Суть биотестирования и предъявляемые к его методам требования. Исследование качества воды методом биотестирования

Задачи и приемы биотестирования качества среды

В выявлении антропогенного загрязнения среды наряду с хи­мико-аналитическими методами находят применение приемы, основанные на оценке состояния отдельных особей, подвергаю­щихся воздействию загрязненной среды, а также их органов, тка­ней и клеток. Их применение вызвано технической усложненно­стью и ограниченностью информации, которую могут предоста­вить химические методы. Кроме того, гидрохимические и хими­ко-аналитические методы могут оказаться неэффективными из-за недостаточно высокой их чувствительности. Живые организмы способны воспринимать более низкие концентрации веществ, чем любой аналитический датчик, в связи с чем биота может быть подвержена токсическим воздействиям, не регистрируемым тех­ническими средствами.

Как было показано, биоиндикация предусматривает вы­явление уже состоявшегося или накапливающегося загрязнения по индикаторным видам живых организмов и экологическим ха­рактеристикам сообществ организмов. Пристальное внимание в настоящее время уделяется приемам биотестирования, т.е. исполь­зования в контролируемых условиях биологических объектов в качестве средства выявления суммарной токсичности среды. Био­тестирование представляет собой методический прием, основан­ный на оценке действия фактора среды, в том числе и токсиче­ского, на организм, его отдельную функцию или систему органов и тканей.

Кроме выбора биотеста существенную роль играет выбор тест реакции - того параметра организма, который измеряется при тестировании.

Наиболее информативны интегральные параметры, характе­ризующие общее состояние живой системы соответствующего уровня. Для отдельных организмов к интегральным параметрам обычно относят характеристики выживаемости, роста, плодови­тости, тогда как физиологические, биохимические, гистологи­ческие и прочие параметры относят к частным. Для популяций интегральными параметрами являются численность и биомасса, а для экосистем - характеристики видового состава, активнос­ти продукции и деструкции органического вещества.



С увеличением интегральности тест - реакции повышается «эко­логический реализм» теста, но обычно снижаются его оператив­ность и чувствительность. Функциональные параметры оказыва­ются более лабильными, чем структурные, а параметры клеточ­ного и молекулярного уровней проигрывают в отношении эколо­гической информативности, но выигрывают в отношении чув­ствительности, оперативности и воспроизводимости.

Суть методологии биотестирования

Предлагаемая система биомониторинга представляет собой ком­плекс различных подходов для оценки состояния разных организ­мов, находящихся под воздействием комплекса как естественных, так и антропогенных факторов. Фундаментальным показателем их состояния является эффективность физиологических процессов, обеспечивающих нормальное развитие организма. В оптимальных условиях организм реагирует на воздействие среды посредством сложной физиологической системы буферных гомеостатических механизмов. Эти механизмы поддерживают оптимальное протека­ние процессов развития. Под воздействием неблагоприятных усло­вий механизмы поддержания гомеостаза могут быть нарушены, что приводит к состоянию стресса. Такие нарушения могут происхо­дить до появления изменений обычно используемых параметров жизнеспособности. Таким образом, методология биотестирования, основанная на исследовании эффективности гомеостатических ме­ханизмов, позволяет уловить присутствие стрессирующего воздей­ствия раньше, чем многие обычно используемые методы.

Требования к методам биотестирования

Для того чтобы быть пригодными для решения комплекса со­временных задач, методы биотестирования, используемые для оценки среды, должны соответствовать следующим требованиям: быть применимыми для оценки любых экологических изменений среды обитания живых организмов; характеризовать наиболее об­щие и важные параметры жизнедеятельности биоты; быть доста­точно чувствительными для выявления даже начальных обрати­мых экологических изменений; быть адекватными для любого вида живых существ и любого типа воздействия; быть удобными не только для лабораторного моделирования, но также и для иссле­дований в природе; быть достаточно простыми и не слишком до­рогостоящими для широкого использования.

Одним из наиболее важных требований при оценке состояния среды является чувствительность применяемых методов. Потреб­ность в таких методах особенно возрастает в настоящее время, когда в силу повышенного внимания к проблемам охраны приро­ды и в связи с развитием природоохранных мероприятий стано­вится необходимым оценивать не только и не столько существен­ные, как правило, уже необратимые изменения в среде, но пер­воначальные незначительные отклонения, когда еще возможно вернуть систему в прежнее нормальное состояние.

Другое важное требование - универсальность как в отноше­нии физического, химического или биологического оцениваемо­го воздействия, так и типа экосистем и вида живых существ, по отношению к которым такая оценка проводится. Причем, это не­обходимо как в отношении отдельных агентов, так и кумулятив­ного воздействия любого их сочетания (включая весь комплекс как антропогенных, так и естественных факторов).

Система должна быть относительно простой и доступной, при­годной для широкого использования. В настоящее время существует ряд современных молекулярно-биологических тестов качества сре­ды, но в силу высокой технологической сложности и стоимости их применение оказывается ограниченным. При этом возникает вопрос: нужно ли прибегать к таким сложным методам при реше­нии общей задачи мониторинга состояния среды и нельзя ли по­лучить сходную информацию более доступным способом.

Основные подходы биотестирования: биохемический подход, генетический подход, морфологический подход, физиологический подход, имуннологический подход.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

«Я утверждаю, что все рождающееся от земли живет за счет земной влаги,

и в каком состоянии находится эта влага, в таком

состоянии находится и растение»

Гиппократ

Ведение

Эти слова, сказанные Гиппократом еще в глубокой древности, не потеряли свою актуальность и сейчас. В наше время общество осознало опасность токсического загрязнения поверхностных вод и пришло к необходимости введения в практику мониторинга совершенно новых нетрадиционных подходов, в частности биологического тестирования. Биотестирование - исследование влияния различных веществ на живые организмы. Широкое внедрение методов биотестирования в практику оценки качества вод - настоятельная необходимость времени, так как никакая даже самая современная аналитическая химия не даст полной информации о токсичности среды. К тому же анализ существующих методов оценки качества природных вод показал, что биотестирование - наиболее точный, быстрый и дешёвый способ охраны природных вод.

В своем исследовании с помощью данного метода мы решили выяснить, в каком же состоянии находится вода нашего города, которую мы пьем и которой поливаем растения, используемые нами в пищу.

Гипотеза: с помощью методов биотестирования можно оценить степень загрязнения

природных вод.

Объект исследования: степень загрязнения природных вод г.Пятигорска.

Предмет исследования: однолетние растения семейства Злаковые (Gramíneae): овёс, ячмень, пшеница, однолетние растениясемейства Капустные, или Крестоцветные (Brassicaceae) - кресс-салат и редис.

Цель данной работы - оценить загрязнение природных вод г.Пятигорска по проросткам различных растений-индикаторов.

Задачи:

    провести анализ теоретических подходов в изучении данной темы;

    освоить методику биотестирования;

    установить сезонную динамику токсичности природных вод г.Пятигорска;

    определить зависимость развития тест-растений от токсичности природных вод.

1. Литературный обзор.

    1. Методы биотестирования.

Одной из главных причин негативных последствий антропогенного загрязнения природных сред является токсичность загрязняющих веществ для биоты. Именно присутствие токсикантов в окружающей среде приводит к гибели всего живого, выпадению из состава сообществ организмов обитателей чистых зон и замене их эврибионтными видами. Существуют различные физические и химические методы определения токсичности окружающей среды, но в последнее время стали широко использоваться и биологические методы позволяющие провести оценку состояния живых организмов (Приложение 1).

Ведь говоря о загрязнении воды, почвы, атмосферы, об их токсичности мы имеем в виду, то насколько они благоприятны для обитания в них живых организмов, для здоровья человека.К числу наиболее радикальных приёмов относятся методы токсикологического биотестирования. Под биотестом понимается испытание в строго определённых условиях действия вещества или комплекса веществ на водные организмы посредством регистрации изменений того или иного биологического показателя исследуемого объекта по сравнению с контролем. Исследуемые организмы называются тест-объетами, а опыт биотестированием (Лысенко, 1996). Этот дешевый и универсальный метод в последние годы широко используется во всем мире для оценки качества объектов окружающей среды. В России с 1996 года начат эксперимент по внедрению методов биотестирования сточных вод, сбрасываемых в природные водоемы и подаваемых на сооружения биологической очистки. С помощью биотестирования можно получить данные о токсичности конкретной пробы, загрязненной химическими веществами антропогенного или природного происхождения. Этот метод позволяет дать реальную оценку токсичности свойств какой-либо среды, обусловленной присутствием комплекса загрязняющих веществ и их метаболитов. Живые организмы всегда в той или иной степени реагируют на изменение окружающей среды, но в ряде случаев это нельзя выявить физическими или химическими методами, так как разрешающие возможности приборов или химических анализов ограничены. Чувствительные же организмы - индикаторы реагируют не только на малые дозы экологического фактора, но и дают адекватную реакцию на воздействие комплекса факторов (Груздева, 2002). .

Биотестирование позволяет установить районы и источники загрязнения. В качестве тест-объектов используются бактерии, водоросли, высшие растения, пиявки, дафнии, моллюски, рыбы и другие организмы. В порядке возрастания толерантности к загрязнениям организмы располагаются в следующий ряд: грибы, лишайники, хвойные, травянистые растения, листопадные растения. Каждый из них имеет преимущества, но, ни один не является универсальным, самым чувствительным ко всем веществам. Для гарантированного выявления присутствия в природных водах токсического агента неизвестного химического состава нужно использовать набор тест-объектов, представляющих различные группы организмов. При выборе тест-организмов исходят из видовой токсичности возможных загрязнителей, особенностей водоема и требований водопотребителей. Для тест-организмов могут быть выделены частные интегральные тест-функции. Интегральные параметры характеризуют состояние системы наиболее обобщённо. Для организмов к интегральным относят характеристики выживаемости, роста, плодовитости. Частными для организма, например, могут быть физиологические, биохимические и гистологические параметры.

    1. Биотестирование природных вод.

Биотестирование природных вод стало широко применяться в научно- исследовательских работах с начала 80-х годов (Приложение 2). Это объясняется существенным увеличением уровня загрязнения водных объектов и надеждами специалистов на то, что биотестирование сможет хотя бы частично заменить химический анализ вод, так как в водные объекты ежегодно сбрасывается около 55 км 3 сточных вод, из которых 20 км 3 загрязнен. (Степановских, 2001). До нормативного качества очищается лишь около 10% вод требующих очистки (Яблоков, 2005).

В 1991г. биотестирование введено как обязательный элемент контроля качества поверхностных вод, что предусмотрено «Правилами охраны поверхностных вод» (1991). Показатели биотестирования природных вод включены в перечень показателей для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия (Туманов, Постнов, 1983). Методы биотестирования представляют собой характеристику степени воздействия на водные биоценозы. Так, А.М. Гродзинский Д.М. Гродзинский (1973) описывают ряд биологических проб для тестирования токсичности природных вод. Согласно принятому определению, биотестирование воды - это оценка качества воды по ответным реакциям организмов, являющихся тест-объектами. Тест на прорастание семян применяется для установления воздействия различных физиологически активных веществ. В качестве индикаторов токсичности используются семена сельскохозяйственных растений. Среди сельскохозяйственных культур наиболее чувствительны салат, люцерна, злаковые, крестоцветные, а к нечувствительным видам относят кукурузу, виноград, розоцветные, подорожник (Рамад,1981). Методы биотестирования должны отвечать следующим требованиям: относительная быстрота проведения, получение достаточно точных и воспроизводимых результатов, наличие, пригодных для индикации объектов в большом количестве. В настоящее время хорошо известны методы биотестирования, ориентированные на определение токсичности водной среды, обусловленной присутствием определенных групп химических соединений, в частности фосфорорганических. Наиболее апробирован на природных водах ферментативный метод В.И. Козловской.

    1. Достоинства методов биотестирования.

Главные достоинства биотестирования - простота и доступность приемов ее постановки, высокая чувствительность тест-организмов к минимальным концентрациям токсических агентов, быстрота, отсутствие надобности в дорогостоящих реактивах и оборудовании. По мнению ряда авторов ни один из отдельно взятых организмов не может служить универсальным тест-объектом к веществам различной химической природы, следовательно, для гарантированного выявления в среде токсичного агента должен использоваться набор биотестов (Брагинский и др. 1979; Лесников, 1983; Филенко, 1989).

Методами биотестирования выявляется токсичность, которая является интегральным показателем загрязнения природных сред. Как и все интегральные показатели, они имеют тот недостаток, что не раскрывают индивидуальные загрязняющие вещества, присутствующие в пробе. Работ по биотестированию водной среды опубликовано множество, но они были сделаны главным образом с целью оценки токсичности вновь синтезируемых химических препаратов, препаратов, приобретаемых по импорту, а также при разработке регламентов на химические соединения. Гораздо меньше публикаций по биотестированию сточных вод и ещё меньше - по биотестированию природных вод (Никаноров, Хоружая, 2001).

Методы биоиндикации, позволяющие изучать влияние техногенных загрязнителей на растительные и животные организмы на неживую природу являются наиболее доступными. Биоиндикация основана на тесной взаимосвязи живых организмов с условиями среды, в которой они обитают. Изменения этих условий, например повышение солености или рН воды может привести к исчезновению определенных видов организмов, наиболее чувствительных к этим показателям и появлению других, для которых такая среда будет оптимальной.

Существуют разные биологические индикаторы. О наличии некоторых загрязнителей можно судить по внешним признакам растений и животных. Благодаря «памяти» этих организмов, можно узнать и о роли тех факторов, которые в настоящее время уже не действуют. Например, появление черных пятен на листьях липы рассказывает о том, что в зимнее время дворники чрезмерно увлекались посыпанием снега солью для ускорения его таяния, о выбросах сернистого газа расскажут пятна на листьях подорожника большого. По ширине годичных колец сосен в окрестностях химического предприятия можно определить, в какие годы завод особенно сильно загрязнял среду. В годы сильного загрязнения атмосферы закладываются более тонкие кольца. По высоте некоторых растений можно судить о концентрации солей в воде. Так, например, тростник может достигать высоты 4 м, но если содержание солей в воде высокое — это растение не вырастет более чем на 0,5 м. Индикаторами загрязнения атмосферы являются некоторые мхи и лишайники. Например, при анализе лишайников в Швеции было установлено появление радиоактивной пыли от Чернобыльской АЭС. Существуют специальные живые приборы — бриометры — маленькие коробочки со мхами определенных видов, по которым определяют режим задымления атмосферы.

    Практическая часть.

Исследования проводились по методикам , предложенным А.И. Федоровой и А.Н. Никольской в «Практикуме по экологии и охране окружающей среды», 2003, а также в учебном пособии для вузов «Экологический мониторинг» под редакцией Т.Я. Ашихминой, 2005.

Работа по изучению метода биотестирования токсичности природных вод по проросткам растений индикаторов выполнялась в течение 2015 года.

Все исследования по теме проводились в лаборатории кабинетов химии и биологии МБОУ СОШ №5 г. Пятигорска в дневное время, при сочетании искусственного и естественного освещения в стандартных, оптимальных для тест-растений условиях. Оценить уровень загрязнения водоемов можно, используя тест на прорастание семян. Такое тестирование проводится как предварительное для выявления особенно загрязненных водоемов с целью последующего химического анализа. В качестве тест-растений были использованы проростки высших растений: пшеницы, ячменя, овса, кресс-салата, редиса. Предлагаемый метод биологической оценки токсичности природных вод по проросткам растений индикаторов проводился в двух вариантах:

1.Полив проростков тест-растений испытуемой водой.

2. Накапывание испытуемого раствора между семядолями двудольных растений.

В качестве тест-растений в первом варианте применяли семена пшеницы, овса, ячменя. Во втором варианте были использованы только проростки двудольных растений: кресс-салата, редиса.

Из всех используемых в исследованиях растений кресс-салат обладает повышенной чувствительностью к загрязнению воды тяжелыми металлами. Этот биоиндикатор отличается быстрым прорастанием семян и почти 100% всхожестью, которая заметно уменьшается в присутствии загрязнителей. Кроме того, побеги и корни кресс-салата под действием загрязнителей подвергаются заметным морфологическим изменениям (задержка роста и искривление побегов, уменьшение длины и массы корней) (Голубкина, 2008). . С целью профилактики перед проращиванием семена протравливали. Сухие семена погружали в 1%-ный раствор марганцовокислого калия на 0,5 часа, а затем промывали дистиллированной водой, используя два слоя марли, обсушивали на фильтровальной бумаге на воздухе.

(1 вариант).

За 2-3 дня до опытов (сроки прорастания семян выяснялись заранее) семена тестовых объектов, пшеницы, овса, ячменя, замачивались на сутки в воде. Затем раскладывались пинцетом зародышем вверх (в одном направлении) в кювету, на дно которой был уложен слой гигроскопической ваты, а сверху - два слоя фильтровальной бумаги. Система увлажнялась водопроводной водой до полной влагоёмкости. Для этого вода наливалась под вату, а после её впитывания удалялся избыток. Кювета накрывалась плёнкой, края плёнки подгибались под кювету. Проращивание производилось при температуре +25 0 С - +26 0 С до размера основной массы проростков 10-15мм и появления корней, после чего ростки разделяют на фракции по длине.

В стаканчики помещают одинаковое количество промытого и покалённого песка, в каждый стаканчик высаживают по 10 одинаковых проростков тест-растений. Песок поливают сверху одинаковым количеством испытуемой воды из разных водоёмов. Повторность - трёхкратная. Контроль - полив отстоянной и очищенной водопроводной водой. После достижения ростками высоты 8-10см их выкапывают, обсушивают фильтровальной бумагой, разделяют бритвой на части (стебель, корни), измеряют и взвешивают. Данные обрабатывают статистически, выражают в процентах к контролю.

    1. Метод полива проростков тест-растений испытуемой водой

(2 вариант).

Воду, взятую из различных источников, концентрируют упариванием в 10 раз, хранят в холодильнике. Стаканчики наполняют одинаковым количеством промытого и прокалённого песка, вставляют стеклянную трубочку до дна, через которую производят полив, отстоянной водопроводной водой. 18-20 штук всхожих семян (кресс-салат, редис) высевают на небольшую глубину. После того, как ростки взойдут и раскроются семядоли, в стаканчиках оставляют по 10 одинаковых растений, остальные выщипывают пинцетом. Полив субстрата для выращивания производят одинаковым количеством воды через трубочку, используя воронку из фольги. Через 2-3 недели осторожно выкапывают проростки, промывают, обсушивают фильтровальной бумагой, измеряют и взвешивают отдельно надземную часть и корни. Данные обрабатывают статистически, выражают в процентах к контролю.

    1. Развитие проростков тест-растений при поливе их испытуемой водой (весенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

2. Новопятигорское озеро

4. Контроль -

водопроводная вода

Токсическое действие пробы считается доказанным, если в эксперименте зафиксирован токсический эффект торможения роста проростков, а именно их корней на 50 % (Груздева, 2002).

Из данных таблицы 1 видно, что наиболее благоприятной для роста и развития проростков тест-растений является проба № 2 - Новопятигорское озеро. Орловка. По степени роста и вегетативной мощности проростков можно сделать вывод о том, что в пробе № 1 (река Подкумок) наблюдается торможение роста корней проростков больше чем на 50 % по сравнению с контролем, следовательно, токсичность пробы № 1 высокая. В пробе № 3 (река Юца), наблюдается торможение роста и надземной части и корней проростков больше чем в пробе №1, поэтому токсичность пробы № 3 очень высокая.

2.4. Развитие проростков тест-растений при поливе их испытуемой водой

(осенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

2. Новопятигор-ское озеро

3. Река Юца

4. Контроль -

водопроводная вода

Из данных, представленных в таблице 2, видно, что в осенний период в большей степени наблюдается угнетение развития проростков в пробе № 3 - река Юца, торможение роста корней проростков в данной пробе более чем на 60% по сравнению с контролем. В пробах № 1 - река Подкумок и №2 - Новопятигорское озеро, также отмечается снижение в развитии вегетативных органов проростков.

В ходе последующей обработки материалов, по результатам, полученным в первом варианте исследований, были построены диаграммы биотестовых испытаний.

Рис. 1 Соотношение длины проростков тест-растений при поливе их испытуемой водой (весна, осень 2015г.)

Рис. 2 Соотношение массы проростков тест-растений при поливе их испытуемой водой (весна, осень 2015г.)

Таким образом, из результатов, полученных в 1 варианте, можно сделать выводы:

    токсичность природных вод в весенний период наиболее высокая в реках Подкумок и Юца;

    наиболее чувствительны к токсичности воды проростки овса.

2.5. Развитие проростков тест-растений (весенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

Кресс-салат

2. Новопятигор-ское озеро

Кресс-салат

3. Река Юца

Кресс-салат

4. Контроль -

водопроводная вода

Кресс-салат

По изменению надземной массы в опытных пробах по сравнению с контролем можно судить о токсичности данной пробы воды. Сильное угнетение надземной части растений тест-растений, более 20% по сравнению с контролем, показывает высокую степень токсичности пробы воды (Голубкина, 2008). Высокая токсичность наблюдается в пробе №3 - река Юца. У проростков наблюдается торможение развития надземной части на 53-55% больше чем в контрольной пробе. Пробы №1 - река Подкумок и №2 - Новопятигорское озеро также токсичны, но в меньшей степени.

2.6.Развитие проростков тест-растений (осенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

Кресс-салат

2. Новопятигор-ское озеро

Кресс-салат

3. Река Юца

Кресс-салат

4. Контроль -

водопроводная вода

Кресс-салат

Из данных таблицы 4 видно, наиболее токсична проба №3 - река Юца. Токсична проба воды №1 - река Подкумок. Проба №2 - Новопятигорское озеро имеет очень слабую токсичность.

По результатам, полученным во 2 варианте исследований, были построены диаграммы биотестовых испытаний.

Рис. 3 Соотношение длины проростков испытуемой (весна, осень 2015г.)

Рис.4 Соотношение массы проростков испытуемой водой (весна, осень 2015г.)

По результатам исследований можно сделать выводы:

    соотношение длины и массы проростков тест-растений зависит от токсичности природных вод, чем больше токсичных веществ в пробе воды, тем меньше длина и масса проростков тест-растений;

    наибольшую чувствительность к токсинам проявляет растение кресс-салата.

    токсичность природных вод выше в весенний период в пробах воды взятых из рек Подкумок и Юца;

    менее токсична проба воды из Новопятигорского озера.

В результате проведённых исследований была освоена методика биотестирования токсичности природных вод, проведен анализ теоретических подходов в изучении данной темы и сделаны следующие выводы:

    Выяснили, что токсичность природных вод водоемов г. Пятигорска изменяется по сезонам: в весенний период она больше, в осенний период токсичность уменьшается;

    Установили, что развитие и рост проростков тест-растений напрямую зависят от степени токсичности природных вод, наибольшую чувствительность к токсинам проявляют растения кресс-салата и овса;

    Определили, что при поливе проростков тест растений испытуемой водой в большей степени угнетается развитие корневой системы;

    Опытным путем установили, что наибольшей токсичностью характеризуются пробы воды рек Юца и Подкумок, менее токсична вода из Новопятигорскаго озера.

Таким образом, гипотеза о возможности оценки с помощью методов биотестирования степени загрязнения природных вод нашла свое подтверждение. На данном этапе работы в результате проведенного эксперимента без специального дорогостоящего оборудования, приборов и реактивов были установлены уровни загрязнения воды г. Пятигорска.

Наша работа может иметь продолжение в следующем учебном году. Для устранения погрешностей результата, на базе лаборатории можно провести химический анализ воды и еще раз проанализировать ситуацию.

Данный метод анализа природных вод можно рекомендовать садоводам-любителям и всем интересующимся данной проблемой жителям нашего города.

    Список литературы.

    Вишнякова В.Ф. Экология Ставропольского края. - Ставрополь, 2000.

    Голубкина Н.А. Лабораторный практикум по экологии.-М.,2008.

    Гродзинский А.М., Гродзинский Д.М. Краткий справочник по физиологии растений. - Киев; Наукова думка, 1973.

    Груздева Л.П. биоиндикация качества природных вод. // Биология в школе. 2002, № 6 с. 10

    Денисова С.И. Полевая практика по экологии. - Минск, 1999.

    Кулеш В.Ф., В.В. Маврищев Практикум по экологии. Минск, 2007.

    Лысенко Н.Л. Биоиндикация и биотестирование водных экосистем.// Биология в школе. 1996, № 5 с.12

    Никаноров А.М.,. Хоружая Т.А. Экология. - М., Приор, 2001.

    Рамад Ф. Основы прикладной экологии. - Л.: Гидрометеоиздат, 1981.

    Трифонова Т.А., Селиванова Н.В., Мищенко Н.В. Прикладная экология. М., Академический проект.,2007.

    Савельева В.В. География Ставропольского края. - Ставрополь, 2003.

    Степановских А.С. Охрана окружающей среды.- М.: ЮНИТИ-ДАНА, 2001.

    Теоретические вопросы биотестирования. - Волгоград, 1983.

    Фёдорова А.И., Никольская А.Н. Практикум по экологии и охране окружающей среды. - М., Владос, 2001.

    Филенко О.Ф. Методы биотестирования качества водной среды. - М.: МГУ, 1989

    Яблоков А.В. Экология России: состояние перспективы. 2005.

Приложение 1

Таблица 1

Основные характеристики методов оценки токсичности вод

Химические методы

Биологические методы

Биоиндикация

Биотестирование

Тип индикации

Индикация воздействия

Индикация отклика

Индикация воздействия

Объект анализа

Водные сообщества

Цель анализа

Измерение концентрации химических веществ

Оценка состояния природных сообществ

Интегральная оценка токсичности на тест-организмах

Показатели токсичности

Превышение установленных регламентов

Негативные изменения в сообществах

Развитие патологических (вплоть до гибели) изменений у тест-организмов

Регламенты

Предельно допустимые концентрации

Не установлены

Отсутствие острого и хронического токсического действия

Метрологические характеристики

Погрешность, сходимость, воспроизводимость

Не установлены

Сходимость, воспроизводимость

Таблица 2

Область применения методов биотестирования токсичности водной среды

Объект биотестирования

Цель биотестирования

Тест-организм

Химические вещества

Рыбохозяйственное нормирование; контроль токсичности в международной торговле

Гидробионты - представители основных трофических уровней водных экосистем. Стандартный набор тест - организмов

Производственные, технологические и сточные воды (точечные источники загрязнения)

Оценка эффективности очистки, выявление опасных компонентов, регламентация сброса, экологическая паспортизация предприятий

Наборы биотестов

Природные воды (неточечные источники загрязнения)

Проверка соответствия качества воды установленным регламентам. Оценка токсикологического состояния водных объектов. Выявление зон экологического бедствия и чрезвычайных ситуаций

Наборы биотестов

Приложение 2

Фото№1. Проростки кресс-салата Фото№2. Проростки кресс-салата

(контроль) (опыт)

Биотестирование ныне является основным приемом в разработке ПДК химических веществ в воде. При этом определяют такие параметры, характеризующие токсичность, как: ЛК50 (летальная концентрация для 50% тест-организмов), ЭК50 (эффективная концентрация для 50% тест-организмов), МНК (максимально недействующая концентрация), ОБУВ (ориентировочно безопасный уровень воздействия), ОТД (острое токсическое действие), ХТД (хроническое токсическое действие) и ЛВ50 (время гибели 50% тест - организмов).[ ...]

Биотестирование водоемов основано на том, что отдельные группы гидробионтов могут жить при определенной степени загрязнения водоема органическими веществами. Способность гидробионтов выживать в загрязненной органикой среде называется сапробностъю.[ ...]

Биотестирование проведено также с использованием клеточного тест-объекта - гранулированной спермы быка, т.е. путем анализа зависимости показателя подвижности суспензии сперматазоидов от времени и определения степени подавления их подвижности (сокращения среднего времени подвижности) под воздействием содержащихся в воде токсикантов, в соответствии с . Реализация метода осуществляется с применением автоматической аналитической системы, обеспечивающей сравнительную оценку показателя подвижности суспензии сперматозоидов в опытных пробах воды и в контрольных средах, определение процедур расчетов и выдачу результатов в виде соответствующих индексов токсичности. Оценка показателя подвижности осуществляется путем автоматического подсчета числа флуктуации интенсивности рассеянного излучения, вызванного прохождением клеток через оптический зонд.[ ...]

Биотестирование сточных вод, идущих на повторное использование, показало, что сточная вода в неочищенном виде подавляет прорастание семян и рост проростков на 22%, после очистных сооружений - на 12%, а разбавленная в соотношении 1:1 или 1:2 - на 9%. Контроль во всех случаях - отстоянная водопроводная вода.[ ...]

БИОТЕСТИРОВАНИЕ - оценка состояния окружающей среды по живым организмам. См. Биологические индикаторы. БИОТИЧЕСКАЯ ТРАНСФОРМАЦИЯ СРЕДЫ (Б.т.с.) - изменение абиотических условий под влиянием жизнедеятельности организмов. В.И. Вернадский рассматривал живые организмы как геохимический фактор, который создал биосферу. Благодаря живым организмам в атмосфере появился кислород, сформировались почвы, образовались толщи осадочных пород на дне океанов. В результате Б.т.с. создаются запасы детрита в виде торфа и сапропеля.[ ...]

Для биотестирования используются самые различные организмы (водные растения, водоросли, ракообразные, моллюски и рыбы). Однако наиболее чувствительным к загрязняющим веществам различной природы является пресноводный рачок дафния магна.[ ...]

Под биотестированием понимают приемы исследования, с помощью которых о качестве среды, факторах, действующих самостоятельно или в сочетании с другими, судят о выживаемости, состоянию и поведению специально помещенных в эту среду организмов - тест-обьектов. Рост особей, их продуктивность, выживаемость служат показателями для биотестирования качества среды. Для целей мониторинга природных и сточных вод предприятий оказались удобными фитопланктон и дафнии.[ ...]

Методы биотестирования основаны на оценке физиологического состояния и адаптационного стресса организмов, адаптированных к чистой среде и на время эксперимента помещенных в испытуемую среду. Эти методы также дают информацию об интегральном экологическом качестве среды. Цели прогноза обычно связаны с экстраполяцией результатов опытов на качество жизни человека и на изменения показателей биоразнообразия в экосистемах. Оценка среды по системе биотестирования и биоиндикации в каждой точке территории должна базироваться на анализе комплекса видов. Для наземных экосистем -это травянистые и древесные растения, беспозвоночные животные (например, моллюски и членистоногие) и позвоночные животные (земноводные, рептилии, птицы, млекопитающие). Оценка состояния каждого вида базируется на результатах использования системы методов: морфологических (например, регистрации признаков асимметрии внешнего строения), генетических (тесты на мутагенную активность), физиологических (тесты на интенсивность энергетического обмена), биохимических (оценка окислительного стресса у животных и фотосинтеза у растений), иммунологических (тесты на иммунную потенцию).[ ...]

Длительное биотестирование (3=20 сут.) позволяет определить хроническое токсическое действие воды на дафний по снижению их выживаемости и плодовитости. Показателем выживаемости служит среднее число исходных самок дафний, выживших в течение биотестирования, показателем плодовитости -среднее число молоди, выметанной в течение биотестирования, в пересчете на одну выжившую исходную самку. Критерием токсичности является достоверное отличие от контроля показателя выживаемости и плодовитости дафний.[ ...]

Субстрат для биотестирования собран в районе Среднеуральского медеплавильного завода (Свердловская обл., г. Ревда, Средний Урал, южная тайга). Главные ингредиенты выбросов - 802 и полиметаллическая пыль (в основном соединения Си, РЬ, Cd, 2п, Аь). Многолетнее загрязнение (начиная с 1940 г.) привело к значительному подкислению лесной подстилки и увеличению содержания в ней металлов (табл. 1). Закономерности техногенной трансформации лесных экосистем района исследований описаны ранее (Воробейчик и др., 1994).[ ...]

Таким образом, биотестирование воды представляет собой оценку качества воды по ответным реакциям водных организмов, которые являются в этих случаях тест - объектами (табл. 15.2).[ ...]

К достоинствам биотестирования можно отнести также возможность его использования с помощью портативных приборов при полевых исследованиях, а также простоту сбора и анализа проб. Так, с помощью этих методов по функциональному состоянию (поведению) тест - объектов (ракообразные - дафнии, водоросли - хлорелла, рыбы - гуппии и др.) можно оценивать качество вод и осуществлять ранжирование их по классам состояний. Таким образом появляется возможность использования этих вод для питьевых или иных целей. Наиболее информативные критерии оценки состояния поверхностных и сточных вод (по состоянию тест - объектов) приведены в табл. 42.[ ...]

Удачно дополняет метод биотестирования на дафниях биоте-стовый анализ с помощью простейших микроорганизмов - инфузорий-туфелек (Paramecium caudatum). Метод биотестового анализа водных проб основан на способности инфузорий избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в благоприятные зоны. Метод позволяет оперативно определять острую токсичность водных проб и предназначен для контроля токсичности природных, сточных, питьевых вод, водных вытяжек из различных материалов и пищевых продуктов.[ ...]

Методические указания по биотестированию сточных вод с использованием рачка дафния магна. - М.: в/о Союзводпроект ОМПР и ВП, 1986. - 27 с.[ ...]

При использовании методов биотестирования оперируют рядом понятий и определений: под тест-объектом понимают живой организм, используемый в биотестировании; тест-реакция - изменение какого-либо показателя тест-объекта под воздействием токсичных веществ, содержащихся в воде; тест-параметр - количественное выражение тест-реакции; критерий токсичности -значение тест-параметра или правило, на основании которого делают вывод о токсичности воды.[ ...]

Особенно перспективными в биотестировании окружающей среды являются простейшие - инфузории. Их используют в экотоксикологическом тестировании вод и почв, в биотестировании химических веществ и материалов биологического происхождения.[ ...]

Методическое руководство по биотестированию включает методики определения токсичности с использованием в качестве тест-объектов дафний, водорослей и рыб. Помимо обязательных тестов (на дафниях) допускается использование других рекомендованных методов биотестирования.[ ...]

В табл. 21 представлены результаты биотестирования пяти рецептур антисептика, содержащего алкил бензил аммонийхлорид (¿)), тринатрийфосфат (к2), карбонат натрия (к3) и борную кислоту (¿4).[ ...]

Гудимов A.B., Петров B.C., Гудимова Е.Н. Биотестирование на донных беспозвоночных как средство предупреждения и минимизации загрязнения акваторий в районах разработки месторождений нефти и газа на шельфе Арктики// Морские и арктические нефтегазовые месторождения и экология. М.: ВНИИГАЗ, 1996.[ ...]

В качестве критерия токсичности речных вод использовали выживаемость тестируемых организмов.[ ...]

На практике для контроля токсичности воды наряду с известными методами биотестирования широко применяют биохимико-физиологи-ческие испытания, основанные на сравнении параметров, характеризующих нормальное поведение организма или биокультуры, с теми же параметрами, наблюдаемыми под воздействием загрязненной воды . Как правило, контролируемыми параметрами являются изменение концентрации органического кислорода, количество поглощенного кислорода или выделившегося углекислого газа и др. Все эти методики впервые стандартизуются сразу на международном уровне.[ ...]

Другой возможностью интегральной оценки уровня загрязнения атмосферы является биотестирование токсичности вод снежного покрова города, накопившего в себе за зимний период выбросы промышленных предприятий и автотранспорта. Для этих целей нами разработаны и аттестованы оперативная методика и комплект аппаратуры для биотестирования вод по воздействию загрязнителей на рост водоросли хлореллы. Эта разработка позволяет одновременно оценивать токсичность многих проб талого снега, а также других природных и сточных вод. Проведенные исследования показали высокую эффективность данного методического подхода в определении загрязнения окружающей среды.[ ...]

На основе результатов экспериментальных исследований предлагается использовать биотестирование как метод прогнозной оценки загрязнения акваториальных вод при освоении морских нефтегазовых месторождений. Изложены преимущества рассматриваемого метода по сравнению с общепринятой системой мониторинга.[ ...]

Нами развиты, доработаны и адаптированы к производственным условиям экспресс-методы биотестирования водных объектов с помощью таких тест-организмов, как ракообразные -Daphnia magna Straus (cladocera, crustacea), далее для краткости -Daphnia magna, а также простейшие - Paramecium caudatum (рис. 3.4).[ ...]

Для оценки биологической значимости выявленных изменений структурных особенностей воды проводили ее биотестирование в соответствии с рекомендациями «Методы биотестирования вод» . Использовали гид-робионты различных трофических уровней (3-х систематических групп): простейшие - инфузории Tetrahimena pyriformis, беспозвоночные - пресноводный рачок Daphnia magna и рыбы-мальки гуппи Poecilia reticulata peters.[ ...]

В настоящее время наиболее информативным и достоверным методом оценки качества ОПС и поступающих в нее веществ является биотестирование. В бурении этим способом проводится оценка токсичности промывочных жидкостей и технологических отходов бурения. Следует отметить, что биотестирование буровых сточных вод (БСВ) выполняется корректно, по утвержденной методике для сточных вод. Однако для бурового шлама и буровых технологических жидкостей, по составу и свойствам существенно отличающихся от БСВ, научно обоснованной методики биотестирования, которая учитывала бы их специфику, нет. Поэтому условия проведения исследований, например, кратность разбавления исходного вещества, не унифицированы. Соответственно, результаты исследований разных авторов зачастую несопоставимы, а в ряде случаев их достоверность сомнительна. Так, при разбавлении промывочных жидкостей их дисперсная фаза выпадает в осадок и ее токсикологический эффект фактически не учитывается. Между тем используемая в составе БПЖ глина обладает высокой адсорбирующей способностью. Поэтому в водную среду попадает не исходная глина, использованная для приготовления промывочной жидкости, а модифицированная в процессе циркуляции через скважину. Кроме того, в БПЖ попадают глинистые частицы из выбуренной породы.[ ...]

К сожалению, при использовании приведенных оценочных шкал необходимо учитывать методический аспект. Известно, что результаты биотестирования очень зависят от методики определения. И даже малейшие отклонения, незаметные для неопытного экспериментатора, приводят к значительному искажению результата.[ ...]

На протяжении ряда последних лет сформировалось самостоятельное направление биологического контроля состояния среды путем биоиндикации и биотестирования [Захаров, 1993; Шуберт (ред.), 1988; Мелехова и др., 1988, 2000; Смуров, 2000].[ ...]

3

Одним из методов интегральной оценки качества воды, имеющей контакт с устройством очистки, для выявления возможного негативного влияния конструкционных материалов на качество питьевой воды является биотестирование с помощью гидробионтов различных трофических уровней.[ ...]

Организмы донной фауны являются не только удобными объектами для акваториального содержания, но и прекрасными мониторами хроничекого загрязнения. Анализ их физиологических и поведенческих реакций при биотестировании позволяет достоверно определить пороговые, переносимые и летальные нагрузки, вызываемые тем или иным видом загрязнения. Биотесгирование на Мурмане пока еще не получило должного развития, хотя насущность его очевидна, а результаты нельзя заменить мониторингом. Начавшиеся в нашем институте исследования по биотестированию буровых растворов и их компонентов показали его успешность, в частности, на таких объектах, как голотурия Cucumaria frondosa, гидроид Dynamena pumita, амфипода Gammarus oceanicus, двустворки - мидия (Mytilus edulis L.) и Modiolus (рис. 1-3). Эксперименты показали, что моллюски-фильтраторы, прекрасно адаптирующиеся к лабораторным условиям, сочетают в себе одновременно высокую общую резистентность при достаточной чувствительности отдельных физиологических и поведенческих реакций по отношению к различного рода загрязнениям. Кроме того, по поведенческим актам и росту мидий, например, можно осуществлять не только тестирование загрязнителей, но и проводить непрерывный контроль за качеством природных вод, особенно в прибрежье (губа Териберка, Кольский залив), - в местах выхода подводных трубопроводов и перетранспортировки газоконденсата, нефти и газа.[ ...]

Дафния магна - мелкое ракообразное, постоянный обитатель стоячих и слабопроточных водоемов. По способу питания - активный фильтратор, размер самок достигает 3 мм, самцы в 1,5-2 раза меньше. Дафнии используются для биотестирования водоемов.[ ...]

Разработанная методика позволит осуществлять анализ фактической экологической опасности веществ. При этом процедура анализа экологического риска нетоварных веществ будет основана на сопоставлении измеренного показателя биотестирования со шкалой уровня техногенного воздействия. Таким образом, вместо утверждаемых в настоящее время эколого-рыбохозяйственных нормативов для всех используемых нетоварных веществ необходимо утвердить только методику биотестирования и несколько шкал уровня техногенного воздействия на окружающую природную среду.[ ...]

Во Франции оценка качества водной среды по токсикологическим показателям является обязательной в “Системе контроля качества пресных вод”. Производственный токсикологический контроль сточных вод проводят более чем на 150 предприятиях. Для биотестирования применяют стандартный набор биотестов на острую токсичность с использованием бактерий, водорослей, дафний и рыб.[ ...]

При обсуждении результатов биотестового анализа водных объектов возникает вопрос о критерии токсичности, т.е. о выборе значений индекса токсичности, при которых вода оказывает или не оказывает токсическое воздействие на живые организмы. Методы биотестирования апробированы нами на модельных растворах с известным содержанием токсичных веществ и реальных водных объектах .[ ...]

Величины ДФ или АФ/Фт, полученные при построении световых кривых, характеризуют удельную фотосинтетическую и общую физиологическую активность водорослей и могут использоваться в качестве самостоятельного показателя их состояния, в частности при биоиндикации и биотестирования качества воды.[ ...]

Современное загрязнение почти всегда подразумевает наличие в окружающей среде целого комплекса факторов, совместное действие которых может приводить к неожиданным эффектам. Так, специалисты в области экотоксикологии отмечают факты несогласованности результатов биотестирования (токсичность) и химического анализа («благополучные» данные). В качестве одной из возможных причин могут быть комбинированные эффекты. В частности, было обнаружено, что накопление в почве мышьяка приводит к возникновению специфических микробных сообществ. Химическое загрязнение стимулирует развитие фитопатогенных микроорганизмов. Например, при повышенной концентрации мышьяка формируются фузариозно-нематодные комплексы, представляющие двойную опасность для высших растений (Вараксина и др., 2004).[ ...]

При создании новых рецептур многокомпонентных антисептиков на основе явления синергизма главной задачей является подбор оптимального соотношения составных ингредиентов. Рецептуры антисептиков с улучшенными эксплуатационными и экологическими свойствами создают на основе биотестирования по методике "Лаборатории защиты древесины ЦНИИМОД" , описанной выше (1).[ ...]

Под биотестом понимают оценку (испытание) в строго определенных условиях действия вещества или комплекса веществ на водные организмы путем регистрации изменений того или иного биологического (или физиолого-биохимического) показателя исследуемого объекта, сравниваемого с контрольным. Подопытные организмы именуются тест-объектами (тест-организмами), а процесс проведения испытаний-биотестированием .[ ...]

Весьма информативными при экологических оценках водных экосистем являются характеристики состояния и развития всех экологических групп водного сообщества. При выделении зон чрезвычайной экологической ситуации и экологического бедствия используются показатели по бактериопланкто-ну, фитопланктону, зоопланктону и ихтиофауне. Определение степени токсичности вод проводится также на основе биотестирования преимущественно на низших ракообразных. При этом уровень токсичности водной массы должен определяться на всех основных фазах гидрологического цикла. Параметры предложенных показателей должны наблюдаться на данной территории постоянно на протяжении достаточно длительного времени с минимальным периодом не менее 3 лет.[ ...]

Приводятся данные по изменению физико-химических свойств буровых растворов в забойных условиях. Показано, что прогнозирование токсичности отходов бурения при бурении скважин становится невозможным. На примере многочисленных экологических исследований отходов бурения установлено, что наиболее уязвимым звеном экосистемы рыбохозяйственного водоема являются дафнии. В связи с этим обосновывается целесообразность применения метода биотестирования буровых растворов на стадии разработки и отходов бурения в процессе строительства скважин.[ ...]

Между тем многие из перечисленных трудностей удается преодолеть, если в традиционную схему экологического контроля ввести методы биомониторинга. Эти методы основаны на регистрации суммарного токсического действия на специальные тест-организмы сразу всех или многих из компонентов загрязнения и, таким образом, позволяют быстро и с минимальными затратами оценить, является ли анализируемая проба загрязненной или нет. После достаточно масштабной, но малозатратной процедуры биотестирования дорогостоящему химическому анализу подвергаются лишь те образцы, которые вызывают сомнения относительно их экологической безопасности. Биоиндикационный анализ качества среды, основанный на определении состояния организмов, живущих на обследуемой территории, позволяет оценить воздействие на них всех загрязнителей в течение длительного времени, что дает возможность получить интегральный показатель уровня загрязнения среды. К сожалению, из-за недостаточной научно-методической, технической и нормативно-правовой проработки биологические методы пока лишь ограниченно используются в системе экологического мониторинга.[ ...]

Индикационные критерии оценки. В последние годы б ио индикация получила достаточно широкое распространение при оценках качества поверхностных вод. Она по функциональному состоянию (поведению) тест-объектов (ракообразные - дафнии, водоросли - хлорелла, рыбы - гуппи) позволяет ранжировать воды по классам состояний (нормы, риска, кризиса, бедствия) и, по существу, дает интегральную оценку их качества и определяет возможность использования воды для питьевых целей. Лимитирующим фактором использования метода биотестирования является продолжительный срок проведения анализа (не менее 96 ч) и отсутствие информации о химическом составе воды. Пример использования биотестов для определения качества воды приводится в табл. 21.[ ...]

В качестве биотеста можно использовать одинаковые проростки гороха, фасоли, которые отбирают из партии после их прорастания. У горошин срезают половинки обеих семядолей, чтобы у них было ровное ложе. Фильтровальную бумагу, лежащую на дне химического стакана емкостью 200-250 мл смачивают 5 мл опытного раствора, на дно помещают по 5 подготовленных горошин, закрывают крышкой от чашки Петри. После того, как горошины вырастут на высоту 5-7 см и более (до крышки стакана), производят их измерение. Контроль - горошины на дистиллированной воде. Подсчет проводится так же, как и при биотестировании по прорастанию семян.[ ...]

В целях определения экологического состояния водоемов используют результаты гидробиологических наблюдений, которые дают наиболее полную информацию. Биоиндикация загрязнения водоемов включает большой набор показателей, охватывающих основные трофические уровни водной экосистемы: фитопланктон, зоопланктон, бентос и другие. При этом суммирующими (интегральными) показателями, которые способны охарактеризовать общий уровень загрязнения вод всем комплексом токсичных веществ и, следовательно, опасность водной среды для гидробионтов, являются битестовые (токсикологические) показатели. Соответствующий токсикологический анализ проводится с помощью приемов и методов биотестирования токсичности.[ ...]

К этой же группе методов следует отнести мониторинг - периодическое или непрерывное слежение за состоянием экологических объектов и за качеством среды. Большое практическое значение имеет регистрация состава и количества вредных примесей в воде, воздухе, почве, растениях в зонах антропогенного загрязнения, а также исследования переноса загрязнителей в разных средах. В настоящее время техника экологического мониторинга быстро развивается, используя новейшие методы физико-химического экспресс-анализа, дистанционного зондирования, телеметрии и компьютерной обработки данных. Важным средством экологического мониторинга, позволяющим получить интегральную оценку качества среды, являются биоиндикация и биотестирование - использование для контроля состояния среды некоторых организмов, особо чувствительных к изменениям среды и к появлению в ней вредных примесей.[ ...]

Оценена пространственная вариабельность (в пределах участка 100x100 м) загрязненности лесной подстилки тяжелыми металлами (Си, Сё, РЬ, 2п), ее кислотности и фитотоксичности (по корневому тесту на проростках из генетически однородной выборки одуванчика лекарственного). Подстилка собрана в трех зонах с разным уровнем токсической нагрузки на территории, подверженной многолетнему полиметаллическому загрязнению выбросами медеплавильного завода на Среднем Урале. Разброс фитотоксичности максимален на участке со средним уровнем загрязнения, где отмечены как очень высокие, так и очень низкие значения, что приводит к возникновению существенной нелинейности в дозовой зависимости. Фитотоксичность подстилки в первую очередь определяют обменные формы металлов. Обнаружен резко выраженный антагонизм между тяжелыми металлами и кислотностью при биотестировании образцов с максимально загрязненного участка.[ ...]

В связи с этим представляют интерес результаты исследований по ряду ключевых вопросов безопасного обращения с веществами и материалами в бурении. В общем случае используемые и образующиеся в бурении вещества можно разделить на две категории - товарные (промышленная продукция) и нетоварные (буровые технологические жидкости и технологические отходы бурения и испытания скважины). Принципиальные отличия между этими категориями веществ являются веским основанием для того, чтобы по-разному подходить к оценке их экологичности. Однако в нормативных документах федерального уровня эта специфика не учитывается и предусматривается единый подход к оценке экологической опасности веществ путем определения значения их предельно допустимой концентрации в компонентах окружающей природной среды. Применительно к нетоварным веществам целесообразно перейти от нормирования содержания вещества в окружающей среде к нормированию его воздействия. Эта задача может быть решена путем комплексного биотестирования нетоварных веществ. В целях отработки методики таких исследований проведено изучение отработанного бурового раствора и шлама с использованием различных тест-объектов, результаты которого изложены в настоящем обзоре.

Биотестирование-метод оценки качества среды обитания (токсичности веществ) с помощью опытов с тест объектами.в пробы природной воды помещают определенное кол-во (обычно 10) тест-объектов и по истеч. Некоторого времени сравнивают с контролем.(на примере дафний: для определения острой токсичности необходимо 4 дня,для хронической токсичности -20-24 дня.)пробу донных отложений высушивают,делают вытяжку,дальше все по схеме с дафниями

    Биотестирование в оценке токсичности сточных вод

При исследовании сточных вод на токсичность не допускается отбор разовой пробы.кол-во необходимых порций выбирают на основе опыта проведения анализа(согласно методическим указаниям и ГОСТам)обычно отбирают пробы каждый час в течение суток,потом все тщательно перемешивается и для биотестирования берется необходимое количество воды.пробы,взятые для исследования токсичности нельзя консервировать.и тут все как в 1-м вопросе: две банки с исследуемой водой и контроль

    Биотестирование в оценке токсичности химических веществ. Показатели токсичности (LC50, LD50 и др.)

Токсичность химических веществ определяется летальной дозой(для теплокровных тест-объектов) и летальной концентрацией(для водных). LC50(лет.конц.)-такая конц в-Ва, которая вызывает гибель 50% тест ор-мов за установленное время.в качестве тест-объектов используются и водоросли,для них невозможно определить LC50, поэтому для них используется показатель IC50 (ингибирующая концентрация-замедление прироста культуры).для определения токсичности хим в-ва его разводят в воде в соотношении 1/10,1/100,1/1000. Берут 2 пробы (банки) и контроль.по истечению указанного времени сравнивают пробы с контролем, подбирается такая конц в-ва,чтоб точно определить LC50

    Тест-организмы, используемые в биотестировании. Критерии выбора тест-организмов

Тест-объект - организм,используемый при оценке токсичности веществ,донных отложений,вод и почв.это специально выращенный в лабораторных условиях организм,разной систематической принадлежности (крысы,водоросли,простейшие,рыбки) Требования к ним: генетически однородны(чистые линии),адаптированы к лабораторным условиям,в идеале,реакция не должна зависеть от сезонных и суточных циклов.набор тест объектов определяется методиками

    Тест-функции

Тест-функция - критерий токсичности,используемый в биотестировании для характеристики отклика тест-объекта на повреждаюшее (негативное) действие среды. Напр.: смертность/выживаемость(обычно исп. для простейших,насекомых,ракообразных,рыб),плодовитость/кол-во потомства,время его появления,появление аномальных отклонений.для растений- скорость прорастания семян,длинна первичных корешков и т.п.

    Основные критерии оценки токсичности по результатам биотестирования

Токсический эффект- изменение любых показателей жизнедеятельности под воздействием токсикантов,зависит от особенностей в-в. При гибели в пробе <10% от контроля можно говорить о том,что среда не токсична.10-50% - среда безвредна.> 50% - среда токсична

    Отбор, транспортировка проб, подготовка их к биотестированию

Для получения достоверной информации о токсичных свойствах пробы, ее необходимо правильно отобрать и хранить до выполнения теста.Используя карту или схему реки, выбирают места отборов проб (станции). Для более точной оценки качества воды на каждой станции отбираются несколько проб. Проба отжимается и переносится в пластиковый контейнер.биотестирование проб воды проводят не позднее 6 часов после их отбора.при длительной перевозки пробы возможно снижение ее температуры до +4 градусов

    Особенности острых и хронических опытов по биотестированию

тест на острую токсичность выражается в гибели организмов за определенный промежуток времени (то нескольких секунд од нескольких суток).Хроническая токсичность проявляется только через несколько суток и,как правило,не ведет к быстрой гибели организма,выражается в нарушении жизненно важных функций,возникновении токсикозов

Катериненко Мария

Исследование качества воды методом биотестирования. Методика определения токсичности различных сред на приборе "Биотестер-2", основана на контроле хемотаксической реакции инфузории-туфельки.

Скачать:

Предварительный просмотр:

Исследование качества воды методом биотестирования.

Катериненко Мария. 8 А класс, ГБОУ Школа №359.
Руководитель: Набатова А.В.

Цель работы: Изучить возможности применения биотестирования, как способа оценки качества воды.

Актуальность: Роль воды в жизни человека трудно переоценить. Мозг взрослого человека состоит из воды на 74,5%, кровь - на 83%, в мышцах воды 75,8%, в костях - 22%.

Потеря всего 3% воды организмом лишает человека возможности бегать, 5% - лишает возможности переносить существенные физические нагрузки, а потеря организмом 10% воды представляет опасность для жизни. Метод биотестирования позволяет быстро и сравнительно дешево произвести анализ, устраняя риски, связанные с употреблением некачественной воды.

Задачи исследования:

  1. Знать особенности инфузории туфельки как тест-объекта;
  2. Понимать механизм воздействия на тест-объект и его ответную реакцию;
  3. Уметь проводить эксперимент;
  4. Сравнить реакцию тест-объекта в различных пробах воды;
  5. Оценить полученные результаты и сделать выводы на основе полученных результатов.

Подписи к слайдам:

Исследование качества воды методом биотестирования. Работа выполнена: Катериненко Марией Вадимовной. Класс 8 «А». ГБОУ Школа №359. Руководитель: Набатова А.В.

Цель исследования: Изучить возможности применения биотестирования как способа оценки качества воды.

Задачи исследования: Знать особенности инфузории туфельки как тест-объекта. Понимать механизм воздействия на тест-объект, вызывающий ответную реакцию. Уметь проводить эксперимент.

Задачи исследования: Сравнивать реакцию тест-объекта в различных пробах воды. Оценивать полученные результаты. Делать выводы на основе полученных результатов.

Биотестирование. Биотестирование - это определение степени опасности среды с помощью биологических объектов: водорослей, простейших и пр.

Строение Инфузории туфельки: 1. большое ядро; 2. малое ядро; 3 - реснички; 4 - предротовое углубление; 5 - пищеварительные вакуоли; 6 - порошица; 7 - выделительные вакуоли с приводящими канальцами.

Среда Лозина-Лозинского. Дистиллированная вода - 100 мл; 0,1 г - NaC l ; 0,01 г - КС l ; 0,01 г – СаС l 2 ; 0,01 г - MgC l 2 ; 0,02 г – NaHCO 2 .

Подсчёт Инфузорий Туфелек в капле воды.

Биотестирование.

Итоги исследования:

Вывод: Качество сырой воды дало самые низкие результаты. Кипяченая вода показала самые лучшие результаты. Бутилированная вода - средний показатель. Качество фильтрованной воды не является показательным в данном исследовании.

Список литературы Бухвалов В.,Богданова Л.Экологическая экспертиза.-М.:ЛА Варяг,1995 Грин Н., Стаут У., Тейлор Д. Биология в 3-т. Под ред. Р. Сопера. – М.:Мир, 1996 Догель В.А. Зоология Беспозвоночных.-М.:Высшая школа,1981 Жизнь животных.Т.1.-М.:Просвещение,1986 Захаров И.С.,Величко А.Н. Исследование возможности применения температурных популяционных реакций инфузорий как информативных показателей вредных факторов в среде.-СПб:ИБРР,2013 Захаров И.С., Пожаров А.В. Биотехнические методы охраны окружающей среды. -СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2001 Захаров И.С., Пожаров А.В., Сидоренко В.М. Экспрессные методы интегральной оценки экологического состояния объектов окружающей среды. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2007. Энциклопедия для детей Т.2.Биология.-М.:Аванта+,1999 http://chemister.ru/Database/words-description.php?dbid=1&id=49 http://www.bioind.narod.ru/Articles/guppi.htm http://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%B8%D0%BD%D0%B4%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F

Спасибо за внимание!