Термодинамические диаграммы воды и водяного пара. Водяной пар. диаграмма h,s водяного пара. исследование паровых процессов по диаграмме h,s

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных газов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рисунок 5.1 а), верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма hS водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях hS (рисунок 5.1 а) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (изотермы); любая вертикальная линия (рисунок 5.1 б) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо и не совпадают с изобарами.

Практически применяется часть диаграммы hS , когда X 0,5, которая заключена в рамку. Эта часть диаграммы приведена на рисунке 5.1.

Состояние перегретого пара на диаграмме hS определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного пара - одним параметром и степенью сухости пара Х. По двум заданным параметрам р 1 и t 1 в области перегретого пара находим точку I (рисунок 5.1 б), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней энергии подсчитывается по формуле

(5.1)

Зная вид термодинамического процесса, двигаются по нему до пересечения с заданным конечным параметром и находят на диаграмме конечное состояние пара. Определив параметры конечного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров).

Изменение внутренней энергии
и работу в любом процессе подсчитывают по формулам

∆u = u 1 – u 2 = (h 1 – h 2) - (p 1 v 1 – p 2 v 2); (5.2)

W=q - ∆u = q –(h 1 – h 2)+(p 1 v 1 -p 2 v 2). (5.3)

Рассмотрим основные задачи, решаемые по hS диаграмме.

Изохорный процесс ( v = const ). Количество теплоты, участвующей в процессе определяется по формуле (5.2) для определения изменения внутренней энергии. Работа изохорного процесса равна нулю.

Изобарный процесс (р=с onst ). Количество теплоты, участвующая в процессе определяется по формуле

(5.4)

Изменение внутренней энергии по формуле 5.2

Работу изобарного процесса можно сравнить

w = p (v 2 v 1 ) (5.5)

или по формуле (5.3).

Изотермический процесс ( T onst ). Теплоту и работу процесса находят по формуле

(5.6)

Адиабатный процесс (р v k =const ). На рисунке 5.1б представлен адиабатный процесс, протекающий без теплообмена с внешней средой. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней энергии
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме hS (рисунок 5.2).

Приблизительное количество определяется по формуле

. (5.7)

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле (5.3).

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных тазов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рис. 5.1) верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма h,S водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях h,S (рис.5.1) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (и термы); любая вертикальная линия (рис.5.2.) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо, и не совпадают с изобарами.

Практически применяется часть диаграммы h,S , когда X 0,5 , которая заключена в рамку. Эта часть диаграммы приведена в прило­жении и на рис.5.2.

Состояние перегретого пара на диаграмме h,S определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного па­ра - одним параметром и степенью сухости пара Х. По 2 заданным па­раметрам р 1 и t 1 в области перегретого пара находим точку I (рис. 5.2.), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

З
начение внутренней анергии подсчитывается по формуле

Зная вид термодинамического процесса, двигаются по нему до пе­ресечения с заданным конечным параметром и находят на диаграмме конечное состояние пара..Определив параметры коночного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров)

Изменение внутренней энергии
и работу в любом процессе подсчи­тывают по формулам

Рассмотрим основные задачи, решаемые по h,S диаграмме.

Изохорный процесс (v= const)

Количество теплоты, участвующая в процессе, определяется по формуле 5.2,. для определения изменения внутренней энергии.

Работа изохорного процесса равна нулю.

Изобарный процесс (р=сonst), количество теплоты, участвующая в процессе определяется по формуле

И
зменение внутренней энергии по формуле 5.2 или по формуле 5.3

Изотермный процесс (t =сonst).

Теплоту и работу процесса находят по формуле:

5.6

Адиабатный процесс
. На рис. 5.2. представлен адиабатный процесс, протекающий без теплообмена с внешней среда. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме h,S (рисунок5.2)

Приблизительное количество определяется по формуле

5.7

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле 5.3.

Рисунок 5.2 Диаграмма h,S водяного пара

Теоретический паросиловой цикл (цикл Ренкина).

Для определения основных величин цикла - термического кпд, работы I кг пара, удельных расходов пара и теплоты - достаточно на диаграмме изобразить линию расширения пара в паровой турбине (линия 1-2 на рис.5.2.).

Т
ермический кпд цикла

-энтальпия конденсатора

Работа I кг пара

Удельный расход пара в кг на I кВт∙ч

5.9

Удельный расход теплоты в КДж на I кВт∙ч

5.10

Истечение и дросселирование.

Процесс истечения пара считается адиабатным процессом, который представлен на рис.5.2.

Теоретическую скорость истечения можно определить по формуле

5.11

-энтальпии пара начального и конечного состояния, в кДж/кг.

Расход пара определяется из уравнения неразрывности потока

5.12

Где А- истечение сечения сопла, м 2 ;

- плотность пара на выходе из сопла, кг/м 3 , определяется по диаграмме h,S водяного пара.

Если же истечение пара происходит - при
то теоретическая скорость пара в устье суживающего сопла будет равна критической и определяется по уравнению

Расход пара в этом случае будет максимальным и определяется по уравнению

5.13

где V кр - удельный объем пара при критическом давлении.

Площадь минимального сечения сопла при определяется по формуле

5.14

Для получения скорости пар выше критической применяется комбинированное сопло или сопло Лаваля (рис.5.4)

Рисунок 5.4 Схема сопла Лаваля

Площадь выходного сечения сопла

5.15

Д
лина расширяющейся части сопла определяется по уравнению

-соответственно диаметры выходного и минимального сечений;

-угол конусности расширяющейся части сопла.

Д
ействительная скорость истечения всегда меньше теоретической, так как процесс истечения связан с наличием трения.

Где
-коэффициент потери энергии в сопле;


-скоростной коэффициент сопла.

Пользуясь диаграммой h,S можно определить параметры в конце расширения.

Если дана начальная точка I (рис.5.5.) и коэффициент (или ), то, проводя адиабату 1-2, откладываем от точки 2 вверх от­резок 2
и проводя через точку 2 горизонталь до пересечения с конечной изобарой р 2 получаем точку Д, характеризующую состояние рабочего тела в конце действительного процесса истечения.

Если же даны начальное 1 и конечное Д состояния пара, то потери работы оп­ределяем проводя через точ­ку Д горизонталь до пере­сечения с адиабатой. Отно­шение отрезков 2g - 2/I-2 дает значение коэффициента потери энергии, а следова­тельно, и скоростного коэффициента.

Дросселирование - это необратимый процесс понижения давления в потоке при проходящем им местного сужения сечении. Процесс дросселирования считается адиабатным процессом и справедливо равенством.

5.18

Практически всегда можно обеспечить
и тогда
, т.е. энтальпия пара в начальном и конечном состояниях одинакова.

Задачи, связанные с дросселированием пара, обычно сводятся к определению параметров состояния пара после дросселирования. Так как в на­чальном и конечном состояниях энтальпия одинакова, то конечное состояние определяется пересечением горизонтали, проходящей через начальную точку I (рис.5,6) с изобарой конечного давления р 2 .

Рисунок 5.6. Процесс дросселирования на диаграмме h,S водяного пара

Задача 5.1. В кормозапарник подается водяной пар с абсолютным давлением 160 кПа со степенью сухости 0,95. Температура вытекаю­щего конденсата 70°С. Определить расход - пара на обработку 200 кг картофеля (Скр=3,55 кДж/(кгК)) если коэффициент полезного действия запарника составляет 0,75.

Решение. Теплота, затрачиваемая на нагревание картофеля, с уче­том кпд кормозапарника определяется по формуле

Где
конечная и начальная температуры продукта, °С.

=12°С

Расход пара равна:

Где
-энтальпии влажного насыщенного пара и конденсата. Энтальпия влажного насыщенного пара определяется в пересечении изобары р 1 =160 кПа о линией сухости X =0,95 на диаграмме h,S водяного пара.

Рисунок 5.7. Рисунок к задаче 5.1

=2585 кДж/кг;
=4,19 кДж/(кгК) -теплоемкость конденсата.

Задача 5.2 . Определить теп­лоту парообразования, если давление пара 160 кПа.

Решение. На изобаре р =I60kП при любом паросодержании берем точку I и рассматриваем изобарный процесс парообразования 1-2, для которого количество подведенной теплоты определяется по формуле

Рисунок 5.8 Рисунок к задаче 5.2

Задача 5.3. Определить внутренний диаметр паропровода, соединяющего котельную с кормоцехом, если в него необходимо подавать влажный насыщенный пар при абсолютном давлении 160 кПа со степенью сухости У =0,95 в количестве 0,2 кг/с. Скорость перемещения пара в паропроводе 30 м/с.

Рисунок 5.8. Рисунок к задаче 5.3

Задача 5.4 . I кг пара расширяется адиабатно от начальных параметров р 1 =0,9 МПа и t 1 = 500°C до р 2 =0,004 МПа, Найти значения
и работу расширения пара.

Задача 5.5. Перегретый водяной пар при абсолютном давлении 0,4 МПа и температуре t 1 =300°C адиабатно расширяется в комбинирован­ном сопле Лаваля до давления 0,1 МПа. Определить площади минималь­ного и выходного сечения сопла, если расход пара составляет 4 кг/с.

Решение. Выходное сечение сопла определяется по формуле

Для перегретого пара
, поэтому критическое давление пара в минимальном сечении сопла

По диаграмме h,S для адиабатного процесса расширения пара от начальных параметров р 1 =0,4 МПа и t 1 = 300°C определяем h 1 =3070кДж/кг;Критическая скорость в минимальном сечении

Максимальная скорость на выходе из сопла

Площадь минимального сечения

Площадь максимального сечения

Задача 5.6. Для вулканизации покрышек требуется сухой насыщенный пар с температурой 145°С, а центральная котельная ремонтной мастерской вырабатывает влажный насыщенный пар с параметрами Х =0,95 и р 1 =0,5 MПa. Что нужно делать с паром, чтобы его можно было использовать при вулканизации покрышек?

Задача 5.7 . В паровых системах отопления низкого давления применяется пар с давлением 29 кПа, а котельная вырабатывает пар с давлением 0,7 МПа со степенью сухости 0,9. Что необходимо делать, чтобы давление пара упало в системе до 29 кПа и какой должен быть диаметр трубы, чтобы скорость движения пара была 20 м/с?

Задача 5.8. Можно ли в результате дросселирования сухого насыщенного пара получить вновь сухой насыщенный пар меньшего давления?

Задача 5.9. Как изменяется термический кпд паросиловой установки (цикл Ренкина), если начальная температура перегретого пара повысилась от 300 до 500°С при неизменном начальном давлении p 1 =3,0 МПа и при разряжении в конденсаторе p 2 =0,0005 МПа.

В инженерной практике широкое применение находит h,s- диаграмма для воды и водяного пара. Такое широкое использование h,s- диаграммы в теплоэнергетических расчетах обусловлено тем, что для основных процессов теплоэнергетических установок (изобарного, Р=const, и адиабатного, s=const) разности энтальпий представляют их главные энергетические характеристики: количество теплоты или техническую работу, которые в h,s- диаграмме могут быть элементарно представлены отрезками вертикальных прямых линий. В Т,s- диаграмме эти величины представляются сложными площадями.

Диаграмма h,s строится по данным таблиц термодинамических свойств воды и водяного пара. На рис. 6.22 приведен общий вид такой диаграммы для воды и водяного пара.

За начало отсчета энтропии в h,s- диаграмме, как и в Т,s- диаграмме, приняты параметры тройной точки жидкой фазы воды. В этой точке s о "=0 и u о "=0, а энтальпия h о " = 0,000614 кДж/кг будет больше нуля, но численное ее значение очень мало. Следовательно, начало линии х=0, соответствующее тройной точке воды, расположено очень близко к началу координат. При повышении давления и температуры энтальпия h" и энтропия s" жидкости на линии насыщения растут до критической точки и пограничная линия х=0 представляется вогнутой кривой ОК.

Пограничная кривая сухого насыщенного пара х=1 имеет вид кривой КN. Максимальное значение энтальпии (ординаты) этой кривой h" мах =2801,9 кДж/кг достигается при давлении около 30 бар и энтропии 6,18 кДж/(кг·К). Следует обратить внимание на то, что критическая точка находится левее и ниже точки максимальной энтальпии h" мах, а вся пограничная кривая х=1 располагается выше горизонтали, проведенной из критической точки.


Изотерма 0 o С в области жидкости имеет сложную форму ОВ, определяемую аномалией воды. Максимум энтропии линии ОВ около 0,9 Дж/(кг·К) при давлении около 240 бар и энтальпии 24 кДж/кг. При давлениях выше 240 бар нулевая изотерма уходит влево и при 1000 бар достигает значения h o "=95,9 кДж/кг и s о "=-6,7 Дж/(кг·К).

Изобара в h,s- диаграмме представляет собой непрерывно поднимающуюся линию, форма которой устанавливается соотношением

¶q p = dh p = (Tds) p ,

откуда получается угловой коэффициент изобары

Таким образом, он определяется абсолютной температурой. Следовательно, изобары жидкости представляют собой вогнутые кривые, идущие слева направо, поскольку процесс нагрева жидкости 12 сопровождается возрастанием энтропии и повышением температуры.

В процессе изобарного парообразования 23 температура остается постоянной, и участок изобары 23 представляет прямую, угол наклона которой определяется температурой насыщения Т н. На пограничных кривых (х=0 и х=1) вода имеет одну и ту же температуру, следовательно, прямая 2-3 является касательной к кривым 12 и 34.

С повышением давления увеличивается температура насыщения, и, как следует из (6.29), в области влажного пара изобары – изотермы веерообразно расходятся.

Изобара парообразования 23 плавно переходит в изобару перегретого пара 34, представляя собой вогнутые расходящиеся кривые, при большой степени перегрева приближающиеся к эквидистантным кривым логарифмического характера (как для газов).

Критическая изобара проходит через критическую точку К и представляет собой вогнутую кривую. Изобары сверхкритического давления имеют такой же вид. Изобара наивысшего давления ограничивает поле диаграммы. Для точек, расположенных левее этой изобары, табличных данных нет. Такую же роль ограничивающей линии снизу в области перегретого пара и в области влажного пара выполняет изобара с давлением 1 кПа.

В области жидкости изобары докритических давлений мало отступают от линии х=0. Поэтому их часто считают совпадающими с нижней пограничной кривой.

Изотермы в h,s- диаграмме представляют собой сложные линии. Изотермы жидкости при низких температурах, начиная от 0 о С, с повышением давления поднимаются вверх (кривые выпуклостью вверх); при высоких температурах – кривая выпуклостью вниз.

В области влажного пара изотермы совпадают с изобарами. В области перегретого пара изотермы имеют вид кривых выпуклостью вверх, идущих слева направо. При низких температурах кривизна и подъем незначительны. При температурах, близких к критической, в области высоких давлений изотермы перегретого пара круто идут вверх, имея большую кривизну. В областях низких давлений все изотермы перегретого пара приближаются к горизонтальным прямым (свойства пара близки к свойствам идеальномого газа).

Изотерма наивысшей, имеющейся в таблицах температуры рассматривается как линия, ограничивающая диаграмму сверху. Для состояний выше этой изотермы табличных данных нет.

Изохоры в h,s- диаграмме представляют собой плавные кривые, круче изобар. Они могут пересекать только одну пограничную кривую (х=0 или х=1), в зависимости от того, удельный объем их меньше или больше удельного объема воды в критической точке.

На рис. 6.22 выделена изобара 1234 и показаны в виде отрезков значения энтальпии, энтропии и их разности для характерных состояний воды и пара на этой изобаре. Точке 1 соответствует состояние жидкости при t=0 о С и данном давлении. На рис. 6.22 область жидкости увеличена по масштабу по сравнению с областями пара, это сделано для большей наглядности в изображении линий. Так при Р = 100 бар и t=0 о С в точке 1 энтальпия воды h 0 = 10,1 кДж/кг (для сравнения, при том же давлении h" = 417,5 кДж/кг и h"= 2675,7 кДж/кг). Точкой е отмечено состояние влажного пара со степенью сухости х. Линия x = const строится из соотношения



.

Для практических расчетов используется не полная диаграмма h,s, а только ее рабочая зона в области пара, наиболее часто применяемая в инженерной практике. Она располагается правее критической точки, включая в себя области влажного пара и перегретого пара (рис. 6.23). Левая область не изображается, так как в ней линии изобар, изотерм, изохор и постоянные степени сухости располагаются очень близко друг от друга и неудобны в практическом использовании.

Применяя рабочую диаграмму h,s, можно получить полную информацию о паре, состояние которого задано точкой. Так, например, на рис. 6.23 в диаграмме h,s задана точка 1, определяющая состояние влажного насыщенного пара. Положение точки задается двумя параметрами, например давлением Р 1 и степенью сухости x 1 . По осям координат читаются значения энтальпии h 1 и энтропии s 1 . Через точку 1 проходит изохора, определяющая удельный объем пара v 1 . Температура t 1 определяется по изотерме, проходящей через точку 1 и ответвляющейся от изобары P 1 на пограничной кривой x = 1 в области перегретого пара. Аналогично находятся параметры состояния пара, заданного любой точкой (парой параметров) в диаграмме h,s. Параметры точек, выходящих за пределы области рабочей h,s- диаграммы водяного пара, находятся по таблицам термодинамических свойств воды

Справочный материал

Диаграмма водяного пара

Практическое занятие № 9

Цель работы: изучить процесс парообразования и представления в h-s диаграмме.

H , s-диагра́мма (чит. «аш-эс-диаграмма») (написание строчными буквами:«h,s-диаграмма»,) - диаграмма теплофизических свойств жидкости и газа (в основном воды и водяного пара), показывающая характер изменения различных свойств, в зависимости от параметров состояния.

В основном большое применение получили h, s-диаграммы воды и водяного пара, так как в качестве рабочего тела втеплотехнике чаще всего применяются именно вода и водяной пар, из-за их сравнительной дешевизны и доступности, причём наиболее пристальное внимание оказывается именно той части диаграммы, в которой вода впарообразном состоянии, так как в жидком состоянии она практически несжимаема.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. В 1906 году в Берлине была издана его книга «Новые таблицы и диаграммы для водяного пара». Впоследствии такая диаграмма получила название Диаграмма Молье. В СССР некоторое время было принято название i, s-диаграмма, а в настоящее время - h, s-диаграмма.

Структура h, s-диаграммы

H, s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

§ Степень сухости - это параметр, показывающий массовую долю насыщенного пара в смеси воды и водяного пара. Значение x = 0 соответствует воде в момент кипения (насыщения). Значение х = 1 , показывает, что в смеси присутствует только пар. При нанесении соответствующих точек в координатах (h,s) , взятых из таблиц насыщения справочников свойств воды и водяного пара, при их соединении получаются кривые, соответствующие определённым степеням сухости. В таком случае, линия х = 0 является нижней пограничной кривой, а х = 1 - верхней пограничной кривой. Область, заключённая между этими кривыми, является областью влажного пара. Область ниже кривой х = 0 , которая стягивается практически в прямую линию (не показана), соответствует воде. Область выше кривой х = 1 - соответствует состоянию перегретого пара.

§ Критическая точка (К ). При определённом, достаточно высоком давлении, называемом критическим, свойства воды и пара становятся идентичными. То есть исчезают физические различия между жидким и газообразным состояниями вещества. Такое состояние называют критическим состоянием вещества, которому соответствует положение критической точки. Следует заметить, что она на пограничной кривой лежит гораздо левее максимума этой кривой.



§ Изотерма - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённой температуре. Изотермы пересекают пограничные кривые с изломом и, по мере удаления от верхней пограничной кривой, асимптотически приближаются к горизонтали. На схеме для упрощения представлены только три изотермы: t + Δt ; t ; t - Δt .

§ Изобара - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённому давлению. Изобары не имеют изломов при пересечении пограничных кривых. На схеме представлены только три изобары:

§ p + Δp ; p ; p - Δp .

§ Изохора - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённому объёму. Изохоры на h, s-диаграмме в области перегретого пара, всегда проходит круче, чем изобары, и это облегчает их распознавание на одноцветных диаграммах. Построение изохор требует более кропотливой работы с таблицей состояний. На схеме представлены только три изохоры:

§ v - Δv ; v ; v + Δv .

Изотермы и изобары в области влажного пара совпадают по причине линейной зависимости в состоянии насыщения.

Определение параметров жидкости и пара по таблицам и h-s диаграмме

Таблицы для определения термодинамических свойств веществ различаются в зависимости от того, какое состояние рассматривается: однофазное или двухфазное. В таблицах для состояния насыщения приводятся удельные значения объема, энтальпии и энтропии воды и водяного пара (см. табл. 7 приложения); хладона R-22 (см. табл. 5 приложения); аммиака (см. табл. 6 приложения).

Параметры насыщенной жидкости (х = 0) отмечаются одним штрихом , Параметры сухого насыщенного пара (х = 1) отмечаются двумя штрихами .

Для определения свойств каждой из фаз в состоянии насыщения надо знать только один параметр – давление или температуру, так как при этих условиях параметры однозначно связаны между собой. В этих же таблицах приводится удельная теплота парообразования r.

Для расчета параметров влажного пара необходимо знать дополнительно степень сухости пара х.

Энтальпия h, энтропия s и удельный объем v влажного пара определяются по формулам: h = h˝·x + h΄·(1–x) = h΄+ r · x,

s = s˝∙x + s΄·(1–x) = s΄+ r·x/Т S ,

v = v˝· x + v΄· (1–x).

Степень сухости пара определяется по одной из следующих формул:

Для определения свойств ненасыщенной жидкости и перегретого пара (однофазное состояние) нужно знать два параметра (обычно давление и температуру). В ячейке таблицы, соответствующей данному состоянию, помещены удельные значения объема v, энтальпии h и энтропии s.

На h-s диаграмме обычно изображаются:

линии изобар (p = const);

По этим данным определяются энтальпия пара h и энтропия s:

h = h΄+ r·x = 504,7 + 2202,2·0,9 = 2486,68 кДж/кг.

s = s΄+ (r·x)/T S = 1,5301 + (2202,2·0,9)/(120,23+273) = 6,57 кДж/(кг·К).

Температура насыщения: t S = 120,23 ºС.

Задание: изучить структурудиаграммы состояния водяного пара

Соединив точки б, б" и т.д. до точки К (см. рис. 5.6), получим линию, все точки которой соответствуют состоянию насыщения воды = 0). Эта линия называется нижней пограничной кривой (НПК). Линия, проходящая через точки г, г", г" и т.д., соответствующие состоянию сухого насыщенного пара, называется верхней пограничной кривой (ВПК). Часть диаграммы левее НПК представляет собой область однофазной жидкости, а часть диаграммы правее ВПК - область однофазного перегретого пара.

Часть диаграммы, расположенная ниже обеих пограничных кривых, - область влажного насыщенного пара. На самих пограничных кривых расположены точки, соответствующие состояниям сухого насыщенного пара и насыщенной жидкости. Вид линий процессов р = const и v = const нар, v-диаграмме очевиден (рис. 5.7).

Для построения линии процесса Т = const рассмотрим процесс изотермического сжатия перегретого пара при Т Свойства сильно перегретого пара мало отличаются от свойств идеального газа, и изотерма мало отличается от равнобокой гиперболы. Вблизи верхней пограничной линии изотерма пара в большей степени отли-

Рис. 5.7. Процессы водяного пара на р, v-диаграмме

чается от изотермы идеального газа, но общий характер кривой на участке а-Ъ аналогичен характеру изотермы идеального газа. Картина резко меняется, когда повышающееся по мере сжатия давление станет равным давлению насыщения при температуре Т. Отвод теплоты от насыщенного пара теперь обязательно приведет к его конденсации. Плотность жидкости при давлении меньше критического больше плотности пара. Поэтому при изотермическом сжатии влажного пара давление не увеличивается.

Уменьшение удельного объема на участке Ъ-с происходит за счет конденсации все новых и новых порций пара, до тех пор пока он весь не превратится в воду. В области влажного насыщенного пара изотерма и изобара совпадают. В области жидкости при постоянной температуре даже для очень малого уменьшения объема требуется очень высокое давление (жидкости практически несжимаемы) и изотерма совпадает с изохорой.

На рис. 5.7 хорошо видно, что изотерма водяного пара качественно совпадает с изотермой Ван-дер-Ваальса (см. рис. 5.4) для реального газа a-b-m-n-c-d при условии равенства площадей заштрихованных фигур. Более того, на практике могут быть достигнуты состояния, соответствующие участкам п-с и Ъ-т изотермы Ван-дер-Ваальса. Это так называемые неустойчивые состояния «перегретой» жидкости и «пересыщенного» пара. Только состояния, соответствующие участку п-т изотермы Ван-дер-Ваальса, не могут быть осуществлены в принципе.

Форма любой изотермы при Т Т кр аналогична рассмотренной. При Т = Т кр горизонтальный участок совпадения изотермы и изобары вырождается в точку перегиба. При Т> Т кр форма изотермы водяного пара становится аналогичной форме изотермы идеального газа, хотя и не является равнобокой гиперболой.

Рассмотрев р, v-диаграмму водяного пара, можно сделать следующие важные выводы:

  • 1) при температуре выше критической жидкость не существует ни при каких давлениях;
  • 2) при давлении выше критического превращение воды в пар происходит без образования двухфазной системы.

В предыдущей главе было показано, что для анализа и сравнения эффективности термодинамических циклов удобно использовать диаграмму Т, s. Такая диаграмма для воды и водяного пара представлена на рис. 5.8. Изображение изотермы и адиабаты в этой системе координат очевидно.


Рис. 5.8.

Построим на Т, 5-диаграмме изобару р процесса парообразования. При изобарном подводе теплоты к воде температура ее повышается и энтропия растет - участок а-б.

В связи с тем что вода практически несжимаема, работа сжатия при адиабатном повышении давления очень мала и столь же мало равное этой работе повышение внутренней энергии. Поэтому мало и повышение температуры воды. Соседние изобары в Т, 5-координатах расположены очень близко, и линия а-б близка к нижней пограничной кривой. При соблюдении масштаба изобара воды даже при давлении в несколько десятков МПа на рис. 5.8 совпала бы с нижней пограничной кривой. Изображение изобар в области воды на рис. 5.8 для большей наглядности выполнено с искажением масштаба, как если бы эта часть рисунка рассматривалась через увеличительное стекло.

По мере повышения температуры наступает момент, когда температура воды становится равной температуре насыщения при рассматриваемом давлении. Начиная с этого момента подвод теплоты и увеличение энтропии не могут сопровождаться увеличением температуры - участок б-в-г. Вся подводимая теплота затрачивается на парообразование. Как было уже отмечено ранее, в области влажного пара изобара и изотерма совпадают. Когда последняя порция воды превратится в пар и он станет сухим насыщенным, дальнейший подвод теплоты вызовет повышение температуры. Форма изобары перегретого пара на участке г-д качественно повторяет форму линии изобары идеального газа и отличается от нее настолько, насколько переменная теплоемкость с р водяного пара отличается от постоянной теплоемкости идеального газа. При других давлениях р форма линий изобар аналогична рассмотренной, а при р = р кр участок совпадения изобары и изотермы вырождается в точку перегиба.

Площадь фигуры е-а-б-ж равна в масштабе диаграммы теплоте q H , затраченной на нагрев 1 кг воды до кипения. Площадь фигуры ж-б-г-з равна теплоте, затраченной на получение сухого насыщенного пара из 1 кг насыщенной воды, - это теплота фазового перехода г. Наконец, площадь фигуры з-г-д-и равна теплоте q ne , затраченной на перегрев 1 кг пара от температуры насыщения до температуры в точке д.

Для расчетов процессов и циклов водяного пара Т, s-диаграмма не так удобна, как для качественного анализа и сравнения. На практике предпочтительнее измерять величины на диаграмме отрезками, а не площадями фигур. Поэтому для инженерных расчетов чаще используют диаграмму /, s водяного пара, предложенную Рихардом Молье в 1906 г. (рис. 5.9).

В той части диаграммы, где свойства водяного пара мало отличаются от свойств идеального газа, /, s-диаграмма отличается от Т , s- диаграммы только масштабом. Достаточно вспомнить, что / = с р Т , а величина изобарной теплоемкости идеального газа постоянна. Поэтому линии изотерм вдали от кривой насыщения горизонтальны, а форма линий р = const и v = const в этой области повторяет их форму на Г, s-диаграмме. Вблизи же верхней пограничной кривой, особенно при давлениях, близких к критическому, свойства водяного пара значительно отличаются от свойств идеального газа и форма


Рис. 5.9. Диаграмма /", s водяного пара

линий Т = const, р = const и v = const также значительно отличается от их формы для идеального газа.

Процесс парообразования (см. рис. 5.5) при давлении меньше критического на /, s-диаграмме (см. рис. 5.9) изображается линией а-б-в-г-д. Так же как и на Г, s-диаграмме, область жидкости расположена в узкой полосе вблизи нижней пограничной кривой. Для наглядности на рис. 5.9 в этой части диаграммы масштаб искажен. При соблюдении масштаба вся область жидкости совпала бы с нижней пограничной кривой.

Для расчета процессов водяного пара нельзя использовать уравнение состояния и другие соотношения между параметрами идеального газа, например уравнения основных термодинамических процессов. Эти расчеты можно выполнять только с использованием диаграмм или таблиц водяного пара.