Рекомендации по решению заданий С5 (подсчет количества хромосом и количества ДНК). Мейоз, его фазы, биологическое значение

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»

В последние два года в вариантах тестовых заданий ЕГЭ по биологии стало появляться все больше вопросов по способам размножения организмов, способам деления клеток, отличиям разных стадий митоза и мейоза, наборам хромосом (n) и содержанию ДНК (с) в различных стадиях жизни клеток.

Я согласен с авторами заданий. Чтобы хорошо вникнуть в суть процессов митоза и мейоза надо не только понимать, чем они отличаются друг от друга, но и знать как меняется набор хромосом (n ), а, главное, их качество (с ), на различных стадиях этих процессов.

Помним, конечно, что митоз и мейоз — это различные способы деления ядра клеток, а не деление самих клеток (цитокинез).

Помним и то, что благодаря митозу происходит размножение диплоидных (2n) соматических клеток и обеспечивается бесполое размножение, а мейоз обеспечивает образование гаплоидных (n) половых клеток (гамет) у животных или гаплоидных (n) спор у растений.

Для удобства восприятия информации

на рисунке ниже митоз и мейоз изображены вместе. Как мы видим, эта схема не включает , в ней нет и полного описания того, что происходит в клетках при митозе или мейозе. Цель данной статьи и этого рисунка обратить ваше внимание только на те изменения, которые происходят с самими хромосомами на разных стадиях митоза и мейоза. Именно на это делается упор в новых тестовых заданиях ЕГЭ.

Чтобы не перегружать рисунки, диплоидный кариотип в ядрах клеток представлен всего двумя парами гомологичных хромосом (то есть n = 2). Первая пара — более крупные хромосомы (красная и оранжевая ). Вторая пара — более мелкие (синяя и зеленая ). Если бы мы изображали конкретно, например, кариотип человека (n = 23), пришлось бы рисовать 46 хромосом.

Так каков был набор хромосом и их качество до начала деления в интерфазной клетке в период G1 ? Конечно он был 2n2c . Клеток с таким набором хромосом мы на этом рисунке не видим. Так как после S периода интерфазы (после репликации ДНК) количество хромосом, хотя и остается прежним (2n), но, так как каждая из хромосом теперь состоит из двух сестринских хроматид, то формула кариотипа клетки будет записываться уже так: 2n4c . И вот клетки с такими двойными хромосомами, готовые уже приступить к митозу или мейозу, и изображены на рисунке.

Данный рисунок позволяет нам ответить на следующие вопросы тестовых заданий

— Чем отличается профаза митоза от профазы I мейоза? В профазе I мейоза хромосомы не свободно распределены по всему объему бывшего клеточного ядра (ядерная оболочка в профазе растворяется), как в профазе митоза, а гомологи объединяются и коньюгируют (переплетаются) друг с другом. Это может привести к кроссинговеру: обмену некоторыми идентичными участками сестринских хроматид у гомологов.

— Чем отличается метафаза митоза от метафазы I мейоза? В метафазу I мейоза по экватору клетки выстраиваются не отдельные двухроматидные хромосомы как в метафазе митоза, в биваленты (по два гомолога вместе) или тетрады (тетра — четыре, по числу задействованных в коньюгации сестринских хроматид).

— Чем отличается анафаза митоза от анафазы I мейоза? В анафазу митоза нитями веретена деления к полюсам клетки растаскиваются сестринские хроматиды (которые в это время уже следует называть однохроматидными хромосомами ). Обратите внимание, что в это время, поскольку из каждой двухроматидной хромосомы образовалось две однохроматидные хромосомы, а два новых ядра еще не образовались, то хромосомная формула таких клеток будет иметь вид 4n4c. В анафазу I мейоза нитями веретена деления к полюсам клетки растаскиваются двухроматидные гомологи. Кстати, на рисунке в анафазу I мы видим, что одна из сестринских хроматид оранжевой хромосомы имеет участки из красной хроматиды (и, соответственно, наоборот), а одна из сестринских хроматид зеленой хромосомы имеет участки из синей хроматиды (и, соответственно, наоборот). Поэтому мы можем утверждать, что в профазу I мейоза между гомологичными хромосомами происходила не только коньюгация, но и кроссинговер.

— Чем отличается телофаза митоза от телофазы I мейоза? В телофазу митоза в двух новых образовавшихся ядрах (двух клеток еще нет, они образуются в результате цитокинеза) будет содержаться диплоидный набор однохроматидных хромосом — 2n2c. В телофазу I мейоза в двух образующихся ядрах будет находиться гаплоидный набор двухроматидных хромосом — 1n2c. Таким образом, мы видим, что мейоз I уже обеспечил редукционное деление (количество хромосом снизилось вдвое).

— Что обеспечивает мейоз II ? Мейозом II называется эквационное (уравнительное) деление, в результате которого в четырех образовавшихся клетках будет находиться гаплоидный набор нормальных однохроматидных хромосом — 1n1c.

— Чем отличается профаза I от профазы II ? В профазу II ядра клеток не содержат гомологичных хромосом, как в профазу I, поэтому не происходит объединения гомологов.

— Чем отличается метафаза митоза от метафазы II мейоза? Очень «коварный» вопрос, так как из любого учебника вы запомните, что мейоз II в целом протекает как митоз. Но, обратите внимание, в метафазу митоза по экватору клетки выстраиваются двухроматидные хромосомы и у каждой хромосомы есть её гомолог. В метафазе II мейоза по экватору тоже выстраиваются двухроматидные хромосомы, но нет гомологичных. На цветном рисунке, как в этой статье выше, это хорошо видно, но на экзамене рисунки черно-белые. На этом черно-белом рисунке одного из тестовых заданий изображена метафаза митоза, так как здесь есть гомологичные хромосомы (большая черная и большая белая — одна пара; маленькая черная и маленькая белая — другая пара).

— Может быть и аналогичный вопрос по анафазе митоза и анафазе II мейоза .

— Чем отличается телофаза I мейоза от телофазы II ? Хотя набор хромосом в обоих случаях гаплоидный, но во время телофазы I хромосомы двухроматидные, а во время телофазы II они однохроматидные.

Когда писал на этом блоге подобную статью никак не думал, что за три года содержание тестов так сильно изменится. Очевидно, из-за сложностей создавать все новые и новые тесты, опираясь на школьную программу по биологии, авторы-составители уже не имеют возможности «копать вширь» (всё уже давно «вскопано») и они вынуждены «копать вглубь».

*******************************************
У кого будут вопросы по статье к репетитору биологии по Скайпу , прошу обращаться в комментариях.

С уменьшенным в двое относительно родительской клетки числом . Деление клеток посредством мейоза проходит в два основных этапа: мейоз I и мейоз II. В конце мейотического процесса образуются четыре . Прежде чем делящаяся клетка попадет в мейоз, она проходит через период , называемый интерфазой.

Интерфаза

  • Фаза G1: этап развития клетки перед синтезом ДНК. На этой стадии клетка подготавливаясь к делению увеличивается в массе.
  • S-фаза: период, в течение которого синтезируется ДНК. Для большинства клеток эта фаза занимает короткий промежуток времени.
  • Фаза G2: период после синтеза ДНК, но до начала профазы. Клетка продолжает синтезировать дополнительные белки и увеличиваться в размерах.

В последней фазе интерфазы клетка все еще имеет нуклеолы. окружено ядерной мембраной, а клеточное хромосомы дублируются, но находятся в форме . В две пары , образованных из репликации одной пары, расположены за пределами ядра. В конце интерфазы клетка переходит в первый этап мейоза.

Мейоз I:

Профаза I

В профазе I мейоза происходят следующие изменения:

  • Хромосомы конденсируются и присоединяются к ядерной оболочке.
  • Возникает синапсис (попарное сближение гомологичных хромосом) и образуется тетрада. Каждая тетрада состоит из четырех хроматид.
  • Может произойти генетическая рекомбинация.
  • Хромосомы сгущаются и отсоединяются от ядерной оболочки.
  • Подобно , центриоли мигрируют друг от друга, а ядерная оболочка и ядрышки разрушаются.
  • Хромосомы начинают миграцию к метафазной (экваториальной) пластине.

В конце профазы I клетка входит в метафазу I.

Метафаза I

В метафазе I мейоза происходят следующие изменения:

  • Тетрады выравниваются на метафазной пластине.
  • гомологичных хромосом ориентированы на противоположные полюса клетки.

В конце метафазы I клетка входит в анафазу I.

Анафаза I

В анафазе I мейоза происходят происходят следующие изменения:

  • Хромосомы перемещаются в противоположные концы клетки. Подобно митозу, кинетохоры взаимодействуют с микротрубочками, чтобы переместить хромосомы к полюсам клетки.
  • В отличие от митоза, остаются вместе после того, как перемещаются в противоположные полюса.

В конце анафазы I клетка входит в телофазу I.

Телофаза I

В телофазе I мейоза происходят следующие изменения:

  • Волокна веретена продолжают перемещать гомологичные хромосомы на полюса.
  • Как только движение завершено, каждый полюс клетки имеет гаплоидное количество хромосом.
  • В большинстве случаев цитокинез (деление ) происходит одновременно с телофазой I.
  • В конце телофазы I и цитокинеза образуются две дочерние клетки, каждая из которых имеет половину числа хромосом исходной родительской клетки.
  • В зависимости от типа клетки могут возникать различные процессы при подготовке к мейозу II. Однако генетический материал не реплицируется снова.

В конце телофазы I клетка входит в профазу II.

Мейоз II:

Профаза II

В профазе II мейоза происходят следующие изменения:

  • Ядерная и ядра разрушаются, пока появляется веретено деления.
  • Хромосомы больше не реплицируются в этой фазе.
  • Хромосомы начинают мигрировать к метафазной пластинке II (на экваторе клеток).

В конце профазы II клетки входят в метафазу II.

Метафаза II

В метафазе II мейоза происходят следующие изменения:

  • Хромосомы выстраиваются на метафазной пластинке II в центре клеток.
  • Кинетохорные нити сестринских хроматид расходятся к противоположным полюсам.

В конце метафазы II клетки входят в анафазу II.

Анафаза II

В анафазе II мейоза происходят следующие изменения:

  • Сестринские хроматиды разделяются и начинают перемещаться к противоположным концам (полюсам) клетки. Волокна веретена деления, не связанные с хроматидами, вытягиваются и удлиняют клетки.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается полной хромосомой, называемые .
  • При подготовке к следующему этапу мейоза два полюса клеток также отдаляются друг от друга во время анафазы II. В конце анафазы II каждый полюс содержит полную компиляцию хромосом.

После анафазы II клетки входят в телофазу II.

Телофаза II

В телофазе II мейоза происходят следующие изменения:

  • Образуются отдельные ядра на противоположных полюсах.
  • Происходит цитокинез (деление цитоплазмы и образование новых клеток).
  • В конце мейоза II производятся четыре дочерние клетки. Каждая клетка имеет половину числа хромосом от исходной родительской клетки.

Результат мейоза

Конечным результатом мейоза является производство четырех дочерних клеток. Эти клетки имеют в двое меньше хромосом относительно родительской. При мейозе продуцируются только половые . Другие делятся посредством митоза. Когда половые объединяются во время оплодотворения, они становятся . Диплоидные клетки имеют полный набор гомологичных хромосом.

Основное событие стадии созревания - мейоз, способ образования половых клеток, который состоит из двух последовательных быстро происходящих друг за другом делений - редукционного и эквационного.

Мейоз (рис. 6.4) решает две важные задачи. Во-первых, образуются клетки (гаметы) с гаплоидным набором хромосом. Этот результат достигается благодаря тому, что два деления мейоза происходят при однократной репликации ДНК. До настоящего времени нет полной ясности, к какой из стадий гаметогенеза следует отнести эту репликацию: происходит ли она в завершающей фазе стадии роста или в самом начале стадии созревания, непосредственно перед профазой 1 деления мейоза или даже во время профазы. С одной стороны, есть мнение, что ово(оо) цит I-го порядка, завершив цитоплазматические преобразования стадии роста, сразу же вступает в профазу первого деления стадии созревания. С другой стороны, ряд эмбриологов относят предмейотическую репли-

Рис. 6.4. Мейоз (схема)

кацию ДНК к началу профазы первого деления мейоза. Нельзя исключить, что репликация ДНК, начавшись на стадии роста, завершается в начале стадии созревания. Во-вторых, в профазе и анафазе первого деления мейоза заложены механизмы генотипической комбинативной изменчивости, что делает гаметы генотипически отличными от клеток-предшественниц половых клеток, а также в целом от соматических клеток обоих родителей.

Вступая в первое деление (редукционное) стадии созревания,

клетки имеют диплоидный набор хромосом, но увеличенное вдвое количество ДНК - 2n4c.

Так же как в обычном митозе, в профазе названного деления происходит компактизация (спирализация) материала хромосом. Вместе с тем в отличие от обычного митоза в нем наблюдается попарное сближение (конъюгация) гомологичных хромосом, которые тесно контактируют друг с другом взаимосоответствующими (гомологичными) участками. Результат конъюгации - образование пар хромосом или бивалентов, число которых n. Поскольку каждая хромосома, вступающая в мейоз, состоит из двух хроматид, то бивалент представлен четырьмя хромати-дами - n4c. В профазе I мейоза отмечается формирование веретена деления. К концу профазы степень спирализации хромосом в бивалентах возрастает, и они укорачиваются. Профаза первого деления мейоза занимает в сравнении с профазой обычного митоза больше времени. В ней выделяют несколько стадий.

Лептотена - хромосомы начинают процесс спирализации и становятся видимыми в микроскоп как тонкие и достаточно длинные нитчатые структуры.

Зиготена - соответствует началу конъюгации гомологичных хромосом, объединяемых в биваленты особыми структурами - синап-тонемальными комплексами (рис. 6.5). Если не все гомологичные хромосомы конъюгируют и остаются неспаренные хромосомы вне бивалентов, клетка гибнет апоптозом.

Пахитена - на фоне продолжающейся спира-лизации хромосом и их укорочения гомологичные хромосомы осуществляют кроссинговер или перекрест, заключающийся в обмене взаимосоответствующими (гомологичными) участками. Кроссинговер обеспечивает перекомбинацию отцовских и материнских аллелей в группах сцепления (гомологичных

Рис. 6.5. Образование бивалентов конъюги-рующими гомологичными хромосомами в зи-готене профазы I мейоза: 1 - центромера

хромосомах). Перекрест хромосом может происходить в различных местах хромосом, в связи с чем кроссинговер в каждом конкретном случае приводит к обмену разными участками генетического материала. Возможны образование нескольких перекрестов между двумя хроматидами (рис. 6.6) или обмен взаимосоответствующими фрагментами происходит между более чем двумя хроматидами бивалента (рис. 6.7). Все это повышает эффективность кроссинговера как механизма генотипиче-ской комбинативной изменчивости.

Диплотена - гомологичные хромосомы начинают отдаляться друг от друга, в первую очередь в области центромер, но сохраняют связь в местах произошедшего кроссинговера - хиазмы. Можно говорить о продольном расщеплении конъюгировавших гомологичных хромосом по всей их длине. В итоге каждая пара хромосом воспринимается как комплекс из четырех структур-хроматид (дочерних хромосом) - тетрада (рис. 6.8).

Диакинез - завершает профазу первого деления мейоза; гомологичные хромосомы остаются в составе бивалентов, однако их связь ограничивается только отдельными точками хиазм (рис. 6.9). Сами биваленты приобретают форму колец, восьмерок, крестов.

Рис. 6.6. Многократный кроссинговер между гомологичными хромосомами (схема): А-Е, а-е: локусы хромосом

Рис. 6.7. Множественный обмен участками между четырьмя хроматидами в па-хитене профазы I мейоза (схема): в кроссинговере могут участвовать все четыре хроматиды бивалента; латинскими буквами обозначены мутантные аллели, знаком «+» - аллели дикого типа (нормальные)

В период диакинеза прохождение клетками-предшественницами гамет редукционного деления приостанавливается (согласно более ранним представлениям, это происходит уже в диплотене), в связи с чем этот период называют стационарным. Деление возобновляется и

Рис. 6.8. Диплотена в профазе I мейоза кузнечика

Рис. 6.9. Диакинез в профазе I мейоза человека: стрелками показаны хиазмы

завершается в случае овуляции яйцеклетки (см. здесь же, ниже) и ее оплодотворения. Несмотря на характеристику периода диакинеза как стационарного, в нем активно происходят синтетические процессы. Эти процессы относятся к прогенезу (предзародышевому периоду онтогенеза), поскольку результаты этих процессов в виде синтезируемых

молекул и образуемых структур необходимы в основном для ранних стадий развития зародыша. Во-первых, речь идет об амплификации ДНК (см. также п. 2.4.3.4-а), которая заключается в образовании многочисленных копий генов рибосомных РНК - малой (18S) и большой (28S) субъединиц. Копии, став самостоятельными, преобразуются морфологически в ядрышки числом до нескольких тысяч. В таких ядрышках образуются субъединицы рибосом, которые используются для организации биосинтеза белков клетками зародыша. По завершении своей функции эти ядрышки перемещаются в цитоплазму и там разрушаются. В диакинезе амплифицируются гены 5S рибосомных РНК и тРНК. Эти РНК нарабатываются в необходимых (т.е. больших) количествах «впрок» для белковых синтезов тоже в эмбриогенезе. Благодаря амплификации генов время «наработки» требуемого для ранних стадий эмбриогенеза количества, например, рибосом у африканской шпорцевой лягушки (Xenopus laevis) сокращается с 500 лет до 3 мес. Во-вторых, в период диакинеза профазы I мейоза хромосомы приобретают вид «ламповых щеток» (см. п. 2.4.3.4-а), чем обеспечивается образование «впрок» для нужд зародыша определенного набора и(м)РНК. Описанные процессы наиболее полно изучены на бесхвостых амфибиях (лягушка), для которых характерна относительно поздняя (стадия га-струлы) активизация собственного генома. У млекопитающих, например, полное биоинформационное обеспечение процессов эмбриогенеза за счет функционально-генетической активности (транскрипции) собственных генов отмечается начиная со стадии 8 бластомеров.

В метафазе первого деления мейоза завершается формирование веретена деления. Нити этого веретена, связанные, в частности, с центромерами гомологичных хромосом, направляются к разным полюсам. Такое положение нитей обеспечивает закономерную ориентацию бивалентов в плоскости экватора веретена деления.

В анафазе первого деления мейоза благодаря ослаблению связей между гомологичными хромосомами в бивалентах и закономерной ориентации бивалентов в метафазной пластинке гомологи каждого бивалента расходятся к разным полюсам клетки. При этом гомологичные хромосомы отцовского и материнского происхождения каждой пары расходятся независимо друг от друга. В результате на полюсах клеток по завершении анафазы I стадии созревания мейоза собираются «случайные» ассоциации гомологичных хромосом отцовского и материнского происхождения. Независимое расхождение к полюсам в анафазе редукционного деления хромосом отцовского и материнского происхождения

разных бивалентов представляет собой, наряду с кроссинговером, еще один эффективный механизм генотипической комбинативной изменчивости. В этом случае происходит перекомбинация целых групп сцепления, причем с уже измененным в сравнении с хромосомами родителей вследствие прошедшего кроссинговера набором аллелей.

Благодаря особенностям анафазы, в результате телофазы первого деления мейоза образуются гаплоидные клетки. Однако хромосомы в таких клетках представлены двумя хроматидами, т.е. содержат две би-спирали ДНК - п2с.

Второе (эквационное) деление стадии созревания мейоза проходит без репликации ДНК и дает клетки с гаплоидным набором хромосом (к полюсам расходятся отдельные хроматиды), каждая из которых содержит одну биспираль ДНК - nc .

Особенность стадии созревания ово(оо)генеза в сравнении с одноименной стадией сперматогенеза заключается в асимметричном характере обоих мейотических делений. В результате в ово(оо)генезе из одного ово(оо)цита I порядка образуется одна функционально полноценная яйцеклетка и три так называемых редукционных или полярных тельца (одно - вследствие асимметричного деления яйцеклетки и два - вследствие симметричного деления редукционного тельца, возникшего при первом делении стадии созревания). Это мелкие клетки, которые гибнут (но: см. п. 6.2). По завершении первого деления мейоза и отделения первого полярного тельца клетка, которая даст зрелую яйцеклетку, приобретает название ово(оо)цит II порядка (вторичный овоцит).

Асимметричность делений способствует сохранению в одной женской гамете всего запаса питательных и иных, необходимых для развития нового организма, веществ.

По завершении стадии созревания сперматогенеза образуются четыре клетки, каждая из которых даст полноценный сперматозоид - пс.

Стадия созревания сперматогенеза завершается образованием клеток, называемых сперматидами. Сперматиды, чтобы стать функционально зрелыми сперматозоидами, проходят стадию формирования. На этой стадии хроматин уплотняется, изменяются форма и размеры ядра, формируется аппарат активного движения клетки - жгутик, образуется акросома (у представителей некоторых видов), перестраивается мито-хондриальный аппарат клетки, она теряет некоторую часть цитоплазмы.

Гаметогенез - высокопродуктивный процесс. За период половой жизни мужчина производит порядка 500 млрд сперматозоидов. На 5-м месяце внутриутробного развития в половой железе женского организ-

ма насчитывается 6-7 млн клеток-предшественниц яйцеклеток. К началу репродуктивного периода (постнатальный онтогенез) в яичниках присутствует примерно 100 000 ово(оо)цитов I порядка. От момента полового созревания женского организма до прекращения гаметогенеза (менопауза) в яичниках созревает 400-500 клеток-предшественниц яйцеклеток, готовых к оплодотворению. На протяжении репродуктивного периода постнатального онтогенеза в яичниках женщины под влиянием лютеинизирующего гормона гипофиза ежемесячно, как правило, одна женская гамета покидает яичник (овуляция - разрыв зрелого граафо-вого пузырька; яйцеклетка сначала попадает в свободную брюшную полость, а затем в маточную трубу, где может произойти оплодотворение) и, будучи оплодотворенной, возобновляет мейоз.

Виды, размножающиеся половым путем, характеризуются типичной структурой жизненного цикла, в котором происходит чередование гаплоидной и диплоидной фаз (см. п. 4.3.7.1 и рис. 4.47).

О живых организмах известно, что они дышат, питаются, размножаются и погибают, в этом состоит их биологическая функция. Но за счет чего это все происходит? За счет кирпичиков - клеток, которые тоже дышат, питаются, погибают и размножаются. Но как это происходит?

О строении клеток

Дом состоит из кирпичей, блоков или бревен. Так и организм можно разделить на элементарные единицы - клетки. Все разнообразие живых существ состоит именно из них, отличие лежит лишь в их количестве и видах. Из них состоят мышцы, костная ткань, кожа, все внутренние органы - настолько сильно они различаются в своем назначении. Но вне зависимости от того, какие функции выполняет та или иная клетка, все они устроены примерно одинаково. Прежде всего, у любого "кирпичика" есть оболочка и цитоплазма с расположенными в ней органоидами. Некоторые клетки не имеют ядра, их называют прокариотическими, однако все более или менее развитые организмы состоят из эукариотических, имеющих ядро, в котором хранится генетическая информация.

Органоиды, расположенные в цитоплазме, разнообразны и интересны, они выполняют важные функции. В клетках животного происхождения выделяют эндоплазматическую сеть, рибосомы, митохондрии, комплекс Гольджи, центриоли, лизосомы и двигательные элементы. С помощью них и происходят все процессы, которые обеспечивают функционирование организма.

Жизнедеятельность клеток

Как уже было сказано, все живое питается, дышит, размножается и умирает. Это утверждение справедливо как для цельных организмов, то есть людей, животных, растений и т. д., так и для клеток. Это удивительно, но каждый "кирпичик" обладает своей собственной жизнью. За счет своих органоидов он получает и перерабатывает питательные вещества, кислород, выводит все лишнее наружу. Сама цитоплазма и эндоплазматическая сеть выполняют транспортную функцию, митохондрии отвечают в том числе за дыхание, а также обеспечение энергией. Комплекс Гольджи занимается накоплением и выводом продуктов жизнедеятельности клетки. Остальные органоиды также участвуют в сложных процессах. И на определенном этапе своего начинает делиться, то есть происходит процесс размножения. Его стоит рассмотреть более подробно.

Процесс деления клеток

Размножение - одна из стадий развития живого организма. То же относится и к клеткам. На определенном этапе жизненного цикла они входят в состояние, когда становятся готовы к размножению. просто делятся надвое, удлиняясь, а потом образовывая перегородку. Этот процесс прост и практически полностью изучен на примере палочковидных бактерий.

С все обстоит несколько сложнее. Они размножаются тремя разными способами, которые называются амитоз, митоз и мейоз. Каждый из этих путей имеет свои особенности, он присущ определенному виду клеток. Амитоз

считается самым простым, его также называют прямым бинарным делением. При нем происходит удвоение молекулы ДНК. Однако веретено деления не образуется, так что этот способ является наиболее энергетически экономичным. Амитоз наблюдается у одноклеточных организмов, в то время как ткани многоклеточных размножаются с помощью других механизмов. Однако он иногда наблюдается и там, где снижена митотическая активность, например, в зрелых тканях.

Иногда прямое деление выделяют как разновидность митоза, однако некоторые ученые считают это отдельным механизмом. Протекание этого процесса даже в старых клетках происходит довольно редко. Далее будут рассмотрены мейоз и его фазы, процесс митоза, а также сходства и различия этих способов. По сравнению с простым делением они более сложны и совершенны. Особенно это касается редукционного деления, так что характеристика фаз мейоза будет наиболее подробной.

Важную роль в делении клетки имеют центриоли - специальные органоиды, как правило, располагающиеся рядом с комплексом Гольджи. Каждая такая структура состоит из 27 микротрубочек, сгруппированных по три. Вся конструкция имеет цилиндрическую форму. Центриоли непосредственно участвуют в формировании веретена деления клетки в процессе непрямого деления, о котором речь пойдет дальше.

Митоз

Продолжительность существования клеток различается. Некоторые живут пару дней, а какие-то можно отнести к долгожителям, поскольку их полная смена происходит очень редко. И практически все эти клетки размножаются с помощью митоза. У большинства из них между периодами деления проходит в среднем 10-24 часа. Сам митоз занимает небольшой период времени - у животных примерно 0,5-1

час, а у растений около 2-3. Этот механизм обеспечивает рост клеточной популяции и воспроизводство идентичных по своему генетическому наполнению единиц. Так соблюдается преемственность поколений на элементарном уровне. При этом число хромосом остается неизменным. Именно этот механизм является наиболее распространенным вариантом репродукции эукариотических клеток.

Значение этого вида деления велико - этот процесс помогает расти и регенерировать тканям, за счет чего происходит развитие всего организма. Кроме того, именно митоз лежит в основе бесполого размножения. И еще одна функция - перемещение клеток и замена уже отживших. Поэтому считать, что из-за того, что стадии мейоза сложнее, то и его роль гораздо выше, неправильно. Оба эти процесса выполняют разные функции и по-своему важны и незаменимы.

Митоз состоит из нескольких фаз, различающихся по своим морфологическим особенностям. Состояние, в котором клетка находится, будучи готовой к непрямому делению, называют интерфазой, а непосредственно процесс разделяется еще на 5 стадий, которые необходимо рассмотреть подробнее.

Фазы митоза

Находясь в интерфазе, клетка готовится к делению: происходит синтез ДНК и белков. Эта стадия подразделяется на еще несколько, в ходе которых происходит рост всей структуры и удвоение хромосом. В этом состоянии клетка пребывает до 90% всего жизненного цикла.

Остальные 10% занимает непосредственно деление, разделяющееся на 5 стадий. При митозе клеток растений также выделяется препрофаза, которая отсутствует во всех других случаях. Происходит образование новых структур, ядро перемещается к центру. Формируется препрофазная лента, размечающая предполагаемое место будущего деления.

Во все же остальных клетках процесс митоза проходит следующим образом:

Таблица 1

Наименование стадии Характеристика
Профаза Ядро увеличивается в размерах, хромосомы в нем спирализуются, становятся видимыми в микроскоп. В цитоплазме образуется веретено деления. Зачастую происходит распад ядрышка, однако это происходит не всегда. Содержание генетического материала в клетке остается неизменным.
Прометафаза Происходит распад ядерной мембраны. Хромосомы начинают активное, но беспорядочное движение. В конечном счете, все они приходят в плоскость метафазной пластинки. Этот этап длится до 20 минут.
Метафаза Хромосомы выстраиваются вдоль экваториальной плоскости веретена деления примерно на равном расстоянии от обоих полюсов. Численность микротрубочек, удерживающих всю конструкцию в стабильном состоянии, достигает максимума. Сестринские хроматиды отталкиваются друг от друга, сохраняя соединение лишь в центромере.
Анафаза Наиболее короткая стадия. Хроматиды разделяются и отталкиваются друг от друга в направлении ближайших полюсов. Этот процесс иногда выделяют отдельно и называют анафазой А. В дальнейшем происходит расхождение самих полюсов деления. В клетках некоторых простейших веретено деления при этом увеличивается в длину до 15 раз. И этот подэтап носит название анафаза В. Длительность и последовательность процессов на данной стадии вариабельна.
Телофаза После окончания расхождения к противоположным полюсам хроматиды останавливаются. Происходит деконденсация хромосом, то есть их увеличение в размерах. Начинается реконструкция ядерных оболочек будущих дочерних клеток. Микротрубочки веретена деления исчезают. Формируются ядра, возобновляется синтез РНК.

После завершения деления генетической информации происходит цитокинез или цитотомия. Под этим термином подразумевается образование тел дочерних клеток из тела материнской. При этом органоиды, как правило, делятся пополам, хотя возможны исключения, образуется перегородка. Цитокинез не выделяют в отдельную фазу, как правило, рассматривая его в рамках телофазы.

Итак, в самых интересных процессах задействованы хромосомы, которые несут генетическую информацию. Что же это такое и почему они так важны?

О хромосомах

Еще не имея ни малейшего понятия о генетике, люди знали, что многие качества потомства зависят от родителей. С развитием биологии стало очевидно, что информация о том или ином организме хранится в каждой клетке, и часть ее передается будущим поколениям.

В конце 19 века были открыты хромосомы - структуры, состоящие из длинной

молекулы ДНК. Это стало возможно с совершенствованием микроскопов, и даже сейчас рассмотреть их можно лишь в период деления. Чаще всего открытие приписывают немецкому ученому В. Флемингу, который не только упорядочил все то, что было изучено до него, но и внес свой вклад: он одним из первых исследовал клеточную структуру, мейоз и его фазы, а также ввел термин "митоз". Само понятие "хромосома" было предложено чуть позже другим ученым - немецким гистологом Г. Вальдейером.

Структура хромосом в момент, когда они четко видны, довольно проста - они представляют собой две хроматиды, соединенные посередине центромерой. Она является специфической последовательностью нуклеотидов и играет важную роль в процессе размножения клеток. В конечном итоге хромосома внешне в профазе и метафазе, когда ее можно лучше всего разглядеть, напоминается букву Х.

В 1900 году были открыты описывающие принципы передачи наследственных признаков. Тогда стало окончательно ясно, что хромосомы - это именно то, с помощью чего передается генетическая информация. В дальнейшем учеными был проведен ряд экспериментов, доказывающих это. И тогда предметом изучения стало и то влияние, котрое на них оказывает деление клетки.

Мейоз

В отличие от митоза этот механизм в итоге приводит к образованию двух клеток с набором хромосом в 2 раза меньше исходного. Таким образом процесс мейоза служит переходом от диплоидной фазы к гаплоидной, причем в первую очередь

речь идет о делении ядра, а уже во вторую - всей клетки. Восстановление же полного набора хромосом происходит в результате дальнейшего слияния гамет. В связи с уменьшением количества хромосом этот метод еще определяют как редукционное деление клетки.

Мейоз и его фазы изучали такие известные ученые, как В. Флеминг, Э. Страсбургрер, В. И. Беляев и другие. Исследование этого процесса в клетках как растений, так и животных, продолжается до сих пор - настолько он сложен. Изначально этот процесс считался вариантом митоза, однако практически сразу после открытия он все-таки был выделен как отдельный механизм. Характеристика мейоза и его теоретическое значение были впервые в достаточной степени описаны Августом Вайсманом еще в 1887 году. С тех пор изучение процесса редукционного деления сильно продвинулось, но сделанные выводы пока не были опровергнуты.

Мейоз не следует путать с гаметогенезом, хотя оба эти процесса тесно связаны. В образовании половых клеток участвуют оба механизма, однако между ними есть ряд серьезных отличий. Мейоз происходит в две стадии деления, каждая из которых состоит из 4 основных фаз, между ними есть короткий перерыв. Длительность всего процесса зависит от количества ДНК в ядре и структуры хромосомной организации. В целом он гораздо более продолжителен в сравнении с митозом.

Кстати, одна из основных причин значительного видового разнообразия - именно мейоз. Набор хромосом в результате редукционного деления разбивается надвое, так что появляются новые комбинации генов, в первую очередь потенциально повышающие приспособляемость и адаптивность организмов, в итоге получающих те или иные наборы признаков и качеств.

Фазы мейоза

Как уже было упомянуто, редукционное клеточное деление условно делят на две стадии. Каждая из этих стадий разделена еще на 4. И первая фаза мейоза - профаза I в свою очередь подразделяется еще на 5 отдельных этапов. Поскольку изучение этого процесса продолжается, в дальнейшем могут быть выделены и другие. Сейчас же различают следующие фазы мейоза:

Таблица 2

Наименование стадии Характеристика
Первое деление (редукционное)

Профаза I

лептотена По-другому этот этап называют стадией тонких нитей. Хромосомы выглядят в микроскопе как спутанный клубок. Иногда выделяют пролептотену, когда отдельные ниточки еще сложно разглядеть.
зиготена Стадия сливающихся нитей. Гомологичные, то есть сходные между собой по морфологии и в генетическом отношении, пары хромосом сливаются. В процессе слияния, то есть конъюгации, образуются биваленты, или тетрады. Так называют довольно устойчивые комплексы из пар хромосом.
пахитена Стадия толстых нитей. На этом этапе хромосомы спирализуются и завершается репликация ДНК, образуются хиазмы - точки контакта отдельных частей хромосом - хроматид. Происходит процесс кроссинговера. Хромосомы перекрещиваются и обмениваются некоторыми участками генетической информации.
диплотена Также называется стадией двойных нитей. Гомологичные хромосомы в бивалентах отталкиваются друг от друга и остаются связанными только в хиазмах.
диакинез На этой стадии биваленты расходятся на периферии ядра.
Метафаза I Оболочка ядра разрушается, формируется веретено деления. Биваленты перемещаются к центру клетки и выстраиваются вдоль экваториальной плоскости.
Анафаза I Биваленты распадаются, после чего каждая хромосома из пары перемещается к ближайшему полюсу клетки. Разделения на хроматиды не происходит.
Телофаза I Завершается процесс расхождения хромосом. Происходит формирование отдельных ядер дочерних клеток, каждое - с гаплоидным набором. Хромосомы деспирализуются, образуется ядерная оболочка. Иногда наблюдается цитокинез, то есть деление самого тела клетки.
Второе деление (эквационное)
Профаза II Происходит конденсация хромосом, клеточный центр делится. Разрушается ядерная оболочка. Образуется веретено деления, перпендикулярное первому.
Метафаза II В каждой из дочерних клеток хромосомы выстраиваются вдоль экватора. Каждая из них состоит из двух хроматид.
Анафаза II Каждая хромосома делится на хроматиды. Эти части расходятся к противоположным полюсам.
Телофаза II Полученные однохроматидные хромосомы деспирализуются. Образуется ядерная оболочка.

Итак, очевидно, что фазы деления мейоза гораздо сложнее, чем процесс митоза. Но, как уже было упомянуто, это не умаляет биологической роли непрямого деления, поскольку они выполняют разные функции.

Кстати, мейоз и его фазы наблюдаются и у некоторых простейших. Однако, как правило, он включает в себя лишь одно деление. Предполагается, что такая одноступенчатая форма позднее развилась в современную, двухступенчатую.

Отличия и сходства митоза и мейоза

На первый взгляд кажется, что различия двух этих процессов очевидны, ведь это совершенно разные механизмы. Однако при более глубоком анализе оказывается, что различия митоза и мейоза не так уж глобальны, в конце концов они приводят к образованию новых клеток.

Прежде всего стоит поговорить о том, что есть общего у этих механизмов. По сути совпадения всего два: в одинаковой последовательности фаз, а также в том, что

перед обоими видами деления происходит репликация ДНК. Хотя, что касается мейоза, до начала профазы I этот процесс не завершается полностью, заканчиваясь на одной из первых подстадий. А последовательность фаз хоть и аналогична, но, по сути, происходящие в них события совпадают не полностью. Так что сходства митоза и мейоза не так уж и многочисленны.

Различий же гораздо больше. Прежде всего, митоз происходит в в то время как мейоз тесно связан с образованием половых клеток и спорогенезом. В самих фазах процессы не полностью совпадают. Например, кроссинговер в митозе происходит во время интерфазы, и то не всегда. Во втором же случае на этот процесс приходится анафаза мейоза. в непрямом делении обычно не осуществляется, а значит, он не играет никакой роли в эволюционном развитии организма и поддержании внутривидового разнообразия. Количество получившихся в результате митоза клеток - две, и они в генетическом смысле идентичны материнской и обладают диплоидным набором хромосом. Во время редукционного деления все иначе. Результат мейоза - 4 отличающихся от материнской. Кроме того, оба механизма значительно различаются по длительности, и это связано не только с различием в количестве ступеней деления, но и длительностью каждого из этапов. Например, первая профаза мейоза длится намного дольше, ведь в это время происходит конъюгация хромосом и кроссинговер. Именно поэтому ее дополнительно делят на несколько стадий.

В общем и целом сходства митоза и мейоза достаточно незначительны по сравнению с их отличиями друг от друга. Перепутать эти процессы практически невозможно. Поэтому сейчас даже несколько удивляет то, что редукционное деление раньше считалось разновидностью митоза.

Последствия мейоза

Как уже было упомянуто, после окончания процесса редукционного деления, вместо материнской клетки с диплоидным набором хромосом образуются четыре гаплоидных. И если говорить про различия митоза и мейоза - это самое значительное. Восстановление необходимого количества, если речь идет о половых клетках, происходит после оплодотворения. Таким образом, с каждым новым поколением не происходит удвоения количества хромосом.

Кроме того, во время мейоза происходит рекомбинация генов. В процессе размножения это приводит к поддержанию внутривидового разнообразия. Так что тот факт, что даже родные братья и сестры порой сильно отличаются друг от друга - именно результат мейоза.

Кстати, стерильность некоторых гибридов в животном мире - тоже проблема редукционного деления. Дело в том, что хромосомы родителей, принадлежащих к разным видам, не могут вступить в конъюгацию, а значит, процесс образования полноценных жизнеспособных половых клеток невозможен. Таким образом, именно мейоз лежит в основе эволюционного развития животных, растений и других организмов.