Последнее посещение как вычитать дроби. Нахождение процентов данного числа. Как вычесть обыкновенную дробь из натурального числа

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей - правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби - выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 < 14. Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.

Сложение дробей с одинаковыми знаменателями.

На примере посмотрим, как складывать дроби с общим знаменателем.

Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или \(\frac{1}{5}\) от всего пути. Во второй день они прошли от точки B до D или \(\frac{2}{5}\) от всего пути. Какое расстояние они прошли от начала пути до точки D?

Чтобы найти расстояние от точки A до точки D нужно сложить дроби \(\frac{1}{5} + \frac{2}{5}\).

Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

\(\frac{1}{5} + \frac{2}{5} = \frac{1 + 2}{5} = \frac{3}{5}\)

В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

\(\bf \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)

Ответ: туристы прошли \(\frac{3}{5}\) всего пути.

Сложение дробей с разными знаменателями.

Рассмотрим пример:

Нужно сложить две дроби \(\frac{3}{4}\) и \(\frac{2}{7}\).

Чтобы сложить дроби с разными знаменателями нужно сначала найти , а потом воспользоваться правилом сложения дробей с одинаковыми знаменателями.

Для знаменателей 4 и 7 общим знаменателем будет число 28. Первую дробь \(\frac{3}{4}\) нужно умножить на 7. Вторую дробь \(\frac{2}{7}\) нужно умножить на 4.

\(\frac{3}{4} + \frac{2}{7} = \frac{3 \times \color{red} {7} + 2 \times \color{red} {4}}{4 \times \color{red} {7}} = \frac{21 + 8}{28} = \frac{29}{28} = 1\frac{1}{28}\)

В буквенном виде получаем такую формулу:

\(\bf \frac{a}{b} + \frac{c}{d} = \frac{a \times d + c \times b}{b \times d}\)

Сложение смешанных чисел или смешанных дробей.

Сложение происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа \(3\frac{6}{11}\) и \(1\frac{3}{11}\).

\(3\frac{6}{11} + 1\frac{3}{11} = (\color{red} {3} + \color{blue} {\frac{6}{11}}) + (\color{red} {1} + \color{blue} {\frac{3}{11}}) = (\color{red} {3} + \color{red} {1}) + (\color{blue} {\frac{6}{11}} + \color{blue} {\frac{3}{11}}) = \color{red}{4} + (\color{blue} {\frac{6 + 3}{11}}) = \color{red}{4} + \color{blue} {\frac{9}{11}} = \color{red}{4} \color{blue} {\frac{9}{11}}\)

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел \(7\frac{1}{8}\) и \(2\frac{1}{6}\).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь \(7\frac{1}{8}\) на дополнительный множитель 3, а вторую дробь \(2\frac{1}{6}\) на 4.

\(7\frac{1}{8} + 2\frac{1}{6} = 7\frac{1 \times \color{red} {3}}{8 \times \color{red} {3}} = 2\frac{1 \times \color{red} {4}}{6 \times \color{red} {4}} =7\frac{3}{24} + 2\frac{4}{24} = 9\frac{7}{24}\)

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

\(\frac{2}{7} + \frac{3}{7} = \frac{2 + 3}{7} = \frac{5}{7}\)

Дробь \(\frac{5}{7}\) это правильная дробь, она является результатом суммы двух правильных дробей \(\frac{2}{7}\) и \(\frac{3}{7}\).

\(\frac{2}{5} + \frac{8}{9} = \frac{2 \times 9 + 8 \times 5}{5 \times 9} =\frac{18 + 40}{45} = \frac{58}{45}\)

Дробь \(\frac{58}{45}\) является неправильной дроби, она получилась в результате суммы правильных дробей \(\frac{2}{5}\) и \(\frac{8}{9}\).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) \(\frac{3}{11} + \frac{5}{11}\) б) \(\frac{1}{3} + \frac{2}{9}\).

а) \(\frac{3}{11} + \frac{5}{11} = \frac{3 + 5}{11} = \frac{8}{11}\)

б) \(\frac{1}{3} + \frac{2}{9} = \frac{1 \times \color{red} {3}}{3 \times \color{red} {3}} + \frac{2}{9} = \frac{3}{9} + \frac{2}{9} = \frac{5}{9}\)

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) \(1\frac{9}{47}\) б) \(5\frac{1}{3}\)

а) \(1\frac{9}{47} = 1 + \frac{9}{47}\)

б) \(5\frac{1}{3} = 5 + \frac{1}{3}\)

Пример №4:
Вычислите сумму: а) \(8\frac{5}{7} + 2\frac{1}{7}\) б) \(2\frac{9}{13} + \frac{2}{13}\) в) \(7\frac{2}{5} + 3\frac{4}{15}\)

а) \(8\frac{5}{7} + 2\frac{1}{7} = (8 + 2) + (\frac{5}{7} + \frac{1}{7}) = 10 + \frac{6}{7} = 10\frac{6}{7}\)

б) \(2\frac{9}{13} + \frac{2}{13} = 2 + (\frac{9}{13} + \frac{2}{13}) = 2\frac{11}{13} \)

в) \(7\frac{2}{5} + 3\frac{4}{15} = 7\frac{2 \times 3}{5 \times 3} + 3\frac{4}{15} = 7\frac{6}{15} + 3\frac{4}{15} = (7 + 3)+(\frac{6}{15} + \frac{4}{15}) = 10 + \frac{10}{15} = 10\frac{10}{15} = 10\frac{2}{3}\)

Задача №1:
За обедам съели \(\frac{8}{11}\) от торта, а вечером за ужином съели \(\frac{3}{11}\). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

\(\frac{8}{11} + \frac{3}{11} = \frac{11}{11} = 1\)

Ответ: весь торт съели.

В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему - сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров

Правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями

Сфор-му-ли-ру-ем пра-ви-ло сло-же-ния (вы-чи-та-ния) ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми (оно сов-па-да-ет с ана-ло-гич-ным пра-ви-лом для обык-но-вен-ных дро-бей): То есть для сло-же-ния или вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми необ-хо-ди-мо со-ста-вить со-от-вет-ству-ю-щую ал-геб-ра-и-че-скую сумму чис-ли-те-лей, а зна-ме-на-тель оста-вить без из-ме-не-ний.

Это пра-ви-ло мы раз-бе-рём и на при-ме-ре обык-но-вен-ных дро-бей, и на при-ме-ре ал-геб-ра-и-че-ских дро-бей.

Примеры применения правила для обыкновенных дробей

При-мер 1. Сло-жить дроби: .

Ре-ше-ние

Сло-жим чис-ли-те-ли дро-бей, а зна-ме-на-тель оста-вим таким же. После этого раз-ло-жим чис-ли-тель и зна-ме-на-тель на про-стые мно-жи-те-ли и со-кра-тим. По-лу-чим: .

При-ме-ча-ние: стан-дарт-ная ошиб-ка, ко-то-рую до-пус-ка-ют при ре-ше-нии по-доб-но-го рода при-ме-ров, за-клю-ча-ет-ся в сле-ду-ю-щем спо-со-бе ре-ше-ния: . Это гру-бей-шая ошиб-ка, по-сколь-ку зна-ме-на-тель оста-ёт-ся таким же, каким был в ис-ход-ных дро-бях.

При-мер 2. Сло-жить дроби: .

Ре-ше-ние

Дан-ная за-да-ча ничем не от-ли-ча-ет-ся от преды-ду-щей: .

Примеры применения правила для алгебраических дробей

От обык-но-вен-ных дро-бей пе-рей-дём к ал-геб-ра-и-че-ским.

При-мер 3. Сло-жить дроби: .

Ре-ше-ние:как уже го-во-ри-лось выше, сло-же-ние ал-геб-ра-и-че-ских дро-бей ничем не от-ли-ча-ет-ся от сло-же-ния обык-но-вен-ных дро-бей. По-это-му метод ре-ше-ния такой же: .

При-мер 4. Вы-честь дроби: .

Ре-ше-ние

Вы-чи-та-ние ал-геб-ра-и-че-ских дро-бей от-ли-ча-ет-ся от сло-же-ния толь-ко тем, что в чис-ли-тель за-пи-сы-ва-ет-ся раз-ность чис-ли-те-лей ис-ход-ных дро-бей. По-это-му .

При-мер 5. Вы-честь дроби: .

Ре-ше-ние: .

При-мер 6. Упро-стить: .

Ре-ше-ние: .

Примеры применения правила с последующим сокращением

В дроби, ко-то-рая по-лу-ча-ет-ся в ре-зуль-та-те сло-же-ния или вы-чи-та-ния, воз-мож-ны со-кра-ще-ния. Кроме того, не стоит за-бы-вать об ОДЗ ал-геб-ра-и-че-ских дро-бей.

При-мер 7. Упро-стить: .

Ре-ше-ние: .

При этом . Во-об-ще, если ОДЗ ис-ход-ных дро-бей сов-па-да-ет с ОДЗ ито-го-вой, то его можно не ука-зы-вать (ведь дробь, по-лу-чен-ная в от-ве-те, также не будет су-ще-ство-вать при со-от-вет-ству-ю-щих зна-че-ни-ях пе-ре-мен-ных). А вот если ОДЗ ис-ход-ных дро-бей и от-ве-та не сов-па-да-ет, то ОДЗ ука-зы-вать необ-хо-ди-мо.

При-мер 8. Упро-стить: .

Ре-ше-ние: . При этом y (ОДЗ ис-ход-ных дро-бей не сов-па-да-ет с ОДЗ ре-зуль-та-та).

Сложение и вычитание обыкновенных дробей с разными знаменателями

Чтобы скла-ды-вать и вы-чи-тать ал-геб-ра-и-че-ские дроби с раз-ны-ми зна-ме-на-те-ля-ми, про-ве-дём ана-ло-гию с обык-но-вен-ны-ми дро-бя-ми и пе-ре-не-сём её на ал-геб-ра-и-че-ские дроби.

Рас-смот-рим про-стей-ший при-мер для обык-но-вен-ных дро-бей.

При-мер 1. Сло-жить дроби: .

Ре-ше-ние:

Вспом-ним пра-ви-ло сло-же-ния дро-бей. Для на-ча-ла дроби необ-хо-ди-мо при-ве-сти к об-ще-му зна-ме-на-те-лю. В роли об-ще-го зна-ме-на-те-ля для обык-но-вен-ных дро-бей вы-сту-па-ет наи-мень-шее общее крат-ное (НОК) ис-ход-ных зна-ме-на-те-лей.

Опре-де-ле-ние

Наи-мень-шее на-ту-раль-ное число, ко-то-рое де-лит-ся од-но-вре-мен-но на числа и .

Для на-хож-де-ния НОК необ-хо-ди-мо раз-ло-жить зна-ме-на-те-ли на про-стые мно-жи-те-ли, а затем вы-брать все про-стые мно-жи-те-ли, ко-то-рые вхо-дят в раз-ло-же-ние обоих зна-ме-на-те-лей.

; . Тогда в НОК чисел долж-ны вхо-дить две двой-ки и две трой-ки: .

После на-хож-де-ния об-ще-го зна-ме-на-те-ля, необ-хо-ди-мо для каж-дой из дро-бей найти до-пол-ни-тель-ный мно-жи-тель (фак-ти-че-ски, по-де-лить общий зна-ме-на-тель на зна-ме-на-тель со-от-вет-ству-ю-щей дроби).

Затем каж-дая дробь умно-жа-ет-ся на по-лу-чен-ный до-пол-ни-тель-ный мно-жи-тель. По-лу-ча-ют-ся дроби с оди-на-ко-вы-ми зна-ме-на-те-ля-ми, скла-ды-вать и вы-чи-тать ко-то-рые мы на-учи-лись на про-шлых уро-ках.

По-лу-ча-ем: .

Ответ: .

Рас-смот-рим те-перь сло-же-ние ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми. Сна-ча-ла рас-смот-рим дроби, зна-ме-на-те-ли ко-то-рых яв-ля-ют-ся чис-ла-ми.

Сложение и вычитание алгебраических дробей с разными знаменателями

При-мер 2. Сло-жить дроби: .

Ре-ше-ние:

Ал-го-ритм ре-ше-ния аб-со-лют-но ана-ло-ги-чен преды-ду-ще-му при-ме-ру. Легко по-до-брать общий зна-ме-на-тель дан-ных дро-бей: и до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из них.

.

Ответ: .

Итак, сфор-му-ли-ру-ем ал-го-ритм сло-же-ния и вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми :

1. Найти наи-мень-ший общий зна-ме-на-тель дро-бей.

2. Найти до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из дро-бей (по-де-лив общий зна-ме-на-тель на зна-ме-на-тель дан-ной дроби).

3. До-мно-жить чис-ли-те-ли на со-от-вет-ству-ю-щие до-пол-ни-тель-ные мно-жи-те-ли.

4. Сло-жить или вы-честь дроби, поль-зу-ясь пра-ви-ла-ми сло-же-ния и вы-чи-та-ния дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми.

Рас-смот-рим те-перь при-мер с дро-бя-ми, в зна-ме-на-те-ле ко-то-рых при-сут-ству-ют бук-вен-ные вы-ра-же-ния.

Сложение и вычитание дробей с одинаковыми знаменателями
Сложение и вычитание дробей с разными знаменателями
Понятие о НОК
Приведение дробей к одному знаменателю
Как сложить целое число и дробь

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

2 Сложение и вычитание дробей с разными знаменателями

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей - это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) - это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

4Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например.

Рассмотрим дробь $\frac63$. Ее величина равна 2, так как $\frac63 =6:3 = 2$. А что произойдет, если числитель и знаменатель умножить на 2? $\frac63 \times 2=\frac{12}{6}$. Очевидно, величина дроби не изменилась, так $\frac{12}{6}$ как у также равно 2. Можно умножить числитель и знаменатель на 3 и получить $\frac{18}{9}$, или на 27 и получить $\frac{162}{81}$ или на 101 и получить $\frac{606}{303}$. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби $\frac{120}{60}$ (равной 2) разделить на 2 (результат $\frac{60}{30}$), или на 3 (результат $\frac{40}{20}$), или на 4 (результат $\frac{30}{15}$) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу .

Если числитель и знаменатель дроби $\frac{1}{3}$ умножить на 2, мы получим $\frac{2}{6}$, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа $\frac{1}{3}$ и $\frac{2}{6}$ идентичны. Сформулируем общее правило.

Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется.

Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби $\frac{126}{189}$ на 63 и получить дробь $\frac{2}{3}$ с которой гораздо проще производить расчеты. Еще один пример. Числитель и знаменатель дроби $\frac{155}{31}$ можем разделить на 31 и получить дробь $\frac{5}{1}$ или 5, поскольку 5:1=5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1 . Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть $\frac{273}{1}$ равно 273; $\frac{509993}{1}$ равно 509993 и так далее. Следовательно, мы можем не разделять числа на , поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: $\frac{15}{1}+\frac{15}{1}=\frac{30}{1}$, $\frac{4}{1} \times \frac{3}{1}=\frac{12}{1}$.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами. Например, чтобы научится складывать дроби с разными знаменателями . Предположим, нам надо сложить $\frac{1}{3}$ и $\frac{1}{5}$.

Мы знаем, что складывать можно только те дроби, знаменатели которых равны. Значит, нам нужно научиться приводить дроби к такому виду, когда их знаменатели равны. В этом случае нам опять пригодится то, что можно умножать числитель и знаменатель дроби на одно и то же число без изменения ее величины.

Сначала умножим числитель и знаменатель дроби $\frac{1}{3}$ на 5. Получим $\frac{5}{15}$, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби $\frac{1}{5}$ на 3. Получим $\frac{3}{15}$, опять величина дроби не изменилась. Следовательно, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить $3 + \frac{1}{3}+1\frac{1}{4}$. Сначала переведем все слагаемые в форму дробей и получим: $\frac31 + \frac{1}{3}+\frac{5}{4}$. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй - на 4, а третьей - на 3. В результате получаем $\frac{36}{12} + \frac{4}{12}+\frac{15}{12}$, что равно $\frac{55}{12}$. Если вы хотите избавиться от неправильной дроби , ее можно превратить в число, состоящее из целой и дробной частей: $\frac{55}{12} = \frac{48}{12}+\frac{7}{12}$ или $4\frac{7}{12}$.

Все правила, позволяющие проводить операции с дробями , которые мы с вами только что изучили, также справедливы и в случае отрицательных чисел. Так, -1: 3 можно записать как $\frac{-1}{3}$, а 1: (-3) как $\frac{1}{-3}$.

Поскольку как при делении отрицательного числа на положительное, так и при деле­нии положительного числа на отрицатель­ное в результате мы получаем отрицатель­ные числа, в обоих случаях мы получим ответ в виде отрицательного числа. То есть

$(-1) : 3 = \frac{1}{3}$ или $1: (-3) = \frac{1}{-3}$. Знак минус при таком написании относится ко всей дроби целиком, а не отдельно к числителю или знаменателю.

С другой стороны, (-1) : (-3) можно записать как $\frac{-1}{-3}$, а поскольку при деле­нии отрицательного числа на отрицатель­ное число мы получаем положительное число, то $\frac{-1}{-3}$ можно записать как $+\frac{1}{3}$.

Сложение и вычитание отрицательных дробей проводят по той же схеме, что и сложение, и вычитание положительных дро­бей. Например, что такое $1- 1\frac13$? Пред­ставим оба числа в виде дробей и получим $\frac{1}{1}-\frac{4}{3}$. Приведем дроби к общему знаменателю и получим $\frac{1 \times 3}{1 \times 3}-\frac{4}{3}$, то есть $\frac{3}{3}-\frac{4}{3}$, или $-\frac{1}{3}$.