Стадии митоза. Деление клетки. Митоз

Среди всех интересных и достаточно сложных тем в биологии стоит выделить два процесса деления клеток в организме – мейоз и митоз . Сначала может показаться, что эти процессы одинаковые, поскольку в обоих случаях происходит деление клеток, но на самом деле между ними существует большая разница. В первую очередь, нужно разобраться с митозом. Что этот процесс из себя представляет, что такое интерфаза митоза и какую роль они играют в человеческом организме? Подробнее об этом и пойдет речь в данной статье.

Сложный биологический процесс, который сопровождается делением клеток и распределением хромосом между этими клетками – все это можно сказать о митозе. Благодаря ему, между дочерними клетками организма равномерно распределяются хромосомы, в которых содержится ДНК.

Существует 4 основные фазы процесса митоза. Все они связаны между собой, поскольку фазы плавно переходят из одной на другую. Распространенность митоза в природе обусловлена тем, что именно он участвует в процессе деления всех клеток, среди которых мышечные, нервные и так далее.

Коротко об интерфазе

Перед попаданием в состояние митоза клетка, которая разделяется, переходит в период интерфазы, то есть растет. Длительность интерфазы может занимать более 90% всего времени активности клетки в обычном режиме .

Интерфаза делится на 3 основных периода:

  • фаза G1;
  • S-фаза;
  • фаза G2.

Все они проходят в определенной последовательности. Рассмотрим каждую из этих фаз отдельно.

Интерфаза — основные составляющие (формула)

Фаза G1

Этот период характеризуется подготовкой клетки к делению. Она увеличивается в объемах для дальнейшей фазы синтеза ДНК.

S-фаза

Это следующий этап в процессе интерфазы, при котором происходит деление клеток организма. Как правило, синтез большей части клеток происходит на небольшой промежуток времени. После деления клетки не увеличиваются в размерах, а начинается последняя фаза.

Фаза G2

Финальный этап интерфазы, на протяжении которого клетки продолжают синтезировать белки, увеличиваясь при этом в размерах. В этот период в клетке по-прежнему есть нуклеолы. Также в последней части интерфазы происходит дублирование хромосом, а поверхность ядра в это время покрывается специальной оболочкой, имеющей защитную функцию.

На заметку! По завершению третьей фазы наступает митоз. Он тоже включает в себя несколько стадий, после которых происходит деление клетки (этот процесс в медицине называется цитокинезом).

Стадии митоза

Как уже отмечалось ранее, митоз делится на 4 стадии, но иногда их может быть и больше. Ниже представлены основные из них.

Таблица. Описание основных фаз митоза.

Название фазы, фото Описание

Во время профазы происходит спирализация хромосом, в результате чего они принимают скрученную форму (она более компактная). Останавливаются все синтетические процессы в клетке организма, поэтому рибосомы уже не вырабатываются.

Многие специалисты не выделяют прометафазу как отдельную фазу митоза. Нередко все процессы, которые в ней происходят, относят к профазе. В этот период цитоплазма окутывает хромосомы, которые свободно перемещаются по клетке до определенного момента.

Следующая фаза митоза, которая сопровождается распределением на экваториальной плоскости конденсированных хромосом. В этот период происходит обновление микротрубочек на постоянной основе. При метафазе хромосомы расположены так, что их кинетохоры находятся в ином направлении, то есть направлены к противоположным полюсам.

Данная фаза митоза сопровождается отделением хроматид каждой из хромосом друг от друга. Нарастание микротрубочек прекращается, они теперь начинают разбираться. Анафаза длится недолго, но за этот промежуток времени клетки успевают разойтись ближе к разным полюсам в примерно равном количестве.

Это последняя стадия, на протяжении которой начинается деконденсация хромосом. Эукариотические клетки завершают свое деление, а вокруг каждого набора хромосом человека образовывается специальная оболочка. При сокращении сократительного кольца происходит разделение цитоплазмы (в медицине этот процесс называется цитотомией).

Важно! Длительность полного процесса митоза, как правило, составляет не больше 1,5-2 часов. Продолжительность может меняться в зависимости от вида разделяемой клетки. Также на длительность процесса влияют и внешние факторы, такие как световой режим, температура и так далее.

Какую биологическую роль играет митоз?

Теперь попробуем разобраться с особенностями митоза и его важностью в биологическом цикле. В первую очередь, он обеспечивает многие процессы жизнедеятельности организма, среди которых – эмбриональное развитие .

Также митоз отвечает за восстановление тканей и внутренних органов организма после различных видов повреждения, в результате чего происходит регенерация. В процессе функционирования клетки постепенно отмирают, но с помощью митоза структурная целостность тканей постоянно поддерживается.

Митоз обеспечивает сохранение определенного количества хромосом (оно соответствует числу хромосом в материнской клетке).

Видео – Особенности и виды митоза

Мейоз - это деление в зоне созревания половых клеток , сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза», продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация(соединение гомологичных хромосом) и обмен генетической информацией. В анафазе Iцентроме­ры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологмейоза Митоз и его фазы митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называютзиготой.

Митоз, или непрямое деление, наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления. В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Мейоз и митоз

Таблица - Сравнение митоза и мейоза

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) -кроссинговер . Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при nхромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при nхромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих , земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза », во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз ).

Интерфаза состоит из нескольких периодов:

G 1 -фазы (от англ. gap - промежуток), или фазы начального роста , во время которой идет синтез мРНК , белков , других клеточных компонентов;

S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра , также происходит удвоение центриолей (если они, конечно, есть).

G 2 -фазы, во время которой идет подготовка к митозу .

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

-кариокинез (деление клеточного ядра);

-цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатахсветовой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков , какциклин-зависимые киназы и циклины . Клетки , находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста . Разные факторы роста, такие как тромбоцитарный , эпидермальный, фактор роста нервов, связываясь со своимирецепторами , запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ . Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами . Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса.Киназы не активны без циклинов . На разных стадиях клеточного цикла синтезируются разные циклины . Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза , когда запускается весь каскад реакций фосфорилирования , катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53 , pRb , Myc иRas . Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21 , являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Деление клеток

Все клетки появляются путём деления родительских клеток. Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

Интерфаза состоит из трех этапов. В течение 4–8 часов после рождения клетка увеличивает свою массу. Некоторые клетки (например, нервные клетки мозга) навсегда остаются в этой стадии, у других же в течение 6–9 часов удваивается хромосомная ДНК. Когда масса клетки увеличивается в два раза, начинается митоз .

В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза . Клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны. Каждая дочерняя клетка получает собственный набор хромосом и возвращается в стадию интерфазы. Весь процесс занимает около часа.

Процесс митоза может варьировать в зависимости от типа клетки. В растительной клетке отсутствуют центриоли, хотя веретено деления образуется. В грибных клетках митоз происходит внутри ядра, ядерная мембрана не распадается.

Наличие хромосом не является необходимым условием деления клетки. С другой стороны, один или несколько митозов могут останавливаться на стадии телофазы, в результате чего возникают многоядерные клетки (например, у некоторых водорослей).

Размножение при помощи митоза называют бесполым или вегетативным, а также клонированием . При митозе генетический материал родительских и дочерних клеток идентичен.

Мейоз , в отличие от митоза, является важным элементом полового размножения . При мейозе образуются клетки, содержащие лишь один набор хромосом, что делает возможным последующее слияние половых клеток (гамет) двух родителей. По сути, мейоз является разновидностью митоза. Он включает два последовательных деления клетки, однако хромосомы удваиваются только в первом из этих делений. Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом).

В результате мейотического деления у животных образуются четыре гаметы . Если мужские половые клетки имеют примерно одинаковые размеры, то при образовании яйцеклеток распределение цитоплазмы происходит очень неравномерно: одна клетка остаётся крупной, а три остальных настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки служат лишь для размещения избыточного генетического материала.

Мужские и женские гаметы сливаются, образуя зиготу . Хромосомные наборы при этом объединяются (этот процесс называется сингамией ), в результате чего в зиготе восстанавливается удвоенный набор хромосом – по одному от каждого из родителей. Случайное расхождение хромосом и обмен генетическим материалом между гомологичными хромосомами приводят к возникновению новых комбинаций генов, повышая генетическое разнообразие. Образовавшаяся зигота развивается в самостоятельный организм.

В последнее время проводились эксперименты по искусственному слиянию клеток одного или разных видов. Наружные поверхности клеток склеивались вместе, а мембрана между ними разрушалась. Таким образом удалось получить гибридные клетки мыши и цыплёнка, человека и мыши. Однако при последующих делениях клетки теряли большинство хромосом одного из видов.

В других экспериментах клетка разделялась на компоненты, например, ядро, цитоплазму и мембрану. После этого компоненты различных клеток снова соединяли вместе, и в результате получалась живая клетка, состоящая из компонентов клеток разных видов. В принципе, опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию новых форм жизни.

Наследственность как всеобщее свойство живых организмов тесно связана с другим важнейшим свойством живого - размножением . Благодаря размножению осуществляется преемственность между родительскими особями и их потомством. В основе размножения лежит процесс деления клеток.

Хромосомы: индивидуальность, парность, число

Во время деления клетки хорошо заметны хромосомы. При изучении хромосом разных видов живых организмов было обнаружено, что их набор строго индивидуален. Это касается числа, формы, черт строения и величины хромосом. Набор хромосом в клетках тела, характерный для данного вида растений, животных, называется кариотипом.

В любом многоклеточном организме существует два вида клеток - соматические (клетки тела) и половые клетки, или гаметы. В половых клетках число хромосом в 2 раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами - такой набор называется диплоидным и обозначается 2/1- Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными.

В половых клетках каждая из хромосом находится в одинарном числе. Такой набор называется гаплоидным и обозначается n.

Митоз. Подготовка клетки к делению

Наиболее распространенным способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий, или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.

Во время подготовки клетки к делению - в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия. Удвоенная хромосома состоит из двух половинок - хроматид. Каждая из хроматид содержит одну молекулу ДНК- В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10-20 ч. Затем наступает процесс деления клетки - митоз.

Фазы митоза

Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза, телофаза.

В профазе хорошо видны ценгриоли - органоиды, играющие определенную роль в делении дочерних хромосом. Центриолй делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.

Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку - центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

В анафазе дочерние хромосомы расходятся к разным полюсам клетки.

В последней стадии - телофазе - хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.

В процессе деления цитоплазмы все ее органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1-2 ч.

В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом.

Деление клетки - биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов.

Наиболее широко распространенная форма воспроизведения клеток у живых организмов - непрямое деление, или митоз (от греч. «митос» - нить). Митоз состоит из четырех последовательных фаз. Благодаря митозу обеспечивается равномерное распределение генетической информации родительской клетки между дочерними клетками.

Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов клетки.

Митоз

В процессе митоза различают четыре фазы: профазу, метафазу, анафазу и телофазу.

  • I. Профаза - самая продолжительная фаза митоза. В ней спирализируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рассредоточиваются по всей клетке. В цитоплазме к концу профазы центриоли отходят к полосам и образуют веретено деления.
  • II. Метафаза - хромосомы продолжают спирализацию, их центромеры располагаются по экватору (в этой фазе они наиболее видны). К ним прикрепляются нити веретена деления.
  • III. Анафаза - делятся центромеры, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.
  • IV. Телофаза - делится цитоплазма, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны. После этого образуется перетяжка в экваториальной зоне клетки, разделяющая две сестринские клетки.

Так из одной исходной клетки (материнской) образуются две новые - дочерние, имеющие хромосомный набор, который по количеству и качеству, по содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичен родительским.

Рост, индивидуальное развитие, постоянное обновление тканей многоклеточных организмов определяется процессами митотического деления клеток.

Все изменения, происходящие в процессе митоза, контролируются системой нейрорегуляции, т. е. нервной системой, гормонами надпочечников, гипофиза, щитовидной железы и др.

Мейоз (от греч. «мейоз». - уменьшение) - это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое. Он состоит и двух последовательно идущих делений, имеющих те же фазы, что и митоз. Однако продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих в митозе.

Эти отличия в основном состоят в следующем. В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение) хромосом и обмен генетической информацией. (На рисунек вверху профаза отмечена цифрами 1, 2, 3, конъюгация показана под цифрой 3). В метафазе происходят те же изменения, что и в метафазе митоза, но при гаплоидном наборе хромосом (4). В анафазе I центромеры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологичных хромосом (5). В телофазе II образуются четыре клетки с гаплоидным набором хромосом (6).

Интерфаза перед вторым делением у мейоза очень короткая, в ней ДНК не синтезируется. Клетки (гаметы), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом.

Полный набор хромосом - диплоидный 2n - восстанавливается в организме при оплодотворении яйцеклетки, при половом размножении.

Половое размножение характеризуется обменом генетической информации между женскими и мужскими особями. Оно связано с образованием и слиянием особых гаплоидных половых клеток - гамет, образующихся в результате мейоза. Оплодотворение представляет собой процесс слияния яйцеклетки и сперматозоида (женской и мужской гамет), при котором восстанавливается диплоидный набор хромосом. Оплодотворенную яйцеклетку называют зиготой.

В процессе оплодотворения можно наблюдать различные варианты соединения гамет. Например, при слиянии обеих гамет, имеющих одинаковые аллели одного или нескольких генов, образуется гомозигота, в потомстве которой сохраняются все признаки в чистом виде. Если же в гаметах гены представлены различными аллелями - образуется гетерозигота. В ее потомстве обнаруживаются наследственные зачатки, соответствующие различным генам. У человека гомозиготность бывает лишь частичной, по отдельным генам.

Основные закономерности передачи наследственных свойств от родителей к потомкам были установлены Г. Менделем во второй половине XIX в. С этого времени в генетике (науке о закономерностях наследственности и изменчивости организмов) прочно утвердились такие понятия, как доминантные и рецессивные признаки, генотип и фенотип и др. Доминантные признаки - преобладающие, рецессивные - уступающие, или исчезающие в последующих поколениях. В генетике эти признаки обозначаются буквами латинского алфавита: доминантные обозначаются заглавными буквами, рецессивные — строчными. В случае гомозиготности каждая из пары генов (аллелей) отражает либо доминантные, либо рецессивные признаки, которые в обоих случаях проявляют свое действие.

У гетерозиготных организмов доминантная аллель находится в одной хромосоме, а рецессивная, подавляемая доминантом, в соответствующем участке другой гомологичной хромосомы. При оплодотворении образуется новая комбинация диплоидного набора. Следовательно, образование нового организма начинается со слияния двух половых клеток (гамет), образующихся в результате мейоза. Во время мейоза происходит перераспределение генетического материала (рекомбинация генов) у потомков или обмен аллелями и их соединение в новых вариациях, что и определяет появление нового индивида.

Вскоре после оплодотворения происходит синтез ДНК, хромосомы удваиваются, и наступает первое деление ядра зиготы, которое осуществляется путем митоза и представляет собой начало развития нового организма.

Митоз (кариокинез) – это непрямое деление клетки, в котором выделяют фазы: профаза, метафаза, анафаза и телофаза.

1. Профаза характеризуется:
1) хромонемы спирализуются, утолщаются и укорачиваются.
2) ядрышки исчезают, т.е. хромонема ядрышка упаковывается к хромосомам, имеющим вторичную перетяжку, которую называют ядрышковый организатор.

3) в цитоплазме образуется два клеточных центра (центриолей) и формируются нити веретена деления.
4) в конце профазы, распадается ядерная оболочка и хромосомы оказываются в цитоплазме. Набор хромосом профазы составляет - 2п4с.

2. Метафаза характеризуется:
1) к центромерам хромосом прикрепляются нити веретена деления и хромосомы начинают двигаться и выстраиваются на экваторе клетки.
2) метафазу называют «паспортом клетки», т.к. хорошо видно, что хромосома состоит из двух хроматид. Хромосомы максимально спирализованы, хроматиды начинают отталкиваться друг от друга, но еще соединены в области центромера. На этой стадии изучают кариотип клеток, т.к. четко видно число и форма хромосом. Фаза очень короткая.
Набор хромосом метафазы составляет - 2п4с.

3. Анафаза характеризуется:
1) центромеры хромосом делятся и сестринские хроматиды расходятся к полюсам клетки и становятся самостоятельными хроматидами, которые называют дочерними хромосомами. На каждом полюсе в клетке находится по диплоидному набору хромосом.
Набор хромосом анафазы составляет - 4п4с.

4. Телофаза характеризуется:
Однохроматидные хромосомы деспирализуются у полюсов клетки, образуются ядрышки, восстанавливается ядерная оболочка.
Набор хромосом телофазы составляет - 2п2с.
Телофаза заканчивается цитокинезом. Цитокинез – процесс разделения цитоплазмы между двумя дочерними клетками. Цитокинез происходит по разному у растений и животных.
В животной клетке. На экваторе клетки появляется кольцевидная перетяжка, которая углубляется и полностью перешнуровывает тело клетки. В результате образуется две новые клетки вдвое меньше материнской клетки. В области перетяжки много актина, т.е. в движении играют роль микрофиламенты.
Цитокинез идет путем перетяжки.
В растительной клетке. На экваторе, в центре клетки в результате скопления пузырьков диктиосом комплекса Гольджи, образуется клеточная пластинка, которая разрастается от центра к периферии и приводит к разделению материнской клетки на две клетки. В дальнейшем перегородка утолщается, за счет отложения целлюлозы, образуя клеточную стенку. Цитокинез идет путем перегородки.

Биологический смысл митоза

В результате митоза образуется две дочерние клетки с таким же набором хромосом, как и материнская клетка.

Схема митоза