.

Библиографический список:

1. И.И. Павлов, М.Н. Федоров ʼʼКотельные установки и тепловые сетиʼʼ, с. 150-165, 179-190.

2. Ю.Д. Сибикин “Отопление, вентиляция и кондиционирование воздуха”, М, 2004, стр.
Размещено на реф.рф
8

Тема 4. Потребители тепловой энергии. - понятие и виды. Классификация и особенности категории "Тема 4. Потребители тепловой энергии." 2017, 2018.

Потери электроэнергии

Потребители электроэнергии имеются повсюду. Производиться же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удаётся консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля- Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой:,где R-сопротивление линии. При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии практически весьма трудно. Поэтому приходиться уменьшать силу тока.

Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Между тем генераторы переменного тока строят на напряжение, не превышающие 16-20кВ.Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генератора.

Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько уменьшает силу тока.

Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.

Обычно понижение напряжения и соответственно увеличения силы тока происходят в несколько этапов. На каждом этапе напряжение становится всё меньше, а территория, Охватываемая электрической сетью- всё шире.

При очень высоком напряжении между проводами начинается коронный разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного провода потери энергии вследствие коронного разряда были незначительными.

Электрические станции ряда районов страны объединены высоковольтными линиями передач, образуя общую электрическую сеть, к которой присоединены потребители. Такое объединение, называемое энергосистемой, даёт возможность сгладить “пиковые”нагрузки потребления энергии в утренние и вечерние часы. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения.

ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И ЭЛЕКТРИЧЕСКИЕ СЕТИ.

Электрическая часть электростанции включает в себя разнообразное основное и вспомогательное оборудование. К основному оборудованию, предназначенному для производства и распределения электроэнергии, относятся:

  • Синхронные генераторы, вырабатывающие электроэнергию(на ТЭС-турбогенераторы);
  • Сборные шины, предназначенные для приёма электроэнергии от генераторов и распределения её к потребителям;
  • Коммуникационные аппараты- выключатели, предназначенные для включения и отключения цепей в нормальных и аварийных условиях, и разъединители, предназначенные для снятия напряжения с обесточенных частей электроустановок и для создания видимого разрыва цепи;
  • Электроприемники собственных нужд(насосы, вентиляторы, аварийное электрическое освещение и т.д.)

Вспомогательное оборудование предназначено для выполнения функций измерения, сигнализации, защиты и автоматики и т.д.

Энергетическая система(энергосистема) состоит из электрических станций, электрических сетей и потребителей электроэнергии, соединённых между собой и связанных общностью режима в непрерывном процессе производства, распределения и потребления электрической и тепловой энергии при общем управлении этим режимом.

Электроэнергетическая (электрическая) система-это совокупность электрических частей электростанций, электрических сетей и потребителей электроэнергии, связанных общностью режима и непрерывностью процесса производства, распределения и потребления электроэнергии. Электрическая система-часть энергосистемы, за исключением тепловых сетей и тепловых потребителей. Электрическая сеть-совокупность электроустановок для распределения электрической энергии, состоящая из подстанций, распределительных устройств, воздушных и кабельных линий электропередачи. По электрической сети осуществляется распределение электроэнергии от электростанций к потребителям. Линия электропередачи(воздушная или кабельная)-электроустановка, предназначенная для передачи электроэнергии.

В нашей стране применяются стандартные номинальные (междуфазные)напряжения трёхфазного тока частотой 50Гц в диапазоне 6-750кВ,а также напряжения 0,66;0,38кВ.Для генераторов применяют номинальные напряжения 3-21кВ.

Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-750кВ,т.е.значительно превышающих напряжения генераторов. Электрические подстанции применяются для преобразования

электроэнергии одного напряжения в электроэнергию другого напряжения. Электрическая подстанция-это электроустановка, предназначенная для преобразования и распределения электрической энергии. Подстанции состоят из трансформаторов, сборных шин и коммутационных аппаратов, а также вспомогательного оборудования: устройств релейной защиты и автоматики, измерительных приборов. Подстанции предназначены для связи генераторов и потребителей с линиями электропередачи.

Классификация электрических сетей может осуществляться по роду тока, номинальному напряжению, выполняемым функциям, характеру потребителя, конфигурации схемы сети и т.д.

По роду тока различаются сети переменного и постоянного тока; по напряжению: сверхвысокого напряжения(,высокого напряжения ,низкого напряжения (<1кВ).

По конфигурации схемы сети делятся на замкнутые и разомкнутые.

По выполняемым функциям различаются системообразующие, питающие и распределительные сети. Системообразующие сети напряжением 330-1150кВ осуществляют функции формирования объединённых энергосистем, включающих мощные электростанции, обеспечивают их функционирование как единого объекта управления и одновременно передачу электроэнергии от мощных электростанций. Они же осуществляют системные связи, т.е. связи между энергосистемами очень большой длины. Режимом системообразующих сетей управляет диспетчер объединённого диспетчерского управления(ОДУ).В ОДУ входит несколько районных энергосистем- районных энергетических управлений (РЭУ).

Питающие сети предназначены для передачи электроэнергии от подстанций системообразующей сети и частично от шин 110-220кВ электростанций к центрам питания(ЦП) распределительных сетей- районным подстанциям. Питающие сети обычно замкнутые. Как правило, напряжение этих сетей 110-220кВ,по мере роста плотности нагрузок, мощности станций и протяжённости электрических сетей напряжение иногда достигает 330-550Кв.

Районная подстанция обычно имеет высшее напряжение 110-220кВ и низшее напряжение 6-35кВ.На этой подстанции устанавливают трансформаторы, позволяющие регулировать под нагрузкой напряжение на шинах низшего напряжения.

Распределительная сеть предназначена для передачи электроэнергии на небольшие расстояния от шин низшего напряжения районных подстанций к промышленным, городским, сельским потребителям. Такие распределительные сети обычно разомкнутые. Различают распределительные сети высокого () и низкого(напряжения. В свою очередь по характеру потребителя распределительные сети подразделяются на сети промышленного, городского и сельскохозяйственного назначения. Преимущественное распространение в распределительных сетях имеет напряжение 10кВ,сети 6кВ применяются при наличии на предприятиях значительной нагрузки электродвигателей с номинальным напряжением 6кВ.Напряжение 35кВ широко используется для создания центров питания 6 и 10кВ в основном в сельской местности.

Для электроснабжения больших промышленных предприятий и крупных городов осуществляется глубокий ввод высокого напряжения, т.е. сооружение подстанций с первичным напряжением 110-500кВ вблизи центров нагрузок. Сети внутреннего электроснабжения крупных городов- это сети 110кВ,в отдельных случаях к ним относятся глубокие вводы 220/10кВ.Сети сельскохозяйственного назначения в настоящее время выполняют на напряжение 0,4-110кВ.

Воздушные линии электропередач (ВЛ) предназначены для передачи электроэнергии на расстояние по проводам. Основными конструктивными элементами ВЛ являются провода(служат для передачи электроэнергии),тросы (служат для защиты ВЛ от грозовых перенапряжений),опоры(поддерживают провода и тросы на определённой высоте),изоляторы(изолируют провода опоры),линейная арматура(с её помощью провода закрепляются на изоляторах, а изоляторы на опорах).

Длина линий электропередач в Беларуси (1996г.):750кВ-418км,330кВ-3951км,220кВ-2279км,110кВ-16034км.

Наиболее распространенные провода- алюминиевые, сталеалюминиевые, а также из сплавов алюминия. Силовые кабели состоят из одной или нескольких токопроводящих жил, отделенных друг от друга и от земли изоляцией. Токопроводящие жилы- из алюминия однопроволочные(сечением до 16)или многопроволочные. Кабель с медными жилами применяется во взрывоопасных помещениях.

Изоляция выполняется из специальной пропитанной минеральным маслом кабельной бумаги, накладываемой в виде лент на токопроводящие жилы, а также может быть резиновой или полиэтиленовой. Защитные оболочки, накладываемые поверх изоляции для предохранения ее от влаги и воздуха, бывают свинцовыми, алюминиевыми или поливинилхлоридными. Для защиты от механических повреждений предусмотрена броня из стальных лент или проволок. Между оболочкой и броней- внутренние и внешние защитные покровы.

Внутренний защитный покров(подушка под броней)-джутовая прослойка из хлопчато- бумажной пропитанной пряжи или из кабельной сульфатной бумаги.Наружный защитный покров- из джута, покрытого антикоррозионным составом.

Существенную часть в потреблении электроэнергии составляют потери в сетях(7-9%).

ЭНЕРГЕТИЧЕСКОЕ ХОЗЯЙСТВО ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ И ПОТЕНЦИАЛ ЭНЕРГОСБЕРЕЖЕНИЯ.

В промышленности более 2/3 потенциала энергосбережения находится в сфере потребления наиболее энергоемкими отраслями- химической и нефтехимической, топливной, строительных материалов, лесной, деревообрабатывающей и целлюлозно- бумажной, пищевой и легкой промышленностью.

Значительные резервы экономии ТЭР в этих отраслях обусловлены несовершенством технологических процессов и оборудования, схем энергоснабжения, недостаточным внедрением новых энергосберегающих и безотходных технологий, уровнем утилизации вторичных энергоресурсов, малой единичной мощностью технологических линий и агрегатов, применением неэкономичной осветительной аппаратуры, нерегулируемого электропривода, неэффективной загрузкой энергооборудования, низкой оснащённостью приборами учета, контроля и регулирования технологических и энергетических процессов, недостатками, заложенными при проектировании и строительстве предприятий и отдельных производств, низким уровнем эксплуатации оборудования, зданий и сооружений.

Машиностроение и металлургия. Примерно треть всего используемого в машиностроении котельно-печного топлива идет на нужды литейного, кузнечно-прессового и термического производства. На технологические нужды используется около половины всей потребляемой теплоты и около трети всей электроэнергии. Свыше трети всей электроэнергии идет на механическую обработку. Основными потребителями энергоресурсов в машиностроении являются мартеновские печи, вагранки, плавильные печи, тягодутьевые машины(вентиляторы и дымососы), нагревательные печи, сушилки, прокатные станы, гальваническое оборудование, сварочные агрегаты, прессовое хозяйство.

Причинами малой эффективности использования топлива и энергии в отраслях машиностроения являются низкий технический уровень печного хозяйства, высокая металлоемкость изделий, большие отходы металла при его обработке, незначительный уровень рекуперации сбросной теплоты, нерациональная структура используемых энергоносителей, значительные потери в тепловых и электрических сетях.

Более половины резервов экономии энергоресурсов может быть реализовано в процессе плавки металлов и литейного производства. Остальная экономия связана с совершенствованием процессов металлообработки, в том числе за счет повышения уровня ее автоматизации, расширение использования менее энергоемких по сравнению с металлом пластмасс и других конструкционных материалов.

Наиболее крупными потребителями топлива в отрасли являются доменное и прокатное производство, самыми энергоемкими –ферросплавное, горнорудное, прокатное, электросталеплавильными и кислородное производство, самым теплоемким- коксохимическое производство.

    • Использование эффективных футеровочных и теплоизоляционных материалов а печах, сушилках и теплопроводах;
    • Применение тиристорных преобразователей частоты в процессах индукционного нагрева металла в кузнечном и термическом производстве;
    • Внедрение энергосберегающих лакокрасочных материалов(с пониженной температурой сушки, водоразбавляемых, с повышенным сухим остатком);
    • Снижение энергозатрат при металлообработке(замена процессов горячей штамповки выдавливанием и холодной штамповкой);
    • Применение накатки шестерен вместо изготовления на зубофрезерных станках;
    • Расширение использования методов порошковой металлургии;
    • Применение станков с ЧПУ(числовым програмным управлением),развитие робототехники и гибких производственных структур;
    • Снижение энергоемкости литья за счет уменьшения брака.

Химическая и нефтехимическая промышленность. В этих отраслях промышленности существует разнообразие технологических процессов, при которых потребляется или выделяется большое количество теплоты. Уголь, нефть и газ используются как в качестве топлива, так и в качестве сырья.

Основными направлениями энергосбережения в этих отраслях являются:

    • Применение высокоэффективных процессов горения в технологических печах и аппаратах(установка рекуператоров для подогрева воды);
    • Использование погруженных газовых горелок для замены парового разогрева негорючих жидкостей;
    • Внедрение новой технологии безотходного экологически чистого производства капролактама с получением тепловой энергии в виде пара и горючих газов(ПО "Азот");
    • Повышение эффективности процессов ректификации(оптимизация технологического процесса с использованием тепловых насосов, повышение активности и селективности катализаторов);
    • Совершенствование и укрупнение единичной мощности агрегатов в производстве химических волокон;
    • Снижение потерь топлива и сырья в низкотемпературных процессах;
    • Перепрофилирование производства аммиака на менее энергоемкое производство метанола(ПО "Азот").

Крупным резервом экономии энергоресурсов в нефтехимической промышленности является утилизация вторичных энергетических ресурсов, в том числе внедрение котлов-утилизаторов для производства пара и горячей воды с целью утилизации тепла высокопотенциальных газовых выбросов.

Среди промышленных производств выпуск минеральных удобрений является одним из более энергоемких. Энергетические затраты в себестоимости отдельных видов продукции этой отрасли составляют примерно третью часть. Повышение энергетической эффективности связано с необходимостью разработки принципиально новых видов оборудования для производства минеральных удобрений, основанных на применении современных физических, физико-химических и физико-механических воздействий(акустических, вибрационных, электромагнитных) на технологические процессы, в том числе тепломассообменных аппаратов, фильтров перемешивающих устройств, грануляторов и др.

Производство строительных материалов.

Производство строительных материалов основано на огневых процессах, связанных с расходом значительных количеств мазута, природного газа и кокса, т.е. наиболее ценных топлив. При этом коэффициент полезного использования этих топлив в отрасли не превышает 40%.

Наибольшее количество энергоресурсов внутри отрасли строительных материалов потребляется при производстве цемента. Наиболее энергоемким процессом в производстве цемента является отжиг клинкера(клинкер- обожженная до спекания смесь известняка и глины-сырья для производства цемента).При так называемом мокром способе производства удельный расход энергоресурсов на отжиг клинкера примерно в 1,5 раза выше, чем при сухом способе. Поэтому важным направлением энергосбережения является применение сухого способа производства цемента из переувлажненного сырья.

В производстве бетона энергосберегающими являются производство и внедрение добавок-ускорителей отвердения бетона для перехода на малоэнергоемкую технологию производства сборного железабетона,а также использование теплогенераторов для тепловлажностной обработки железобетона в ямных камерах; в производстве кирпича- внедрение метода вакуумированных автоклавов на кирпичных заводах, внедрение обжиговых печей панельных конструкций в цельнометаллическом корпусе для производства глиняного кирпича.

Необходимы организация выпуска строительных и изоляционных материалов и конструкций, снижающих теплопотери через ограждающие конструкции, и разработка и внедрение системы мероприятий по использованию потенциала местных видов топлив для обжига стеновой керамики.

В стекольной промышленности тепловой КПД пламенных стекловаренных печей(основных потребителей топлива) не превышает 20-25%.Наибольшие энергетические потери происходят через ограждающие конструкции печей(30-40%) и с отходящими газами (30-40%).Главные задачи в области энергосбережения в стекольной промышленности состоят в повышении КПД стекловаренных печей, замещении дефицитных видов органического топлива и в утилизации вторичных тепловых ресурсов.

В лесной и деревообрабатывающей промышленности основными направлениями энергосбережения являются:

    • Внедрение экономичных агрегатов для сушки щепы в производстве древесно-стружечных плит;
    • Разработка и внедрение новых экономичных способов производства бумажных изделий, включая производство нетканных материалов и бумаги с синтетическим волокном;
    • Увеличение производства мебели менее энергоемкими способами с применением новых видов облицовочных материалов вместо ламинирования;
    • Изготовление деталей из древесно- стружечных плит;
    • Утилизация теплоты вентиляционных выбросов и низкопотенциальной теплоты паровоздушных смесей;
    • Разработка и внедрение оборудования по производству и использованию генераторного газа из древесных отходов для получения тепловой и электроэнергии;
    • Переоборудование сушильных камер ПАП-32 с электроэнергии на производство древесных отходов.

Основные направления энергосбережения в легкой промышленности:

    • Совершенствование технологических процессов обжига фарфора;
    • Внедрение теплообменников- утилизаторов, использующих теплоту сушильного агента теплоиспользующего оборудования на предприятиях легкой промышленности.

В сельском хозяйстве около половины экономии энергии может обеспечено в результате внедрения энергосберегающих машин, технологических процессов и оборудования.

Преобладающая доля потенциала энергосбережения приходится на устранение прямого расточительства и повышения экономичности работы сельскохозяйственной техники,сокращение потребления ТЭР животноводческими фермами и тепличными хозяйствами за счет улучшения теплофизических характеристик ограждающих конструкций, утилизации низкопотенциальных ВЭР, оптимизации энергобалансов в сочетании с использованием нетрадиционных источников(биогаза и др.),снижение расходов топлива на сушку зерна, использование экономичных котлов с кипящим слоем вместо электрокотлов, использование отходов (соломы и др.)вместо традиционных видов топлива.

Основные направления энегосбережения в сельском хозяйстве наряду с созданием новой техники следующие:

    • Совершенствование технологии сушки зерна и кормов, методов применения минеральных и органических удобрений;
    • Разработка и внедрение систем использования отходов растениеводства и животноводства в энергетических целях, а также для производства удобрений и кормовых добавок;
    • Использование теплоты вентиляционных выбросов животноводческих помещений для подогрева воды и обогрева помещений дл молодняка(с применением пластинчатых рекуператоров);
    • Обеспечение оптимальных температурных режимов и секционирование системы отопления животноводческих помещений;
    • Применение тепловых насосов в системах теплохладоснабжения и устройств для плавного регулирования работы систем вентиляции, внедрение современных контрольно-измерительных приборов и средств автоматизации, установка приборов учета и контроля энергоресурсов, а также строительство биогазовых установок.

В пищевой промышленности к числу наиболее энергоемких относится производство сахара. Основная экономия энергоресурсов в сахарном производстве может быть достигнута в результате совершенствования технологических схем и целенаправленного внедрения энергосберегающего оборудования, использование низкопотенциальной теплоты вторичных паров выпарных и вакуум- кристаллизационных установок и конденсатов в тепловых схемах.

Энергоемким является также производство спирта. Для снижения расхода теплоты здесь необходимо внедрение ферментативного гидролиза при подготовке крахмала, содержащего сырье к сбраживанию.

Сущность энергосберегающей политики в рассматриваемый период состоит в максимально возможном обеспечении потребности в ТЭР за счет их экономии в промышленности, сельском хозяйстве, коммунально-бытовом секторе и более эффективном использовании в электроэнергетике.

Главные причины неэффективного использования ТЭР в Беларуси обусловлены отсутствием комплексной технической, экономической, нормативно- правовой политики энергосбережения, недостатками проектирования, строительства и эксплуатации, отсутствием технической базы по производству необходимого оборудования, приборов, аппаратуры, средств автоматизации и систем управления.

Потенциал энергосбережения в электроэнергетике формируется за счет широкого развития теплофикации на базе ГТУ и ПГУ, модернизации и реконструкции действующих энергетических объектов, совершенствования технологических схем и оптимизации режимов работы оборудования, повышения эффективности процессов сжигания топлива и их автоматизации, внедрения автоматизированных систем управления.

В коммунально- бытовом секторе формируется за счет улучшения теплофизических характеристик ограждающих конструкций зданий и сооружений, модернизации и повышения уровня эксплуатации мелких котельных, использования более экономичных осветительных приборов, регулируемого электропривода, широкого внедрения приборов учета контроля, регулирования, улучшения содержания зданий и сооружений, повышения экономичности электротранспорта, КПД газовых плит, качества теплоизоляции и др.

ОСНОВНЫЕ ПОТРЕБИТЕЛИ ТЕПЛОВОЙ ЭНЕРГИИ

Основными потребителями тепловой энергии являются промышленные предприятия и жилищно- коммунальное хозяйство.Для большинства производственных потребителей требуется тепловая энергия в виде пара (насыщенного или перегретого) либо горячей воды. Например, для силовых агрегатов, которые имеют в качестве привода паровые машины или турбины(паровые молоты и прессы, ковочные машины, турбонасосы, турбокомпрессоры и т.д.),необходим пар давлением 0,8-3,5МПа и перегретый до 250-450.

Для технологических аппаратов и устройств(разного рода подогреватели, сушилки, выпарные аппараты, химические реакторы) преимущественно требуются насыщенный или слабо перегретый пар давлением 0,3-0,8МПа и вода с температурой 150.

В жилищно-коммунальном хозяйстве основными потребителями теплоты являются системы отопления и вентиляции жилых и общественных зданий, системы горячего водоснабжения и кондиционирования воздуха. В жилых и общественных зданиях температура поверхности отопительных приборов в соответствии с требованиями санитарно- гигиенических норм не должна превышать 95,а температура воды в кранах горячего водоснабжения должна быть не ниже 50-60 в соответствии с требованиями комфортности и не выше 70 по нормам техники безопасности. В связи с этим в системах отопления, вентиляции и горячего водоснабжения в качестве теплоносителя применяется горячая вода.

Системы теплоснабжения.

Системой теплоснабжения называется комплекс устройств по выработке, транспорту и использованию теплоты.

Снабжение теплотой потребителей(систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения классифицируются по следующим основным признакам: мощности, виду источника теплоты и виду теплоносителя. По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными. Местные системы теплоснабжения- это системы, в которых три основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях(печи).Централизованные системы, в которых от одного источника теплоты подается теплота для многих помещений.

По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации-ТЭЦ.

Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

Теплоноситель – среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения.

По виду теплоносителя системы теплоснабжения делятся на 2 группы- водяные и паровые. В водяных системах теплоснабжения теплоносителем служит вода, в паровых- пар. В Беларуси для городов и жилых районов используются водяные системы теплоснабжения. Пар применяется на промышленных площадках для технологических целей.

Системы водяных теплопроводов могут быть однотрубными и двухтрубными(в отдельных случаях многотрубными).Наиболее распространенной является двухтрубная система теплоснабжения(по одной трубе подается горячая вода потребителю, по другой, обратной, охлажденная вода возвращается на ТЭЦ или в котельную).Различают открытую и закрытую системы теплоснабжения. В открытой системе осуществляется "непосредственный водоразбор", т.е. горячая вода из подающей сети разбирается потребителями для хозяйственных, санитарно- гигиенических нужд. При полном использовании горячей воды может быть применена однотрубная система. Для закрытой системы характерно почти полное возвращение сетевой воды на ТЭЦ(или районную котельную).Место присоединения потребителей тепла к теплопроводной сети называется абонентским вводом.

К теплоносителям систем централизованного теплоснабжения предъявляют санитарно- гигиенические (теплоноситель не должен ухудшать санитарные условия в закрытых помещениях- средняя температура поверхности нагревательных приборов не может превышать 70-80), технико-экономические(чтобы стоимость транспортных трубопроводов была наименьшей, масса нагревательных приборов- малой и обеспечивался минимальный расход топлива для нагрева помещений)и эксплуатационные требования (возможность центральной регулировки теплоотдачи систем потребления в связи с переменными температурами наружного воздуха).

Параметры теплоносителей- температура и давление. Вместо давления в практике эксплуатации используется напор Н. Напор и давление связаны зависимостью

где Н- напор, м; Р- давление, Па;- плотность теплоносителя, кг/;g- ускорение свободного падения, м/ в системах централизованного теплоснабжения от котельной или ТЭЦ, а также в системах отопления промышленных зданий.

Тепловые сети

В Беларуси длина тепловых сетей (1996 г.) составляет: основных 794 км, распределительных 1341км.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

Наиболее ответственными элементами являются трубы, которые должны быть достаточно прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, высоким термическим сопротивлением стенок, способствующим сохранению теплоты, неизменностью свойств материала при длительном воздействии высоких температур и давлений.

Тепловая изоляция накладывается на трубопроводы для снижения потерь теплоты при транспортировке теплоносителя. Потери теплоты снижаются при надземной при надземной прокладке в 10-15 раз, а при подземной в 3-5 раз по сравнению с неизолированными трубопроводами. Тепловая изоляция должна обладать достаточной механической прочностью, долговечностью, стойкостью против увлажнения(гидрофобностью), не создавать условий для возникновения коррозии и при этом быть дешевой. Она представлена следующими конструкциями: сегментной, оберточной, набивочной, литой и мастичной. Выбор изоляционной конструкции зависит от способа прокладки теплопровода.

Сегментная изоляция выполняется из ранее изготовленных формованных сегментов различной формы, которые накладываются на трубопровод, обвязываются проволокой, а снаружи покрываются асбоцементной штукатуркой. Сегменты изготавливаются из пенобетона, минеральной ваты, газостекла и др. Оберточная изоляция выполняется из минерального войлока, асбестового термоизоляционного шнура, алюминиевой фольги и асбестовых листовых материалов. Указанными материалами покрывают трубы в один или несколько слоев и крепят бандажами из полосового металла. Оберточные изоляционные материалы используют в основном для изоляции арматуры, компенсаторов, фланцевых соединений. Набивная изоляция применяется в виде чехлов, оболочек, сеток с заполнением порошкообразными, сыпучими и волокнистыми материалами. Для набивки применяется минеральная вата, пенобетонная крошка и др. Литая изоляция используется при прокладках трубопроводов в непроходных каналах и бесканальных прокладках.

В канальных трубопроводах сооружаются из сборных железобетонных элементов. Основное достоинство проходных каналов заключается в возможности доступа к трубопроводу, его ревизии и ремонта без вскрытия грунта. Проходные каналы(коллекторы)сооружаются при наличии большого числа трубопроводов. Оборудуются другими подземными коммуникациями- электрокабелями, водопроводом, газопроводом, телефонными кабелями, вентиляцией, электроосвещением низкого напряжения.

Полу проходные каналы применяются при прокладке небольшого числа труб(2-4) в тех местах, где по условиям эксплуатации недопустимо вскрытие грунта, и при прокладке трубопроводов больших диаметров(800-1400мм.)

Непроходные каналы изготавливают из унифицированных железобетонных элементов. Они представляют собой корытообразный лоток с перекрытием из сборных железобетонных плит. Наружная поверхность стен покрывается рубероидом на битумной мастике. Изоляция- антикоррозийный защитный слой, теплоизоляционный слой(минеральная вата или пеностекло), защитное механическое покрытие в виде металлической сетки или проволоки. Сверху- слой асбоцементной штукатурки.

Литература:

    1. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача.М.:энергоиздат,1981.
    2. Теплотехническое оборудование и теплоснабжение промышленных предприятий/Под ред. Б.Н. Голубкова. М.:Энергия,1979.
    3. Тепловое оборудование и тепловые сети. Г.А. Арсеньев и др. М.: Энергоатомиздат, 1988.
    4. Андрюшенко А.И., Аминов Р.З., Хлебалин Ю.М. Теплофикационные установки и их использование. М. : Высш. школа, 1983.

Вопрос 1. Классификация потребителей тепла. Графики тепловых нагрузок.

ОСНОВЫ ОБЩЕЙ ХИМИИ (теория и тестовые материалы)

Редактор Асылбекова Б.А.

Подписано к печати 24. 01.2002 Формат60х90/16 Цена договорная

Объем 5,7уч.-изд. л. Тираж 300 экз. Заказ 2511

Печатно-множительная мастерская КарГТУ, г. Караганда, б. Мира, 56

Вопрос 1. Классификация потребителей тепла. Графики тепловых нагрузок.

Классификация потребителей тепла. (8, с.51..55)

Тепловое потребление - это использование тепловой энергии для разнообразных коммунально-бытовых и производственных целей (отопление, вентиляция, кондиционирование воздуха, души, бани, прачечные, различные технологические тепло-использующие установки и т.д.).

При проектировании и эксплуатации систем теплоснабжения необходимо учитывать:

Вид теплоносителя (вода или пар);

Параметры теплоносителя (температура и давление);

Максимальный часовой расход тепла;

Изменение потребления тепла в течение суток (суточный график);

Годовой расход тепла;

Изменение потребления тепла в течение года (годовой график);

Характер использования теплоносителя у потребителей (непосредственный забор его из тепловой сети или только отбор тепла).

Потребители тепла предъявляют к системе теплоснабжения различные требования. Несмотря на это, теплоснабжение должно быть надежным, экономичным и качественно удовлетворять всех потребителей тепла.

Режим работы технологически систем подвержен изменениям, которые могут носить как закономерный, так и случайный характер, быть длительными или кратковременными, но происходить они должны с минимальными затратами энергоресурсов, не нанося ущерба надежности эксплуатации оборудования и связанных с ним систем.

Пренебрежение этим фактором обычно приводит к просчетам при выборе оборудования источников энергоснабжения и необоснованному перерасходу топлива для обеспечения требуемой нагрузки.

Для того чтобы оценить действительную потребность предприятия или его подразделений в тепловых энергоресурсах, необходимо провести анализ графиков теплопотребления в определенные периоды работы – в течение суток, недели, месяца, года.

Характеристиками равномерности тепловых нагрузок в течение года являются число часов использования максимальной тепловой нагрузки , ч/год, и коэффициент К, представляющий собой отношение среднесуточной нагрузки к максимальной суточной за год.

По этим характеристикам промышленные предприятия разделяются на три группы: первая t =4000 - 5000 ч/год, К=0,57 - 0,68; вторая t =5000 - 6000 ч/год, К=0,6 - 0,76; третья t 6000 ч/год, К 0,76.

К первой группе относятся предприятия, например, легкой промышленности и машиностроения, в структуре затрат тепловой энергии которых более 40% имеют нагрузки систем отопления, вентиляции и горячего водоснабжения. Соответственно затраты теплоты на технологию составляют менее 60%. К третьей группе относятся предприятия с превалирующей долей затрат тепловой нагрузки на технологические нужды – более 90%. Затраты теплоты потребителями других категорий очень малы – менее 10% (табл.8).

Таблица 8

Потребителей тепла можно разделить на две группы:

1) сезонные потребители тепла;

2) круглогодовые потребители тепла.

Сезонными потребителями тепла являются:

Отопление;

Вентиляция (с подогревом воздуха в калориферах);

Кондиционирование воздуха (получение воздуха определенного качества: чистота, температура и влажность).

Круглогодовые потребители используют тепло в течение всего года. К этой группе относятся:

Технологические потребители тепла;

Горячее водоснабжение коммунально-бытовых потребителей.

Изменения сезонной нагрузки зависят главным образом от климатических условий (температуры наружного воздуха, скорости и направления ветра, солнечного излучения, влажности воздуха и т.п.). Сезонная нагрузка имеет сравнительно постоянный суточный график и переменный годовой график нагрузки (рис.11).

График технологической нагрузки зависит от профиля и режима работы производственных предприятий, а график нагрузки горячего водоснабжения – от благоустройства зданий, состава и распорядка рабочего дня основных групп населения, режима работы коммунальных предприятий – бань, прачечных. Имеет почти постоянный годовой и резко переменный суточный график. Суточные графики в субботние и воскресные дни обычно отличаются от суточных графиков других дней недели.

Большинство систем теплоснабжения имеет разнообразную тепловую нагрузку (отопление, вентиляция, горячее водоснабжение, технологические потребители). Ее величина и характер зависят от многих факторов, в том числе от климатических и, главным образом, от температуры наружного воздуха.

На графике (рис.12) показана зависимость расходов теплоты на отопление, вентиляцию, горячее водоснабжение и технологические нужды от температуры наружного воздуха, т.е. затраты теплоты.

По оси ординат отложены относительные значения расходов теплоты в долях единицы (за единицу принят максимальный суммарный расход теплоты, т.е. , где , , , - максимальные расчетные расходы теплоты на отопление, вентиляцию, горячее водоснабжение и технологические нужды соответственно).

По оси абсцисс – температура наружного воздуха .

Построим четыре графика разных тепловых нагрузок. Расход теплоты на технологические нужды и горячее водоснабжение не является функцией наружной температуры. График будет иметь неравномерный характер в течение суток и в течение недели, но сглаживается в течение года и приобретает равномерный характер.

имеет, как правило, круглосуточный характер. При неизменной наружной температуре отопительная нагрузка жилых зданий практически постоянна. Для промышленных предприятий она имеет непостоянный суточный и недельный график, т.е. в целях экономии искусственно снижают подачу теплоты в ночной период и выходные дни. Максимальный расход на отопление соответствует расчетной температуре наружного воздуха для отопления и является расчетной величиной нагрузки отопления . Минимальный расход теплоты на отопление соответствует расчетной наружной температуре начала и конца отопительного сезона



Характерные температуры для графика вентиляционной нагрузки следующие:

Расчетная температура наружного воздуха для вентиляции соответствует расчетной нагрузке вентиляции (используется нагрев рециркуляцией). При расход тепла на вентиляцию постоянен и вентиляционные установки работают с рециркуляцией, т.е. с подмешиванием к наружному воздуху воздуха, взятого их помещений. Рециркуляция воздуха допустима для помещений, в воздухе которых не содержаться болезнетворные микроорганизмы, ядовитые газы, пары и пыль. Подмешивание воздуха осуществляется перед калориферной установкой и в количестве, обеспечивающем неизменяемую его температуру. С понижением температуры наружного воздуха подмешивание увеличивается, а подача наружного воздуха уменьшается. Температура воды, поступающей в калориферы, остается постоянной. Таким образом, когда температура наружного воздуха ниже расход теплоты на вентиляцию остается равным расчетному за счет сокращения кратности воздухообмена. Для регулирования кратности обмена воздуха в интервале вентиляционные установки должны быть оснащены авторегуляторами.

Температура включения вентиляции. Минимальный расход теплоты на вентиляцию соответствует расчетной наружной температуре начала и конца отопительного периода промышленных зданий.

Суммарный расход теплоты на отопление, вентиляцию, горячее водоснабжение и технологические нужды по району является суммой расходов отдельных абонентов. Преобладающей является нагрузка отопления. График суммарного расхода теплоты имеет вид, показанный на рис.12. На нем есть три точки излома:

а) момент включения отопления;

б) момент включения вентиляции;

в) момент изменения нагрузки вентиляции.

Характер графика суммарной нагрузки зависит от соотношения нагрузок отдельных групп потребителей.

Основная задача отопления заключается в поддержании условий теплового комфорта (условия, благоприятные для жизни и деятельности).

Согласно СНиП допустимые (оптимальные) метеорологические условия в зоне жилых и общественных зданий:

Температура воздуха 18-22 о С (22-24 о С)

Относительная влажность 65% (45-30)

Скорость движения воздуха не более 0,3 м/с (0,1-0,15)

Для этого необходимо сохранение равновесия между тепловыми потерями здания и теплопритоком, которое может быть выражено в виде следующего равенства (теплового баланса ):

,

где - суммарные тепловые потери, - приток тепла через отопительную систему, - внутренние источники теплоты.

Включает в себя:

Потери из-за теплопередачи через наружные ограждения;

Потери инфильтрацией из-за поступления холодного воздуха в помещения через неплотности наружных ограждений, , где - коэффициент инфильтрации ( =0,03-0,06 – жилые, общественные здания, =0,25-0,30 – промышленные здания);

Теплота на подогрев холодных предметов (материалов), ()

Включает в себя:

От солнечной радиации (фонари, окна);

От коммуникаций и технологического оборудования;

От электрического оборудования и электрических осветительных приборов;

От нагретого материала и изделий;

При технологических процессах (конденсация);

От продуктов сгорания, поверхности печей;

От людей.

Есть две методики расчета .

1) Для малых зданий (помещений):

,

где - коэффициент теплопередачи, - площадь поверхности отдельных наружных ограждений, - разность температур воздуха с внутренней и наружной сторон этих ограждений.

Расчет расхода теплоты является основой для определения мощности систем теплоснабжения при их проектировании, а также для оптимизации тепловых нагрузок при их эксплуатации. Максимальный расход теплоты определяют при полной нагрузке технологических потребителей и горячего водоснабжения с учетом расхода теплоты на отопление и вентиляцию в самый холодный период года. По максимальному расходу теплоты выбирается мощность производственно-отопительной котельной предприятия или расход теплоносителей от централизованных источников теплоты.

Расход теплоты на технологические нужды приводится в проектной документации предприятия или цеха. Детальные расчеты расходов теплоты на отдельные технологические процессы выполняются по специальным методикам и нормативным материалам. В случае отсутствия проектных данных для определения мощности котельной и всей системы теплоснабжения расходы теплоты и теплоносителей вычисляются по укрупненным удельным показателям и нормативам или по аналогии с другими предприятиями. Ориентировочные нормы расхода теплоты различными потребителями с учетом потерь в окружающую среду представлены в табл. 19.2.

Таблица 19.2

Ориентировочные нормы расхода теплоты на технологические нужды в расчете на один плотный м 3 (пл. м 3) продукции

Примечания :

  • 1. Различие в расходах теплоты на сушку пиломатериалов и шпона объясняется величиной потерь теплоты в сушилках различного типа.
  • 2. Расход теплоты на прессование зависит от плотности готовых плит. Большие значения следует принимать для плит большей плотности.
  • 3. Теплота на обогрев бассейна расходуется в течение половины отопительного сезона. Большие значения расхода теплоты следует принимать для регионов с низкими зимними температурами.

Приведенные нормы не являются постоянными. Они постепенно снижаются в результате применения энергосберегающих технологий.

Расчет максимальной тепловой мощности, МВт, технологических потребителей, за исключением обогрева бассейна, можно проводить по следующей зависимости:

Тепловую мощность, МВт, на подогрев воды в бассейне лесопильного производства можно рассчитать по формуле

В формулах (19.1) и (19.2): q npi , q 6 - нормы расхода теплоты технологическими потребителями и бассейном лесопильного цеха на единицу продукции, МДж/пл. м 3 (см. табл. 19.2); П™- - годовое производство продукции тепловым потребителем, пл. м 3 ; - годовой объем бревен, обрабатываемых в бассейне, МДж/пл.м, п от - продолжительность отопительного периода, определяется по климатологическим данным для заданного региона, сут.; z np - время работы теплового потребителя в год, ч/год.

Расходы теплоты на отопление и вентиляцию зданий зависят от температуры наружного воздуха и других климатических условий (солнечной радиации, скорости ветра, влажности воздуха), а также от конструкции, производственного назначения и объема здания. Потребители тепловой энергии на отопление и вентиляцию, для которых расход теплоты необходим только при сравнительно низких температурах наружного воздуха, называются сезонными.

Максимальная (расчетная) тепловая мощность отопления отдельного здания кВт, для каждого здания определяется как

тепловая мощность вентиляции с подогревом воздуха

где q 0T j и q B i - удельные отопительные и вентиляционные характеристики зданий, зависящие от назначения здания и его объема, Вт/(м 3 К) ; V t - объем здания по наружному обмеру, м 3 ; t p o - температура наружного воздуха для расчета отопления, °С, ; Г р в - температура наружного воздуха для расчета вентиляции, °С, ; Г вн - температура внутри помещений по Санитарным нормам и правилам (СНиП 41-01-2003, актуализированная редакция, действует с 2013 г.) принимается: для производственных помещений - 16 °С, административных и жилых - 18 °С.

Суммарная максимальная тепловая мощность определяется:

Для системы отопления

Для системы вентиляции

Средние расходы теплоты для отопления и вентиляции, и (2 в р, кВт, за отопительный период определяются по формулам:

где t c р о - средняя за отопительный период температура наружного воздуха, °С .

Средний за отопительный период расход теплоты на горячее водоснабжение Q B P B , кВт, определяется по формуле

где с в = 4,19 - удельная теплоемкость воды, кДжДкг-К); т - количество жителей или работников на предприятии; а = 100 - норма расхода горячей воды для жилых зданий на одного жителя, кгДчел-сут); b = 20 - норма расхода воды для общественных зданий, кгДчел-сут); / г = 65 °С - температура горячей воды; t x = 5 °С - темм пература холодной воды.

Величину (9 г ср, кВт, приближенно можно оценить по формуле

Расчетный расход теплоты на горячее водоснабжение жилых и общественных зданий Q rB , кВт, рассчитывается по формуле

где к - коэффициент часовой неравномерности расхода теплоты в течение суток = 2,04-2,4).

В летнее время тепловая нагрузка горячего водоснабжения снижается за счет повышения температуры холодной воды, средний расход теплоты (? г с в л, кВт, определяется по формуле

где / х л - температура водопроводной воды летом (15 °С); (3 - коэффициент, учитывающий снижение расхода горячей воды летом по сравнению с зимой (принимается равным 0,8 для жилых и общественных зданий, для промышленных предприятий (3 = 1).