Зависимость объема и его производных от температуры. Экспериментальное определение зависимости объема газа от температуры

Страница 43

Чаще всего на практике используют зависимость объема жидкости (ртути или спирта) от температуры.

При градуировке термометра обычно за начало отсчета (0) принимают температуру тающего льда; второй постоянной точкой (100) считают температуру кипения воды при нормальном атмосферном давлении (шкала Цельсия).

Так как различные жидкости расширяются при нагревании неодинаково, то установленная таким образом шкала будет до некоторой степени зависеть от свойств данной жидкости.

Конечно, 0 и 100°С будут совпадать у всех термометров, но 50°С совпадать не будут.

В отличие от жидкостей все разреженные газы расширяются при нагревании одинаково и одинаково меняют свое давление при изменении температуры. Поэтому в физике для установления рациональной температурной шкалы используют изменение давления определенного количества разреженного газа при постоянном объеме или изменение объема газа при постоянном давлении.

Такую шкалу иногда называют идеальной газовой шкалой температур.

При тепловом равновесии средняя кинетическая энергия поступательного движения молекул всех газов одинакова. Давление прямо пропорционально средней кинетической энергии поступательного движения молекул: p = n

При тепловом равновесии, если давление газа данной массы и его объем фиксированы, средняя кинетическая энергия молекул газа должна иметь строго определенное значение, как и температура.

Т.к. концентрация молекул в объеме газа n = , то p = или = .

Обозначим = Θ.

Величина Θ растет с повышением температуры и ни от чего, кроме температуры не зависит.

Отношение произведения давления газа на его объем к числу молекул при одинаковой температуре одинаково практически для всех разряженных газов (близких по свойствам к идеальному газу):

При высоких давлениях соотношение нарушается.

Определенная таким образом температура называется абсолютной.

На основании формулы вводится температурная шкала не зависящая от характера вещества, используемого для измерения температуры.

Важнейшим макроскопическим параметром, характеризующим стационарное равновесное состояние любого тела, является температура.

Температура – мера средней кинетической энергии хаотического поступательного движения молекул. тела.

Из основного уравнения МКТ в форме = и определения температуры в форме = kT следует важнейшее следствие:

Абсолютная температура есть мера средней кинетической энергии движения молекул.

Средняя кинетическая энергия хаотического поступательного движения молекул пропорциональна термодинамической (или абсолютной температуре):

KT Þ = kT Þ == kT

Чем выше температура, тем быстрее движутся молекулы.

k = 1,38*10-23 Дж/К – постоянная Больцмана

Постоянная Больцмана является коэффициентом, переводящим температуру из градусной меры (К) в энергетическую (Дж) и обратно.

Единица термодинамической температуры – К (Кельвин)

Кинетическая энергия не может быть отрицательной. Следовательно не может быть отрицательной и термодинамическая температура. Она обращается в нуль, когда кинетическая энергия молекул становится равной нулю.

Абсолютный нуль (0К) – температура, при которой должно прекратиться движение молекул.

Для оценки скорости теплового движения молекул в газе рассчитаем средний квадрат скорости:

Произведение kNa = R = 8,31 Дж/(моль*К) называется молярной газовой постоянной

Средняя квадратичная скорость молекул:

Эта скорость близка по значению к средней и наиболее вероятной скорости и дает представление о скорости теплового движения молекул в идеальном газе.

При одинаковой температуре скорость теплового движения молекул газа тем выше, чем ниже его М. (При 0оС скорость молекул составляет несколько сот м/с)

При одинаковых давлениях и температурах концентрация молекул всех газов одна и та же:

KT Þ p = nkT , где n = N/V – концентрация молекул в данном объеме

Отсюда следует закон Авогадро:

в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул.

Шкала Цельсия – опорная точка – температура таяния льда 0оС, температура кипения воды – 100оС

Шкала Кельвина - опорная точка – абсолютный нуль – 0оК (-273,15оС)

tоК = tоС -273

Шкала Фаренгейта – опорная точка – наименьшая температура, которую Фаренгейту удалось получить из смеси воды, льда и морской соли – 0оF , верхняя опорная точка – температура тела человека - 96 оF

УТОЧНИТЬ

УРАВНЕНИЕ КЛАЙПЕРОНА-МЕНДЕЛЕЕВА(уч.10кл.стр.248-251)

(Уравнение состояния идеального газа)

Основное уравнение молекулярно-кинетической теории идеального газа(уч.10кл.стр.247-248)

Переход от микроскопических параметров газа к макроскопическим

Постоянная Лошмидта – смысл и единицы измерения

Среднее расстояние между частицами идеального газа

Уравнение состояния идеального газа – Клайперона-Менделеева

Универсальная газовая постоянная

Физический смысл уравнения Клайперона-Менделеева

p = n - основное уравнение МКТ идеального газа

Перейти на страницу: 43

Как и все тела, газы при нагревании расширяются, причём весьма заметно даже при незначительном нагревании. Это легко обнаружить на следующем простом опыте.

Колба А соединяется с расположенной горизонтально трубкой CD, которая укреплена вдоль шкалы. Внутри этой трубки находится небольшой столбик ртути. Достаточно к колбе прикоснуться рукой, как столбик ртути в трубке CD начнёт двигаться.

При охлаждении колбы столбик ртути перемещается влево, а при нагревании – вправо; следовательно, газ при охлаждении сжимается, а при нагревании расширяется. Зная объём колбы и диаметр трубки, можно измерить увеличение объёма газа.

Постепенно нагревая газ в колбе, можно установить, что при постоянном давлении изменение объёма данной массы газа прямо пропорционально изменению температуры. Поэтому тепловое расширение газа, так же как и других тел, можно охарактеризовать при помощи коэффициента объёмного расширения.

Пусть при температуре 0° С объём газа равен V 0 , а при температуре t – объём V t . Увеличение объёма, приходящееся на каждую единицу объёма, взятого при 0° С, при нагревании на один градус будет равно:

? = V t – V 0 /V 0 t

V t = V 0 (1 + ?t) (1)

Величина а, входящая в написанные выше формулы, называется коэффициентом объёмного расширения газа.

Жозеф Луи Гей-Люссак (1778– 1850) – один из выдающихся французских химиков и физиков . Он открыл ряд важных химических и физических законов, из которых в физике широко известен закон одинакового расширения газов и паров при одинаковом повышении температуры.

Французский учёный Гей-Люссак, исследуя на опыте тепловое расширение газов, открыл, что коэффициент объёмного расширения у всех газов при постоянном давлении одинаков и численно равен 1 / 273 град -1 .

В этом отношении расширение газов при нагревании отличается от расширения твёрдых и жидких тел, где, коэффициент объёмного расширения зависит от химического состава тел.

Положим в формуле (1):

t = 1°С, ? = 273 град -1

Мы получим: V t = V 0 + 1 / 273 · V 0 откуда следует, что при нагревании на 1 град под постоянным давлением объём данной массы газа увеличивается на 1 / 273 того объёма, который газ занимал при 0°C. Этот закон получил название закона Гей-Люссака.

Процессы, подобные рассмотренному, протекающие при постоянном давлении, называются изобарными .

Формула (1) показывает, что объём газа при температуре равен произведению его объёма, взятого при 0°С, на двучлен объёмного расширения (1 + ?t).

Пример 1. Объём некоторой массы газа при 0° С равен 10 л. Найти объём его при t = 273° С, если давление постоянно.

По условиям задачи нам известен объём газа при 0° С, т. е. V 0 = 10 л; подставляя числовые данные задачи в формулу V t = V 0 (1 + ?t), найдём, что

V t = 10 (1 + 273 / 273) л = 20 л

Пример 2. При температуре 273° С объём некоторой массы газа равен 10 л. Чему будет равен объём этого газа при температуре t 2 = 546° С, если давление постоянно?

Нам известен объём газа при температуре 273° С; чтобы определить объём этого газа при t 2 = 546° С, надо предварительно найти его объём при 0° С.

Этот объём найдём из равенства:

10 л = V 0 (1 + 1 / 273 · 273) л

V 0 = 10 л / 2 = 5 л

Найдём теперь объём газа при 546° С:

V t = 5 (1 + 1 / 273 · 546) л = 15 л

Убедиться в справедливости закона Гей-Люссака можно с помощью уже известного нам прибора (см. рис. 3.7). Для этого, заметив показания манометра, следует измерить температуру газа в гофрированном сосуде и объем сосуда. Затем нужно нагреть газ, поместив сосуд в горячую воду, и, вращая винт, добиться того, чтобы показания манометра остались прежними. Снова измерить температуру и объем газа. После этого опять изменить температуру, добиться первоначального значения давления и измерить температуру и объем газа в третий раз.

Изобары

Используя найденные значения объема газа при различных температурах и одном и том же давлении, можно построить график зависимости V от t . Эта зависимость изобразится прямой линией - изобарой, как и должно быть согласно формуле (3.6.4).

Различным давлениям соответствуют разные изобары (рис. 3.10). Так как с ростом давления объем газа при постоянной температуре уменьшается (закон Бойля-Мариотта), то изобара, соответствующая более высокому давлению р 2 , лежит ниже изобары, соответствующей более низкому давлению p 1

Идеальный газ

Если продолжить изобары в область низких температур, где измерения не проводились, то все прямые пересекают ось температуры в точке, соответствующей объему, равному нулю (пунктирные прямые на рис. 3.10). Но это не означает, что объем газа действительно обращается в нуль. Ведь все газы при сильном охлаждении превращаются в жидкости, а к жидкостям ни закон Гей-Люссака, ни закон Бойля-Мариотта неприменимы.

Реальные газы подчиняются основным газовым законам лишь приближенно и тем менее точно, чем больше плотность газа и ниже его температура. Газ, который в точности подчиняется газовым законам, называют идеальным.

Газовая шкала температур

Тот факт, что численное значение температурного коэффициента объемного расширения в предельном случае малых плотностей одинаково для всех газов, позволяет установить температурную шкалу, не зависящую от вещества, - идеальную газовую шкалу температур.

Приняв за основу шкалу Цельсия, можно определить температуру из соотношения (3.6.1)

(3.6.5)

где V 0 - объем газа при 0 °С, а V - его объем при температуре t .

Таким образом, с помощью формулы (3.6.5) осуществляется определение температуры, не зависящее от вещества термометра.

Дано определение идеального газа как газа, в точности подчиняющегося законам Бойля-Мариотта и Гей-Люссака. Введена идеальная газовая шкала температур, не зависящая от вещества.

§ 3.7. Абсолютная температура

Не все в мире относительно. Так, существует абсолютный нуль температуры. Есть и абсолютная шкала температур. Сейчас вы узнаете об этом

При увеличении температуры объем газа неограниченно возрастает. Не существует никакого предела для роста температуры*. Напротив, низкие температуры имеют предел.

* Наибольшие температуры на Земле - сотни миллионов градусов - получены при взрывах термоядерных бомб. Еще более высокие температуры характерны для внутренних областей некоторых звезд.

Согласно закону Гей-Люссака (3.6.4), при понижении температуры объем стремится к нулю. Так как объем не может быть отрицательным, то температура не может быть меньше определенного значения (отрицательного по шкале Цельсия).

Закон идеального газа.

Экспериментальный:

Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1) :

V~1/P , при T=const.

Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684) , его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:

V~T , при Р =const.

График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Р ~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P , V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

Где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро N A . В настоящее время установлено, что число Авогадро равно:

N A =(6,022045 ± 0,000031) · 10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N = nN A), закон идеального газа можно переписать следующим образом:

Где k называется постоянной Больцмана и имеет значение равное:

k= R/N A =(1,380662 ± 0,000044) · 10 -23 Дж/К

Справочник компрессорной техники

В отношении жидкостей имеет смысл говорить лишь об объёмном расширении. У жидкостей оно значительно больше, чем у твёрдых тел. Как показывает опыт, зависимость объёма жидкости от температуры выражается такой же формулой, как и для твёрдых тел.

Если при 0° С жидкость занимает объём V 0 , то при температуре t её объём V t будет:

V t = V 0 (1 + ?t)

Для измерения коэффициента расширения жидкости применяется стеклянный сосуд термометрической формы, объём которого известен. Шарик с трубкой наполняют доверху жидкостью и нагревают весь прибор до определённой температуры; при этом часть жидкости выливается из сосуда. Затем сосуд с жидкостью охлаждают в тающем льду до 0°. При этом жидкость заполнит уже не весь сосуд, и незаполненный объём покажет, насколько жидкость расширилась при нагревании. Зная коэффициент расширения стекла, можно довольно точно вычислить и коэффициент расширения жидкости.

Коэффициенты расширения некоторых жидкостей

Эфир – 0,00166

Спирт – 0,00110

Керосин – 0,00100

Вода (от 20° С и выше) – 0,00020

Вода (от 5 и до 8° С) – 0,00002

Тепловое расширение

Из таблицы коэффициентов линейного расширения в статье линейное расширение твердых тел видно, что коэффициенты расширения твёрдых тел очень малы. Однако самые незначительные изменения размеров тел при изменении температуры вызывают появление огромных сил.

Опыт показывает, что даже для небольшого удлинения твёрдого тела требуются огромные внешние силы. Так, чтобы увеличить длину стального стержня сечением в 1 см 2 приблизительно на 0,0005 его первоначальной длины, необходимо приложить силу в 1000 кГ. Но такой же величины расширение этого стержня получается при нагревании его на 50 град. Ясно поэтому, что, расширяясь при нагревании (или сжимаясь при охлаждении) на 50 град, стержень будет оказывать давление около 1000 кГ/см 2 на те тела, которые будут препятствовать его расширению (сжатию).

Огромные силы, возникающие при расширении и сжатии твёрдых тел, учитываются в технике. Например, один из концов моста не закрепляют неподвижно, а устанавливают на катках; железнодорожные рельсы не укладывают вплотную, а оставляют между ними просвет; паропроводы подвешивают на крюках, а между отдельными трубами устанавливают компенсаторы, изгибающиеся при удлинении труб паропровода. По этой же причине котёл паровоза закрепляется только на одном конце, другой же его конец может свободно перемещаться.

Линейное расширение твёрдых тел

Твёрдое тело при данной температуре имеет определённую форму и определённые линейные размеры. Увеличение линейных размеров тела при нагревании называется тепловым линейным расширением.

Измерения показывают, что одно и то же тело расширяется при различных температурах по-разному: при высоких температурах обычно сильнее, чем при низких. Но это различие в расширении столь невелико, что при сравнительно небольших изменениях температуры им можно пренебречь и считать, что изменение размеров тела пропорционально изменению температуры.

Объёмное расширение твёрдых тел

При тепловом расширении твёрдого тела с увеличением линейных размеров тела увеличивается и его объём. Аналогично коэффициенту линейного расширения для характеристики объёмного расширения можно ввести коэффициент объёмного расширения. Опыт показывает, что так же, как и в случае линейного расширения, можно без большой ошибки принять, что приращение объёма тела пропорционально повышению температуры.

Обозначив объём тела при 0° С через V 0 , объём при температуре t° через V t , а коэффициент объёмного расширения через α, найдём:

α = V t – V 0: V 0 t (1)

При V 0 = 1 ед. объема и t = 1 o С величина α равна V t – V 0 , т. е. коэффициент объёмного расширения численно равен приросту объёма тела при нагревании на 1 град, если при 0°С объём был равен единице объёма.

По формуле (1), зная объём тела при температуре 0° С, можно вычислить объём его при любой температуре t°:

V t = V 0 (1 + αt)

Установим соотношение между коэффициентами объёмного и линейного расширения.

Закон сохранения и превращения энергии

Рассмотрим более подробно описанный выше опыт Джоуля. В этом опыте потенциальная энергия падающих грузов превращалась в кинетическую энергию вращающихся лопаток; благодаря работе против сил трения кинетическая энергия лопаток превращалась во внутреннюю энергию воды. Мы сталкиваемся здесь со случаем превращения одного вида энергии в другой. Потенциальная энергия падающих грузов превращается во внутреннюю энергию воды, количество теплоты Q служит мерой превращённой энергии. Таким образом, количество энергии сохраняется при её превращениях в другие виды энергии.

Естественно поставить вопрос: сохраняется ли количество энергии при превращениях других видов энергии, например кинетической, электрической и т.д.? Допустим, что летит пуля массой m со скоростью v. Её кинетическая энергия равна mv 2 / 2 . Пуля попала в какой-либо предмет и застряла в нём. Кинетическая энергия пули превращается при этом во внутреннюю энергию пули и предмета, измеряемую количеством теплоты Q, которое вычисляется по известной формуле. Если кинетическая энергия при превращении во внутреннюю энергию не теряется, то должно иметь место равенство:

mv 2 / 2 = Q

где кинетическая энергия и количество теплоты выражены в одних единицах.

Опыт подтверждает это заключение. Количество энергии сохраняется.

Механический эквивалент теплоты

В начале XIX в. в промышленность и транспорт широко внедряются паровые двигатели. Одновременно изыскиваются возможности повышения их экономичности. В связи с этим перед физикой и техникой ставится вопрос большой практической важности: как при наименьшей, затрате топлива в машине совершить возможно больше работы.

Первый шаг в решении этой задачи сделал французский инженер Сади Карно в 1824 г., изучая вопрос о коэффициенте полезного действия паровых машин.

В 1842 г. немецкий учёный Роберт Майер теоретически определил, какое количество механической работы можно получить при затрате одной килокалории теплоты.

В основу своих расчётов Майер положил различие в теплоемкостях газа.

У газов различают две теплоёмкости: теплоёмкость при постоянном давлении (с р) и теплоёмкость при постоянном объёме (c v).

Теплоёмкость газа при постоянном давлении измеряется количеством теплоты, которое идёт на нагревание данной массы газа на 1 град без изменения его давления.

Теплоёмкость же при постоянном объёме численно равна количеству теплоты, идущей на нагревание данной массы газа на 1 град без изменения объёма, занимаемого газом.

Зависимость объёма тел от температуры

Частицы твёрдого тела занимают друг относительно друга определённые положения, но не остаются в покое, а совершают колебания . При нагревании тела увеличивается средняя скорость движения частиц. Средние расстояния между частицами при этом увеличиваются, поэтому увеличиваются линейные размеры тела, а следовательно, увеличивается и его объём.

При охлаждении линейные размеры тела сокращаются, и объём его уменьшается.

При нагревании, как известно, тела расширяются, а при охлаждении сжимаются. Качественная сторона этих явлений была уже рассмотрена в начальном курсе физики.