Вычисление со степенями онлайн. Возведение числа в дробную степень — онлайн калькулятор

Возведение в отрицательную степень – один из основных элементов математики, который часто встречается при решении алгебраических задач. Ниже приведена подробная инструкция.

Как возводить в отрицательную степень – теория

Когда мы число в обычную степень, мы умножаем его значение несколько раз. Например, 3 3 = 3×3×3 = 27. С отрицательной дробью все наоборот. Общий вид по формуле будет иметь следующий вид: a -n = 1/a n . Таким образом, чтобы возвести число в отрицательную степень, нужно единицу поделить на данное число, но уже в положительной степени.

Как возводить в отрицательную степень – примеры на обычных числах

Держа вышеприведенное правило на уме, решим несколько примеров.

4 -2 = 1/4 2 = 1/16
Ответ: 4 -2 = 1/16

4 -2 = 1/-4 2 = 1/16.
Ответ -4 -2 = 1/16.

Но почему ответ в первом и втором примерах одинаковый? Дело в том, что при возведении отрицательного числа в четную степень (2, 4, 6 и т.д.), знак становится положительным. Если бы степень была четной, то минус сохранился:

4 -3 = 1/(-4) 3 = 1/(-64)


Как возводить в отрицательную степень – числа от 0 до 1

Вспомним, что при возведении числа в промежутке от 0 до 1 в положительную степень, значение уменьшается с возрастанием степени. Так например, 0,5 2 = 0,25. 0,25< 0,5. В случае с отрицательной степенью все обстоит наоборот. При возведении десятичного (дробного) числа в отрицательную степень, значение увеличивается.

Пример 3: Вычислить 0,5 -2
Решение: 0,5 -2 = 1/1/2 -2 = 1/1/4 = 1×4/1 = 4.
Ответ: 0,5 -2 = 4

Разбор (последовательность действий):

  • Переводим десятичную дробь 0,5 в дробную 1/2. Так легче.
    Возводим 1/2 в отрицательную степень. 1/(2) -2 . Делим 1 на 1/(2) 2 , получаем 1/(1/2) 2 => 1/1/4 = 4


Пример 4: Вычислить 0,5 -3
Решение: 0,5 -3 = (1/2) -3 = 1/(1/2) 3 = 1/(1/8) = 8

Пример 5: Вычислить -0,5 -3
Решение: -0,5 -3 = (-1/2) -3 = 1/(-1/2) 3 = 1/(-1/8) = -8
Ответ: -0,5 -3 = -8


Исходя из 4-го и 5-ого примеров, сделаем несколько выводов:

  • Для положительного числа в промежутке от 0 до 1 (пример 4), возводимого в отрицательную степень, четность или нечетность степени не важна, значение выражения будет положительным. При этом, чем больше степень, тем больше значение.
  • Для отрицательного числа в промежутке от 0 до 1 (пример 5), возводимого в отрицательную степень, четность или нечетность степени неважна, значение выражения будет отрицательным. При этом, чем больше степень, тем меньше значение.


Как возводить в отрицательную степень – степень в виде дробного числа

Выражения данного типа имеют следующий вид: a -m/n , где a – обычное число, m – числитель степени, n – знаменатель степени.

Рассмотрим пример:
Вычислить: 8 -1/3

Решение (последовательность действий):

  • Вспоминаем правило возведения числа в отрицательную степень. Получим: 8 -1/3 = 1/(8) 1/3 .
  • Заметьте, в знаменателе число 8 в дробной степени. Общий вид вычисления дробной степени таков: a m/n = n √8 m .
  • Таким образом, 1/(8) 1/3 = 1/(3 √8 1). Получаем кубический корень из восьми, который равен 2. Исходя отсюда, 1/(8) 1/3 = 1/(1/2) = 2.
  • Ответ: 8 -1/3 = 2


Можно возводить только в целые положительные степени. Для этого нажмите клавишу [C], введите число, а затем нажмите клавиши [X] и [=]. Число будет возведено в степень 2. Последующие нажатия клавиши [=] приведут к возведению введенного вами числа в степени 3, 4, 5, и так далее, до тех пор, пока не произойдет переполнение разрядной сетки. В последнем случае на индикаторе включится сегмент E или ERROR, а считать результат достоверным будет нельзя.

Если показатель степени значителен, подсчитывать нажатия клавиши [=] можно при помощи второго калькулятора. Последовательно нажмите на нем клавиши , [+] и [=]. Последующие нажатия на клавишу [=] приведут к появлению на индикаторе чисел 2, 3, 4, 5, и так далее. Остается нажимать клавиши [=] на обоих калькуляторах синхронно с таким расчетом, чтобы показания индикатора второго прибора соответствовали степени, в которую возведено число на первом.

Для возведения в степень на научном калькуляторе с обратной польской записью вначале нажмите клавишу [C], затем число, подлежащее возведению, затем кнопку со стрелкой вверх (на аппаратах фирмы HP - с надписью Enter), затем показатель степени, а затем клавишу . Если эта надпись расположена не на самой клавише, а над ней, то перед ней нажмите клавишу [F]. Отличить такой от научного с арифметической записью можно по отсутствию клавиши [=].

При использовании научного калькулятора с алгебраической записью вначале нажмите клавишу [C], затем число, подлежащее возведению в степень , затем клавишу (при необходимости - совместно с клавишей [F], как указано выше), затем показатель степени, а затем - клавишу [=].

Наконец, при использовании двухстрочного калькулятора с формульной записью введите в верхнюю строку все выражение в том же виде, в каком оно записано на бумаге. Для ввода знака возведения в степень используйте клавишу или [^], в зависимости от типа аппарата. После нажатия клавиши [=] результат отобразится в нижней строке.

При отсутствии калькулятора для возведения в степень можно использовать компьютер. Для этого запустите на нем программу виртуального калькулятора: в Windows - Calc, в Linux - XCalc, KCalc, Galculator и др. Переключите программу в инженерный режим, если этого не было сделано ранее. Калькулятор XCalc можно перевести в режим обратной польской записи, запустив его командой xcalc -rpn. Компиляторы языка Паскаль использовать в качестве калькуляторов не рекомендуется - команды возведения в степень там нет, и реализовывать соответствующий алгоритм приходится вручную. В интерпретаторах языка Бейсик, например, UBasic, для осуществления этой операции служит знак ^.

Процессоры современных компьютеров в состоянии выполнять сотни триллионов операций в секунду. Понятно, что такие простые задачки, как возведение числа в степень , для них пустяки. Они решаются мимоходом при выполнении серьезных задач, например, по созданию графики виртуальных миров. Но повелитель компьютера - пользователь, а раз ему хочется заниматься такими пустяками, супердракону приходится прикидываться котенком, изображая из себя программу-калькулятор.

Вам понадобится

  • ОС Windows.

Инструкция

Введите исходное число. В этом интерфейсе за операциями возведения в квадрат и куб закреплены отдельные кнопки, поэтому для их выполнения вам достаточно кликнуть по кнопкам с символами x² или x³.

Если показатель степени больше тройки, после ввода -основания щелкните по кнопке с символом xʸ. Затем введите показатель степени и нажмите клавишу Enter либо кликните по кнопке со знаком равенства. Калькулятор произведет необходимые вычисления и отобразит результат.

Есть и еще один способ возведения числа в степень , который, скорее, можно назвать трюком. Чтобы им воспользоваться, введите исходное число и кликните по кнопке извлечения корня произвольной степени ʸ√x. Затем введите десятичную , которая является результатом деления единицы на показатель степени. Например, для возведения в пятую степень это должно быть число 1/5=0,2. Нажмите на кнопку Enter и получите результат возведения в степень .

Видео по теме

Степень числа разбирают в школе на уроках алгебры. В жизни такая операция выполняется редко. Например, при расчете площади квадрата или объёма куба используются степени, потому что длина, ширина, а для куба и высота – равные величины. В остальном возведение в степень чаще всего носит прикладной производственный характер.

Вам понадобится

  • Бумага, ручка, инженерный калькулятор, таблицы степеней, программные продукты (например, табличный редактор Excel).

Инструкция

Пусть Х = 125, а степень числа , т. е. n = 3. Это означает, что число 125 нужно умножить само на себя 3 раза.
125^3 = 125*125*125 = 1 953 125
Ещё .
3^4 = 3*3*3*3 = 81

При работе с отрицательным числом нужно быть аккуратным со знаками. Следует помнить, что четная степень (n) даст знак плюс, нечетная – знак .
Например
(-7)^2 = (-7)*(-7) = 49
(-7)^3 = (-7)*(-7)*(-7) = 343

Нулевая степень (n = 0) от любого числа всегда будет равна единице.
15^0 = 1
(-6)^0 = 1
(1/3)^0 = 1Если n = 1, число умножать само на себя не надо.
Будет
7^1 = 7
329^1 = 329

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

  • 02.12.2015

    Датчик температуры кулера (вентилятора) начинает работать когда температура повышается до заданного значения и выключается при ее понижении. Питание на кулер подается через реле (12В, 200 Ом). Датчиком температуры служит термистор с отрицательным температурным коэффициентом. Операционный усилитель LM311 используется в качестве компаратора. При повешении температуры сопротивление термистора уменьшается, соответственно падает напряжение на …

  • 06.04.2015

    Микросхема К1182ГГ3Р является интегральной схемой высоковольтного полумостового автогенератора. Она изготовлена по уникальной биполярной технологии, разработанной для класса ИС, ориентированных на применение в сети переменного тока до 240В. ИС преобразует постоянное напряжение (в частности, выпрямленное сетевое напряжение) в высокочастотное напряжение 30-50 кГц и позволяет создавать гальванически развязанные вторичные источники питания мощностью до 12 Вт. Номиналы элементов для входного напряжения сети 220В …

  • 14.07.2015

    Как известно напряжение бортовой сети автомобиля находится в пределах от 12 до 14,4В, что вводит ограничение по мощности используемых усилителей ЗЧ. Для увеличения выходной мощности усилителя необходимо использовать преобразователь напряжения. Микросхема TDA1562Q позволяет легко решить эту проблему. Выходная мощность усилителя на TDA1562Q 18Вт (14,4В Rн=4 Ом), при увеличении мощности усилитель переходит в …

  • 23.09.2014

    Автомат работает с 7-ю лампочками и создает эффект световой линии, которая сначала постепенно вырастает из центральной светящейся точки, а затем гаснет, постепенно, от центра к краям. Автомат управляет лампочками 15Вт 220В. Схема состоит из мультивибратора, задающего периодичность пульсации, трех линий задержки и четырех выходных тиристоров. Периодичность повторений пульсаций зависит он …


В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень . В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени – натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Определение.

Возведение в степень – это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r – это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

На практике равенство на основании обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Пример.

Вычислите значение степени .

Решение.

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

Ответ:

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Пример.

Вычислите (44,89) 2,5 .

Решение.

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью ): . Теперь выполняем возведение в дробную степень:

Ответ:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 -4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем . При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

В качестве примера вычислим приближенное значение степени 2 1,174367... . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367... ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).