Генное редактирование изменит мир быстрее, чем мы думаем. Редактирование генов человека: начало

Инфографика на конкурс «био/мол/текст»: CRISPR/Cas - система адаптивного иммунитета бактерий и архей, которая пригодилась и эукариотам. Мы попытались предельно ясно отразить этот механизм, породивший взрыв в биологическом сообществе и, вероятно, сильно изменивший будущее науки и человечества. Из этой инфографики вы узнаете краткую историю изучения, механизм и возможные применения системы CRISPR/Cas.

«Био/мол/текст»-2016

Эта работа заслужила приз зрительских симпатий конкурса «био/мол/текст »-2016.

В конкурсе участвовала только инфографика!
Текст написала Ольга Волкова .

Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

Спонсором приза зрительских симпатий выступила фирма «Атлас ».

Спонсор публикации этой статьи - Дмитрий Геннадиевич Калашников.

Как устроена иммунная система прокариот?

Системы CRISPR-Cas обнаружены почти у всех известных архей и половины бактерий. Чаще они находятся на хромосоме, реже - в составе фагов (вирусов бактерий) и других мобильных генетических элементов . Эти системы состоят из двух основных блоков: CRISPR-кассеты и прилегающего к ней кластера генов cas . Кассета - это блок прямых почти палиндромных («зеркальных», взаимокомплементарных последовательностей, способных складываться в шпильки) повторов размером 24–48 пар нуклеотидов. Эти повторы перемежаются спейсерами - уникальными вставками примерно такой же длины. Спейсеры идентичны различным участкам фагов и других мобильных элементов, когда-либо проникавших в эту клетку или ее предков. Число повторов в разных системах варьирует от единиц до сотен.

Таким образом, CRISPR можно считать коллекцией разделенных повторами «фотографий» нарушителей клеточных границ. Составляется эта коллекция простым заимствованием их кусочков, а чтобы противостоять новой инвазии этих же молекулярных агентов, коллекция должна регулярно «просматриваться» и обновляться. Для этой функции нужна лидерная последовательность , предшествующая череде повторов. Она богата «легкоплавкими» АТ-пáрами и содержит промотор, контролирующий транскрипцию CRISPR-кассеты («просмотр коллекции»).

Гены cas кодируют белки, берущие на себя всю тяжесть работы по встраиванию спейсеров и уничтожению агентов с идентичными последовательностями (протоспейсерами ) и помогающие процессировать CRISPR-транскрипт: разделять фото-гирлянду на отдельные портреты. Функцию уничтожения выполняют Cas-белки, называемые эффекторными . В зависимости от типа эффекторов все CRISPR-системы разделяют на два класса: у I класса мишень уничтожается мультибелковым комплексом, а у II - одним крупным белком. Далее эти классы подразделяются на шесть типов . Большинство эффекторов атакует ДНК, лишь один - исключительно РНК , редкие - обе молекулы. Один организм может содержать несколько разных систем, а спейсеры различаются в разных клетках даже одной популяции .

К чему это приводит, можно узнать из конкурсной статьи о бактериофагах и вечной гонке вооружений в фаговом и бактериальном мирах: «Пожиратели бактерий: убийцы в роли спасителей » . Кстати, там много интересных авторских электронных изображений фагов.

Для решения инженерных задач больше всего подходит система II типа, относящаяся ко II классу, - она самая простая. Именно ее эффекторный белок называется Cas9 - то самое обозначение, что фигурирует в современных системах редактирования генома.

Как формируется CRISPR-опосредованный иммунитет?

Если в бактерию или архею, снабженную CRISPR-системой, проникает вирус, включается адаптационный функциональный модуль системы: специфические Cas-белки - у всех систем это как минимум Cas1 и Cas2 - вырезают из чужака понравившиеся фрагменты. Подобрать протоспейсер в некоторых случаях помогает и эффекторный белок. Белки выбирают участки рядом с особой последовательностью PAM (protospacer adjacent motif ) - всего несколько нуклеотидов, но неодинаковых для разных CRISPR-систем. Затем эти же адаптационные белки встраивают фрагмент в CRISPR-кассету, всегда с одной стороны - у лидерной последовательности. Так образуется новый спейсер, а заодно с ним - и новый повтор. Весь этот процесс называют адаптацией , или приобретением, а по сути это - запоминание врага. Информацию обо всех запомнившихся врагах получает при делениях всё потомство клетки.

Как реализуется CRISPR-опосредованный иммунитет?

Для поиска повторно вторгающихся агентов CRISPR-кассета должна экспрессироваться . В результате ее транскрипции образуется длинная молекула РНК - pre-crРНК . С помощью РНКазы III и, как правило, Cas-белков транскрипт нарезается по повторам на отдельные crРНК - молекулы, содержащие один спейсер и кусочки окружающих его повторов (один из них длиннее). В системах II типа для этого процесса, называемого созреванием , необходим еще один участник - tracrРНК (trans-activating CRISPR RNA ), которая закодирована рядом с cas -кластером .

Далее у систем I класса crРНК взаимодействует с комплексом Cas-белков, а у систем II класса crРНК либо дуплексы tracrРНК-crРНК связываются с одним белком-эффектором, например Cas9. Так образуется интерференционный функциональный модуль - рабочая иммунная единица, состоящая из направляющей РНК и эффекторного белка (или комплекса). Совокупность таких единиц «сканирует» клетку в поисках интервентов.

При обнаружении комплементарной crРНК последовательности, то есть протоспейсера, модуль «слипается» с ней и определяет, не помечена ли она как «своя», клеточная. Если нет, и если к ней прилегает тот самый PAM, то эффекторный белок, который представляет собой эндонуклеазу , разрезает обе цепи ДНК в строго определенных местах. Весь процесс называется интерференцией . В особом случае, у системы VI типа, происходит РНК-интерференция , потому что эффекторный белок является рибонуклеазой и разрушает РНК. Так или иначе, атакованные фаги или плазмиды выводятся из строя. Ну и появляется лишняя возможность «наворовать» новые спейсеры.

Какие проблемы могут возникнуть при реализации иммунного ответа? Не исключено, что по мере удаления от лидерной последовательности, то есть от CRISPR-промотора, шансы спейсера транскрибироваться и созреть уменьшаются. Кроме того, есть мнение, что удаленные спейсеры со временем могут накапливать мутации, препятствующие эффективной интерференции с мишенью, или вовсе удаляться. Но раз адаптация новых спейсеров происходит вблизи промотора, удаленные спейсеры представляют собой фото агентов, давно не нападавших на эту клеточную линию, и в постоянной боеготовности по отношению к ним клетка не нуждается. Настоящей же проблемой могут стать даже однонуклеотидные мутации мишени. В общем, комплементарность в этом деле превыше всего.

А не приручить ли нам чужой иммунитет?

Детально изучив принципы работы стрептококковой системы CRISPR-Cas9 (II тип), ученые подумали: а почему бы не попробовать с ее помощью корректировать геномы других организмов? Появились новые надежды относительно лечения генетических (и не только) заболеваний человека, ведь этот способ редактирования in vivo мог оказаться эффективнее уже вовсю тестируемых в то время нуклеаз ZFN и TALEN .

Всё, что требовалось для новой технологии, - это разместить на векторах ген белка Cas9 и CRISPR-кассету, где спейсеры сделать идентичными местам генома, которые нужно изменить. Меняя число и тип спейсеров, можно модифицировать сразу несколько разных участков генома. Довольно быстро поняли, что tracrРНК и crРНК можно безболезненно объединить в одну химерную молекулу sgРНК (single-guide RNA ), а РНКазу III в эукариотических клетках спокойно подменяют другие рибонуклеазы. Ну и еще потребовалось оптимизировать систему для эукариотических клеток: подправить кодонный состав и добавить ядерный «адрес», чтобы она четко следовала к месту работы - хромосомам.

Получилась простая и, что немаловажно, дешевая двухкомпонентная система: ген cas9 и CRISPR-кассета транскрибируются в клеточном ядре выбранного организма, CRISPR-транскрипт нарезается на отдельные sgРНК, которые объединяются с белками Cas9 и ищут цель. Когда sgРНК находит комплементарный участок в геноме организма, Cas9 разрезает «натупо» обе цепи ДНК. Всё, работа CRISPR-системы на этом окончена. Теперь эстафета передается репарационным системам самогό организма. Они решают, как лучше залатать разрез: то ли просто сшить куски (это будет негомологичное соединение концов , NHEJ ), то ли, если есть подходящая матрица с флангами, комплементарными участкам ДНК с двух сторон от разрыва, поставить «заплатку» (это будет гомологичная рекомбинация). Так вот, первый вариант выгоден, если нужно что-то вырезать, второй - если нужно что-то вставить или заменить дефектный участок ДНК на нормальный, который просто вводят на подходящем векторе. Иногда используют гомологию с парной хромосомой, если на ней нужный локус не дефектный.

Разумеется, технология пока не лишена недостатков. Cas9, например, может проявлять нецелевую активность, «закрывая глаза» на мелкие несоответствия между sgРНК и мишенью. По словам К. Северинова, основная проблема - это биоинформатическое предсказание мишеней, поскольку, помимо наличия участка PAM, необходимо учитывать массу факторов, включая состояние хроматина. Кроме того, сценарий, по которому пойдет репарация разреза, не всегда соответствует желаемому, поэтому сейчас активно ищут факторы, влияющие на выбор этого сценария клеткой. Помимо оптимизации CRISPR-Cas9 и механизмов ее доставки в нужные клетки, ведется апробирование других типов CRISPR-систем .

Спектр применений CRISPR-Cas9 и ее модификаций

Точки приложения CRISPR-технологии можно условно объединить в три крупные группы: «CRISPR - для исследований», «CRISPR - для биотехнологий» и «CRISPR - для терапии».

1. «CRISPR - для исследований» . Технология позволяет изучать роль конкретных генов в процессах развития и жизнедеятельности организмов. Как вариант - устанавливать роль генов и их перестроек в возникновении и прогрессировании генетических болезней и рака: этот инструмент позволяет создавать прекрасные модельные системы .

Если Cas9 лишают одного нуклеазного домена, то белок становится никазой (nCas9 ) - режет только одну цепь ДНК, - а если лишают сразу двух, то белок становится инактивированным, или «мертвым» (dead , dCas9 ). Такой белок ничего не режет, зато систему CRISPR-dCas9 можно использовать для репрессии целых наборов генов или как платформу для конструирования более сложных регуляторных и модифицирующих комплексов. Например, если к ней привязать активирующий домен, то экспрессия целевых генов активируется. Для эпигенетической модификации нужных зон достаточно добавить модифицирующий домен. А пометив dCas9 флюоресцентными белками , можно визуализировать разные области хромосом. Ясно, что регуляторные возможности системы будут востребованы и в медицине. Кроме того, разные варианты CRISPR-Cas открывают новые возможности для скрининга мишеней лекарств .

2. «CRISPR - для биотехнологий» . Здесь речь идет о применении CRISPR-Cas9 как минимум для трех целей:

3. «CRISPR - для терапии» . Здесь пределов для фантазии, кажется, и вовсе нет. Если говорить о наследственных заболеваниях, то CRISPR-Cas9 в культурах клеток или животных моделях уже «примерили» для серповидноклеточной анемии и β-талассемии , M2DS-синдрома и миодистрофии Дюшенна , муковисцидоза (исправили мутантный CFTR-локус в кишечных стволовых клетках человека) и тирозинемии , катаракты (у мышей устранили доминантную мутацию в гене Crygc ) и пигментного ретинита . Вообще, болезни глаз сейчас в центре внимания, потому что в глаза генетические конструкции легко доставлять .

Преимущества коррекции генома в зародышевой линии (как совокупности любых генеративных клеток, связывающих друг с другом поколения организмов) и стволовых клетках очевидны, но даже изменения, вносимые в соматические клетки уже развитых органов, дают эффект. Особенно если речь идет о борьбе с болезнями печени и мышц. О результатах терапевтического применения CRISPR-Cas9 в разных типах клеток рассказывает свежий обзор .

Отдельное перспективное направление - борьба с хроническими вирусными заболеваниями типа гепатитов и ВИЧ-инфекции. Если возбудитель сохраняется в организме в виде провируса (вирусной ДНК, встроенной в клеточный геном), то его можно просто вырезать. Именно так и поступил коллектив биологов из США, избавив лимфоциты человека от ВИЧ (об этом сообщили сразу две «биомолекулярные» статьи: «Битва века: CRISPR VS ВИЧ » и «CRISPR/Cas9 как помощник в борьбе с ВИЧ » ). Правда, ВИЧ - объект крайне изменчивый, и с ним еще придется поломать копья.

Можно помечтать, что в терапии опухолей найдут применение варианты недавно описанной CRISPR-системы VI типа - той, что уничтожает только РНК, причем, как оказалось, любую клеточную РНК без разбора: запустить такую систему в раковую клетку - это как наслать на нее проклятье .

CRISPR-Cas - это не только иммунитет

Оказывается, для бактерий и их эволюции эта система значит намного больше.

Неканонические активности CRISPR-систем или их отдельных компонентов возникали как побочные продукты их иммунной функции либо как самостоятельно отбираемые признаки. Скорее всего, CRISPR-кассеты и Cas-белки когда-то работали порознь, причем исходная задача последних состояла в регуляции экспрессии генов и репарации ДНК . Современные компоненты CRISPR-Cas замечены:

Инфографика выполнена совместно с Павлом Чирковым, магистром факультета политологии Санкт-Петербургского государственного университета. Одним файлом ее можно скачать .

Литература

  1. J. A. Doudna, E. Charpentier. (2014). The new frontier of genome engineering with CRISPR-Cas9 . Science . 346 , 1258096-1258096;
  2. Ruud. Jansen, Jan. D. A. van Embden, Wim. Gaastra, Leo. M. Schouls. (2002).

Анимация о CRISPR — совместный образовательный проект биологов и специалистов по визуализации Visual Science и Сколтеха. Анимация основана на реальных молекулярных структурах и демонстрирует работу нативных (природных) и генно-инженерных CRISPR-комплексов. В визуализации используются достоверные модели внутренностей бактериальной клетки и ядра клетки человека. Проект получил положительные рецензии от ведущих мировых экспертов по CRISPR, включая первооткрывателей системы.

Молекулярная анимация существенно облегчает демистификацию и объяснение сложных биологических систем. С помощью потрясающих визуальных образов и внимания к деталям Visual Science и Сколтех смогли передать динамику работы белков системы CRISPR-Cas, а также продемонстрировали возможность применения этих белков как исследовательских инструментов

— Дженнифер Дудна, профессор Департамента молекулярной и клеточной биологии и химии в Университете Беркли (США), исполнительный директор Института инновационной геномики (Innovative Genomics Institute).

Эта анимация с красивыми визуализациями очень пригодится в объяснении сложных научных концепций. Это отличные образовательные материалы!

— Фэн Чжан, ведущий сотрудник Института Броуда при Массачусетском технологическом институте и Гарвардском университете, исследователь в Институте изучения мозга им. МакГоверна при Массачусетском технологическом институте

Внимание к деталям, красивые образы и подробная информация о механизмах CRISPR-Cas. Хороший пример, как можно визуализировать сложные биохимические процессы на молекулярном уровне. Visual Science и Сколтех проделали отличную работу!

— Эммануэль Шарпентье, директор Института инфекционной биологии Общества Макса Планка, почетный профессор Берлинского университета им. Гумбольдта.

Что такое CRISPR и CRISPR-Cas9?

Ученые изобрели способ модифицировать природный комплекс CRISPR-Cas9 и программировать его на узнавание практически любых желаемых последовательностей ДНК у человека, животных, растений или любых других организмов. После узнавания искомой последовательности CRISPR-редактор может разрезать ее или, в случае дополнительных модификаций системы, изменить активность близлежащих генов, повлиять на упаковку окружающей ДНК или просто послужить меткой для выбранного участка. Природные и модифицированные CRISPR-эффекторы — это точные, настраиваемые и простые в использовании инструменты, дающие огромные возможности для фундаментальных исследований, лечения генетических заболеваний, создания новых организмов с заданными свойствами, борьбы с вредителями.

Замечательное видео! В нем великолепно сочетаются визуальная привлекательность и научная точность. Молекулярные модели белков великолепны, они позволяют вместить огромное количество информации в совсем короткий фильм

— Евгений Кунин, старший исследователь Национального центра биотехнологической информации (NCBI), Национальной медицинской библиотеки (NLM) и Национального института здравоохранения (NIH) США.

Прекрасно сделано! Мне, структурному биологу, очень нравится анимация, потому что она отображает реальные формы и структуры молекул в системе CRISPR-Cas

— Мартин Йинек, профессор Департамента биохимии в Университете Цюриха

О Сколтехе

Сколковский институт науки и технологий (Сколтех) — негосударственный образовательно-исследовательский институт в Сколково, созданный в 2011 году при участии Массачусетского технологического института (MIT). Сколтех занимается новыми технологиями, направленными на решение важнейших глобальных проблем. Институт предлагает магистерскую программу по биотехнологиям и аспирантуры в области наук о жизни. Профессора Сколтеха ведут исследования, связанные с редактированием генома, поиском новых антибиотиков, биоинформатикой, математической биологией и применением больших массивов данных в биотехнологиях и медицине. Среди иностранных партнеров Сколтеха по исследованиям — ученые Массачусетского технологического института (США), Национальных институтов здравоохранения (США), Ратгерского университета (США), Института Пастера (Франция) и других ведущих научных институтов мира.

Анимация подготовлена в рамках программы Сколтеха «Погружение в индустрию»

Эта анимация визуально привлекательна, и в ней хорошо рассказано об устройстве системы CRISPR и перепрофилировании белков Cas для решения различных задач, связанных с редактированием генома

— Родольф Баррангу, доцент кафедры наук о питании Департамента биопереработки и наук о питании в Университете штата Северная Каролина.

Это отличный обучающий материал, который я обязательно буду использовать на своих лекциях для объяснения студентам устройства CRISPR и принципов редактирования генома

— Виргиниюс Шикшнис, ведущий научный сотрудник и руководитель Департамента ДНК-белковых взаимодействий в Институте биотехнологии Вильнюсского университета.

Этот фильм об удивительных системах CRISPR охватывает все их основные аспекты. Начиная с первичной роли и механизма действия CRISPR в естественных носителях, и заканчивая потрясающими, разнообразными способами применения технологии, полученной в результате изучения этих систем. Наука всегда полезна, часто интересна даже для людей, далеких от нее, и иногда красива. Эта великолепная визуализация, выполненная с большой точностью, — типичный пример того, какой интересной, полезной и прекрасной может быть наука.

— Франциско Мохика, профессор Департамента физиологии, генетики и микробиологии в Университете Аликанте

С помощью CRISPR прямо сейчас происходит грандиозный прорыв в генной инженерии: ученые планируют скоро научиться избавлять нас навсегда от любых болезней, с перспективой любых контролируемых мутаций и вечной жизни.

На публикацию этого поста нас натолкнуло видео “CRISPR: редактирование генов изменит все и навсегда”, в котором рассказывается о переднем крае науки в части генной модификации человека: речь идет не просто об избавлении от болезней типа СПИД, рак и многие другие, но и о создании безупречного нового вида людей, людей со сверхспособностями и бессмертии. И это происходит прямо сейчас на наших глазах.

Все эти перспективы открываются благодаря недавнему революционному открытию белка CRISPR–Cas9, но обо всем по порядку.

Раньше считалось, что ДНК в каждой нашей клетке – абсолютно идентичны и содержат нашу точную и неизменную копию – какую клетку бы ни взять, но оказалось, что это не так: ДНК в разных клетках немного разные и они меняются в зависимости от разных обстоятельств.

Открытию белка CRISPR – Cas9 помогли наблюдения за выжившими после атаки вирусов бактериями.

Древнейшая война на земле

Бактерии и вирусы соперничают с начала жизни: вирусы-бактериофаги охотятся на бактерии. В океане они убивают 40% от общего числа бактерий каждый день. Вирус делает это, вставляя свой генетический код в бактерию и использует её в качестве фабрики.

Бактерии пытаются безуспешно сопротивляться, но в большинстве случаев их защитные механизмы оказываются слишком слабыми. Но иногда бактерии выживают. Тогда они могут активировать свою самую эффективную противовирусную систему. Они сохраняют часть ДНК вируса в своём генетическом коде, ДНК-архиве “CRISPR”. Здесь она хранится до необходимого момента.

Когда вирус снова атакует, бактерия создает РНК-копию из ДНК архива и
заряжает секретное оружие – белок Cas9. Этот протеин сканирует бактерию на предмет вмешательства вируса, сравнивая каждую часть найденного ДНК с архивом. Когда находится 100% соответствие, он активируется и отрезает ДНК вируса, делая его бесполезным, таким образом защищая бактерию.

Белок Cas9 сканирует ДНК клетки на предмет внедрения вируса и заменяет испорченную часть здоровым фрагментом.

Что характерно, Cas9 очень точен, словно ДНК хирург. Переворот произошел, когда ученые поняли, что система CRISPR программируема – можно просто дать копию ДНК, которую нужно изменить, и поместить систему в живую клетку.

Помимо точности, дешевизны и простоты использования, CRISPR позволяет включать и выключать гены живых клеток и изучать конкретные последовательности ДНК.
Этот метод также работает с любыми клетками, микроорганизмами, растениями, животными или людьми.

Ученые выяснили, что Cas9 можно программировать на любые замены в любой части ДНК – и это открывает практически безграничные возможности для человечества.

Болезням конец?

В 2015-м ученые использовали CRISPR для удаления вируса ВИЧ из клеток пациентов,
и доказали, что это возможно . Годом позже они провели более амбициозный эксперимент с крысами с вирусом ВИЧ в практически всех их клетках.

Учёные просто ввели CRISPR в их хвосты, и смогли удалить более 50% вируса из клеток по всему телу. Возможно, через несколько десятилетий CRISPR поможет избавиться от ВИЧ и других ретровирусов – вирусов, которые прячутся внутри человеческой ДНК, вроде герпеса. Возможно CRISPR сможет победить нашего худшего врага, рак .

Рак является результатом появления клеток, отказывающихся умирать и продолжающих делиться, попутно прячась от иммунной системы. CRISPR дает нам средство редактировать наши иммунные клетки и делать их лучшими охотниками на раковые клетки.

Возможно через некоторое время лечение от рака будет всего лишь парой уколов с несколькими тысячами ваших собственных клеток, созданных в лаборатории, чтобы вылечить вас навсегда.

Возможно через некоторое время вопрос лечения рака – вопрос пары уколов модифицированных клеток.

Первое клиническое испытание такой терапии на пациентах-людях было одобрено в начале 2016-го в США. Менее чем через месяц китайские ученые объявили, что будут лечить пациентов с раком легких иммунными клетками, модифицированными по этой же технологии, в августе 2016 . Дело быстро набирает обороты.

А еще есть генетические заболевания, тысячи их. Они разнятся от слегка раздражающих до крайне смертельных или приносящих годы страданий. С мощными инструментами вроде CRISPR однажды мы сможем покончить с этим.

Более 3000 генетических заболеваний вызываются единственной заменой в ДНК.
Мы уже создаем модифицированную версию Cas9, которая исправляет такие ошибки и избавляет клетку от заболевания. Через пару десятилетий мы может быть сможем навсегда уничтожить тысячи заболеваний. Однако у всех эти медицинских применений один недостаток – они ограничены одним пациентом и умрут вместе с ним, если мы не используем их на репродуктивных клетках или на ранней стадии развития плода.

CRISPR вероятно будет использоваться куда шире. Например для создания модифицированного человека, спроектированного ребенка. Это принесет плавные но необратимые изменения в человеческом генофонде.

Спроектированные дети

Средства изменения ДНК человеческого плода уже существуют,
но технология находится на раннем этапе развития. Однако, ее применяли уже дважды. В 2015-м и 2016-м эксперименты китайских ученых с человеческими эмбрионами достигли частичного успеха на второй попытке.

Они выявили гигантские трудности в редактировании генов эмбрионов, но множество ученых уже работают над решением этих проблем. Это то же самое, что и компьютеры 70-х: в будущем они станут лучше.

Вне зависимости от ваших взглядов на генную инженерию, она коснётся всех. Модифицированные люди могут изменить геном всего нашего вида, потому что их привитые качества будут переданы их детям, и через поколения медленно распространятся, медленно меняя генофонд человечества. Это начнется постепенно.

Первые спроектированные дети не будут сильно отличаться от нас. Скорее всего, их гены будут изменены для избавления от смертельных наследственных заболеваний.
По мере развития технологий все больше людей начнут думать, что неиспользование генетической модификации неэтично, потому что это обрекает детей
на страдание и смерть, которые можно предотвратить.

Как только первый такой ребенок родится, откроется дверь, которую уже не удастся закрыть. Сначала некоторые черты никто не будет трогать, но по мере роста одобрения технологии и наших знаний о генетическом коде, будет расти будет и соблазн.
Если вы сделаете свое потомство иммунным к болезни Альцгеймера, почему бы вдобавок не дать им улучшенный метаболизм? Почему бы до кучи не наградить их отличным зрением? Как насчет роста или мускул? Пышных волос? Как насчет дара исключительного интеллекта для вашего ребенка?

Огромные перемены придут как результат накопления личных решений миллионов людей.
Это скользкий склон, и модифицированные люди могут стать новой нормой. Пока генная инженерия становится все более привычной, а наши знания улучшаются, мы можем подойти к искоренению главной причины смертности – старения.

2/3 из примерно 150 000 человек, умерших сегодня, умерли по причинам, связанным со старением.

Сегодня считается, что старение вызывается накоплением повреждений в наших клетках
вроде разрывов ДНК или износа систем, ответственных за исправление этих повреждений.
Но есть также и гены, которые напрямую влияют на наше старение.

Генная инженерия и прочая терапия могли бы остановить или замедлить старение. Возможно даже обратить его вспять.

Типичная реакция на возможность вечной жизни (как и любой другой привычной сейчас, но революционной несколько сотен лет назад технологии).

Вечная жизнь и “люди икс”

Мы знаем, что в природе есть животные, которые не стареют. Может, мы могли бы занять у них пару генов. Некоторые ученые считают что однажды старение будет искоренено. Мы все равно будем умирать, но только не в больнице в 90 лет, а через пару тысяч лет, прожитых в окружении наших любимых.

Вызов огромен и, возможно, цель недостижима, но можно допустить, что люди, живущие сегодня, могут оказаться первыми, кто вкусит плоды анти-возрастной терапии. Возможно, нужно всего лишь убедить смышленого миллиардера в необходимости помочь решить эту большую проблему.

Если смотреть на это шире, мы могли бы решить множество задач с помощью специально измененных людей, например которые могли бы лучше справляться с высококалорийной едой, и избавиться от таких недугов цивилизации как ожирение.

Владея модифицированной иммунной системой с перечнем потенциальных угроз,
мы могли бы стать неуязвимыми для большинства заболеваний, преследующих нас сегодня. Ещё позже мы смогли бы создать людей для длительных космических перелетов и для адаптации к различным условиям на других планетах, что было бы крайне полезно для поддержания нашей жизни во враждебной вселенной.

Несколько щепоток соли

Есть несколько главных препятствий, технологических и этических. Многие почувствуют страх перед миром, где мы отсеиваем несовершенных людей, а потомство выбираем на основе того, что считается здоровым.

Но мы уже живем в таком мире. Тесты на десятки генетических заболеваний или осложнений стали нормой для беременных женщин во многих странах. Часто одно подозрение на генетический дефект может привести к прерыванию беременности.
Возьмем для примера синдром Дауна, один из самых распространенных генетических дефектов: в Европе около 90% беременностей с установленным наличием этого отклонения прерываются.

Генетический отбор в действии: уже сейчас синдром Дауна диагностируется на ранней стадии развития эмбриона и 90% беременности с этим диагнозом прерывается.

Решение о прерывании беременности является очень личным, но важно понимать, что мы уже сегодня отбираем людей, основываясь на состоянии здоровья. Нет смысла притворяться, что это изменится, поэтому нам необходимо действовать осторожно и этично, несмотря на растущую свободу выбора благодаря дальнейшему развитию технологий.

Однако, все это перспективы отдаленного будущего. Несмотря на мощность CRISPR, метод не лишен недостатков. Могут случиться ошибки при редактировании, неизвестные ошибки могут произойти в любой части ДНК и остаться незамеченными.

Изменение гена может достичь нужного результата и вылечить от заболевания, но вместе с этим спровоцировать нежелательные изменения. Мы попросту недостаточно знаем о сложных взаимосвязях наших генов, чтобы избежать непредсказуемых последствий.

Работа над точностью и методами наблюдения очень важна в предстоящих клинических испытаниях. И раз уж мы обсудили возможное светлое будущее, также стоит упомянуть и более мрачное видение. Представьте, что может страна вроде Северной Кореи сделать с таким уровнем технологий?

Важно, чтобы технология генной модификации не попала в руки тоталитарным режимам, которые гипотетически могут использовать ее во вред человечеству – например, создать армию генетически модифицированных солдат.

Может она навечно продлить свое правление с помощью принудительной инженерии? Что остановит тоталитарный режим от создания армии модифицированных суперсолдат?

Ведь это в теории возможно. Сценарии вроде этого лежат в далеком будущем, если они вообще возможны, но подтверждение работоспособности концепции такой инженерии уже существует. Технология и правда настолько могущественна.

Подобное может стать поводом для запрета инженерии и связанных с ней исследований, но это определенно было бы ошибкой. Запрет на генную инженерию человека только приведёт науку в области с такими правилами и законами, с которыми нам было бы не по себе. Только участвуя в процессе, мы сможем быть уверены, что исследование ведется с осторожностью, разумом, контролем и прозрачностью.

Мы можем исследовать и внедрять в человека любые генные модификации.

Заключение

Чувствуете беспокойство? Почти в каждом из нас есть какое-то несовершенство. Позволили бы нам существовать в подобном новом мире? Технология несколько устрашает, но нам есть что выиграть, да и генная инженерия может быть очередной ступенью в эволюции разумных видов жизни.

Возможно мы покончим с болезнями, увеличим продолжительность жизни на века и отправимся к звездам. Не стоит мелко мыслить, говоря о такой теме. Каким бы ни было ваше мнение о генной инженерии, будущее наступает несмотря ни на что.

То, что раньше было научной фантастикой, вскоре станет нашей новой реальностью.
Реальностью, полной возможностей и препятствий.

Вы можете также посмотреть непосредственно само видео:

Вчера стало известно, что Великобритании разрешат в исследовательских целях редактировать геном эмбрионов человека. Для этого будет использоваться открытая буквально несколько лет назад технология CRISPR/Cas9. Мы попытались ответить на самые очевидные вопросы, которые в связи с этим возникают: что это такое, зачем это нужно и как новая технология изменит медицину.

Что конкретно произошло?

Британское государственное агентство HFEA (Human Fertilisation and Embryology Authority - Управление по эмбриологии и искусственному оплодотворению) проводить генетическую модификацию человеческих эмбрионов с помощью технологии CRISPR/Cas9. До сих пор подобные исследования в Соединенном Королевстве и на Западе вообще были запрещены. Ранее, первые эксперименты были проведены в Китае, но их легальный статус был неясен и они вызвали поток критики со стороны исследователей. Великобритания же станет первой из западных стран, официально разрешивших применение технологии редактирования генома по отношению к человеческим эмбрионам.

Стоит отметить, что разрешение касается только исследовательских целей. Выдано оно пока единственному научному коллективу - группе, возглавляемой Кети Никен (Kathy Niakan) из Института Френсиса Крика. Ученые будут обязаны уничтожить полученные ГМ-эмбрионы в течение 14 дней после их получения. И, конечно, их нельзя будет подсаживать женщине для вынашивания.

И что же тогда в этом сенсационного?

Старт исследований в Великобритании - это важный шаг для начала применения технологии редактирования генома на людях. Потенциально, технология CRISPR/Cas9 способна изменить отношение человечества к сотням и тысячам наследственных заболеваний. Если раньше они были либо полностью неизлечимы, либо допускали паллиативное, симптоматическое лечение, то сейчас открывается возможность их лечить «по-настоящему», то есть устранять саму причину возникновения болезни.

Одновременно с появлением технологии редактирования генома появляется и возможность его «улучшения», в самых разных смыслах. Пока речь идет о довольно простых (с точки зрения механизма наследования) заболеваниях, но потенциально мишенями для редактирования могут стать не только «поломанные» гены, но и гены просто связанные с повышенным риском для здоровья. Или даже гены, отвечающие за безобидные физиологические особенности вроде способности пить молоко во взрослом возрасте или успехи в спорте.

Эта технология позволит лечить рак?

Возможно, но не сразу. То, что называется в обиходе «раком» - это гигантское семейство различных болезней с различными механизмами возникновения. Существуют разновидности рака, вероятность возникновения которых тесно связана с особо «неудачными» вариантами некоторых генов. Типичный пример - ген BRCA1 , мутации в котором могут повышать вероятность возникновения рака груди в несколько раз. Потенциально, с помощью технологии CRISPR/Cas9 можно внести изменения в геном сперматозоида или яйцеклетки и таким образом предотвратить передачу мутантного варианта гена своим детям.

Проблема в том, что для большинства онкологических заболеваний наследственность не играет большой роли, а значит, технология редактирования генома будет почти бесполезна. С другой стороны, существуют тяжелые наследственные заболевания, у которых высокая наследуемость, но она настолько сложна и запутана, что не понятно, где и какие нужно вносить изменения в геном, чтобы снизить риск их возникновения. Типичный пример - шизофрения, риск развития которой, как считается, наследуется на 80 процентов (это показано на однояйцевых близнецах). При этом молекулярный механизм наследования шизофрении до самого последнего времени был совершенно непонятен и .

Если говорить о том, что с помощью CRISPR/Cas9 можно будет лечить в первую очередь, то это прежде всего простые моногенные заболевания вроде бета-талассемии, муковисцидоза или гемофилии.

Что нового в этой технологии, если методы создания ГМ-животных давно известны?

Получить ГМО можно разными путями, в том числе и с помощью системы CRISPR/Cas9. Сейчас именно на эту технологию переходит все больше и больше бионженеров. Однако между старыми и новыми технологиями есть одно принципиальное отличие: это направленность внесения изменений. Именно в ней заключается принципиальное отличие технологии CRISPR/Cas9.

Раньше, чтобы добиться появления нового нужного свойства у организма биоинженеры просто встраивали ДНК-конструкцию в клетки. При этом место в геноме, куда эта конструкция попадет, предсказать было невозможно (за исключением отдельных случаев вроде пекарских дрожжей). Это приводило к тому, что, во-первых, природная версия гена в геноме сохранялась (если она там, конечно, была) и только дополнялась новой, искусственной версией.

Такой метод подходит для получения какого-то нового свойства, например, усиленной выработки гормона роста у ГМ-лосося или для синтеза витамина А в зернах риса. Однако когда речь идет о замене сломанного гена на его правильную копию, тем более в человеческой ДНК, то понятно, что ненаправленность - это большой минус. Кроме того, случайное встраивание в геном может приводить к неэффективной работе трансгена - активность любого гена у ядерных организмов зависит от его окружения, от локальной структуры хроматина. Поэтому трансген, попавший в неудачный кусок генома, может оказаться просто-напросто выключен или, наоборот, слишком активен. В отличие от старых методов технология CRISPR/Cas9 позволяет не просто встроить новую последовательность в ДНК, а заменить ее старую версию на новую.


И как это работает?

В два этапа. Сначала специальная нуклеаза (т. е. фермент, разрезающий ДНК), вносит двуцепочечный разрыв в нужное место генома. Это место нуклеаза находит с помощью короткой направляющей РНК (подобранной учеными), чья последовательность должна с точностью до буквы совпадать с нужной последовательностью в геноме. После того, как разрыв внесен, включаются внутренние механизмы клетки, так называемая система репарации.

Нужно понимать, что появление двуцепочечного разрыва в ДНК - это аварийная ситуация для любой клетки. Разрыв ведет к появлению мутаций и вообще угрожает целостности генома. Поэтому существуют специальные белки, которые находят «оборванные концы» в геноме и запускают реакцию «починки». Разрыв, конечно, может быть просто склеен обратно, но это чревато потерей нескольких «букв» на месте стыка и, как следствие, сдвигом рамки считывания и полным выключением гена. Поэтому клетка обычно предпочитает найти похожую последовательность поблизости в геноме и использовать ее в качестве образца для восстановления правильной последовательности в месте разрыва. Вот тут-то ферментам можно подсунуть тот вариант ДНК, которым мы хотим заменить природную последовательность.

Система гомологичной рекомбинации известна с 70-х годов прошлого века, что нового привнесла технология CRISPR/Cas9?

Метод редактирования генома CRISPR/Cas9, по крайней мере в той форме, что существует сейчас, никак не затрагивает природный механизм рекомбинации - после того, как разрыв внесен, замена ДНК происходит за счет природных механизмов.

Сложность с редактированием генома до сих пор заключалась именно в том, чтобы внести этот разрыв. Он должен появится в одном-единственном месте генома и нигде больше - именно потому, что такие разрывы ведут к появлению мутаций. Для сравнения, размер генома человека составляет около трех миллиардов нуклеотидов, а направляющая последовательность РНК, которая должна найти в геноме свое место посадки, имеет в длину около двадцати-сорока нуклеотидов. Удивительно, что ей вообще это удается. Если же речь идет не об отдельной клетке, а о генной терапии целой ткани, то задача становится еще сложнее - все клетки должны быть модифицированы, но каждая только по одному разу.

До открытия системы CRISPR/Cas9 ученые уже пытались разработать методы внесения направленных разрывов в ДНК. Например, большую работу в этом направлении проделал наш бывший соотечественник Федор Урнов. Речь идет о рациональном дизайне белков-нуклеаз, которые бы самостоятельно (без направляющей РНК) находили уникальные последовательности в геноме. Сложность с этими методами в том, что они требуют разработки под каждую конкретную задачу своего собственного белка, который затем нужно синтезировать, выделить, протестировать и т. д. Работать с универсальной нуклеазой и специфической направляющей РНК гораздо проще, но ученые не знали о такой возможности, пока не была открыта система бактериального иммунитета.

И при чем здесь бактерии?

За технологией CRISPR/Cas9, которую мы рассматриваем просто как способ редактирования генома, стоит фундаментальное и очень важное для современной биологии открытие. Оно заключается в том, что огромное число бактерий несут в своем геноме (где, казалось бы, все давным-давно понятно) изящную систему адаптивного иммунитета против вирусов. Основа этой системы это особые участки генома - короткие палиндромные кластерные повторы или CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats).

Повторы выступают в роли «полок», между которыми в геноме расположены «досье» на вирусы, с которыми когда-то сталкивались предки данной бактерии. «Досье» - это просто короткие фрагменты ДНК, которые совпадают по последовательности с фрагментами генома ДНК вирусов. Если вирус с совпадающей ДНК попадет в бактериальную клетку, он довольно быстро будет распознан специальным ферментом, нуклеазой Cas9. Последний для поиска вирусной ДНК использует синтезированную с CRISPR РНК-копию.

Если какой-либо фрагмент генома вируса точно совпал с тем, что записано в «досье», Cas9 разрезает вирусную ДНК и запускает цепь реакций, в результате которой вся она уничтожается. В общих чертах эта схема напоминает РНК-интерференцию, которая была открыта у ядерных организмов лет на десять раньше, но это (как и всё у эукариот) существенно более сложная и менее эффективная система.

Ближе к практике. Когда с помощью CRISPR/Cas9 будут лечить?

Уже лечат, хотя пока только лабораторных животных. В начале этого года появились обнадеживающие по лечению миодистрофии Дюшена у взрослых мышей, причем эксперименты были проведены в трех различных лабораториях независимо. Буквально на днях стало известно об успешном применении технологии для .

Стартап Editas Medicine, тесно связанный с первооткрывателями технологии, уже более 120 миллионов долларов инвестиций (в том числе от Google). Эти деньги пойдут на создание экспериментального лечения амавроза Лебера десятого типа - это наследственная слепота, связанная с повреждением одного из генов, необходимых для работы светочувствительных клеток сетчатки. Клинические (то есть на людях) испытания в Editas Medicine обещают начать .

Почему же китайская работа с эмбрионами вызвала скандал и зачем британцы разрешили работу только в исследовательских целях? В чем проблема?

Проблема в долгосрочных последствиях процедуры редактирования генома, которые сейчас сложно предсказать. Это звучит как бессмысленный алармизм, обычно исходящий из уст противников ГМО, но на самом деле здесь ситуация принципиально иная.

Эффективность редактирования с помощью CRISPR/Cas9 пока недостаточна для того, чтобы говорить о «точном как скальпель» исправлении генома - что бы там не писали авторы популярных изданий. Одновременно с нужным разрывом в геном часто вносятся и лишние, а это, как уже говорилось, провоцирует мутации. Даже если разрыв внесен правильно, эффективность гомологичной рекомбинации, за счет которой происходит замена исходной последовательности на нужную, очень далека от 100 процентов.

Какова реальная эффективность - вопрос более сложный, чем кажется, ведь она сильно зависит от типа и природы клеток, в которых проводится редактирование. То, что хорошо работает на мышах, может плохо работать на людях. И пока исследователи не станут работать с реальными человеческими эмбрионами и яйцеклетками об эффективности процедуры и уровне случайных разрывов можно будет только догадываться.

На сегодняшний день есть результаты только одного эксперимента с редактированием генома в человеческом эмбрионе - те самые, что были опубликованы китайской группой в апреле прошлого года (и отвергнуты Science и Nature по этическим основаниям). Тогда ученые работали с 86 оплодотворенными яйцеклетками, из которых 71 выжила и 54 были отобраны на анализ. В 28 из 54 клеток фермент Cas9 внес нужные разрывы в геном, но только в четырех случаях репарация разрыва завершилась заменой последовательности гена на нужную. Одновременно с этим ученые обнаружили в геноме клеток множественные разрывы там, где их не должно быть.

Такая низкая эффективность и высокий уровень ошибок оказались сюрпризом для самих авторов работы, о чем они честно признаются в статье. С чем эта низкая эффективность связана - с «кривыми» руками ученых или с особенностями человеческих эмбрионов, - будет непонятно до тех пор, пока эксперименты не будут многократно повторены другими группами. До сегодняшнего дня, когда Великобритания, наконец, разрешила их проводить, такой возможности у западных исследователей не было.


И что теперь будет?

Будем надеяться, что технологию удастся довести до приемлемого уровня точности и эффективности. Многое в этом направлении было сделано уже после публикации китайской работы. Например, в декабре прошлого года ученым удалось создать искусственную версию фермента Cas9, которая .

Эффективность замены последовательности повысить будет сложнее, так как она целиком полагается на природные механизмы гомологичной рекомбинации, но работа в этом направлении ведется. Однако даже если эффективность останется низкой, при отсутствии побочных эффектов технологию CRISPR/Cas9 все же можно будет применить для внесения наследуемых изменений в зародышевую линию человека. Например, можно взять у пациента клетки соединительной ткани, провести редактирование генома и отобрать только те из них, где редактирование прошло без осложнений. Эти клетки можно использовать для получения индуцированных стволовых клеток, из которых можно затем получить сперматозоиды и использовать их в ЭКО. Здесь возникают свои сложности, но по крайней мере на животных эта технология работает.

Но не все так радужно на CRISPR-горизонте. Чем ближе реальное клиническое применение технологии, тем сильнее разгорается спор о том, кто получит от нее доход. По некоторым оценкам, стоимость исключительного патента на технологию может достигать многих сотен миллионов долларов (по крайней мере в таких суммах измеряется объем венчурного финансирования CRISPR/Cas9-стартапов). Патентный спор вокруг CRISPR/Cas9 обещает быть громче, чем все, что когда-либо происходило в сфере интеллектуальной собственности на биотехнологии.

11 января этого года Ведомство по патентам и товарным знакам США (USPTO) начало процедуру проверки патентов, относящихся к CRISPR/Cas9, на предмет «интерференции». Чиновникам предстоит определить, какой из исследовательских групп, владеющих схожими патентами, следует отдать приоритет в создании технологии: в ход пойдут публикации, свидетельские показания, почтовая переписка и записи в лабораторных журналах. От исхода процесса будет зависеть будущее всей технологии, ведь законные владельцы смогут просто запретить использование своей технологии компаниями-конкурентами, а это, в конечном итоге, поставит крест на надеждах быстрого внедрения CRISPR/Cas9 в клинику.

Ученые, которые поначалу совместно пытались довести технологию до ума, разделились как минимум на два оппозиционных лагеря, каждый из которых претендует на приоритет открытия. С одной стороны, это Дженифер Дудна , которая совместно с Эммануэль Шарпетье опубликовала ключевую работу по практическому применению Cas9 при модификации генома. Вышла эта статья в конце 2012 года. Весной следующего года Дудна подала патент на эту технологию, но в том же году появилось множество сходных работ от других исследователей, которые пытались по-своему усовершенствовать метод. Один из них, Фен Женг (Feng Zhang) из Института Броуда подал собственный патент на CRISPR/Cas9 в октябре того же 2013. И хотя это произошло уже после подачи патента Дудны, патент Женг прошел по упрощенной процедуре и был выдан первым.

Сейчас в патентном споре в ход пошла крупная артиллерия: Эрик Лендер, профессор MIT и один из со-председателей Комитета по науке и технологиям при президенте США, на днях опубликовал в Cell «Герои CRISPR», в которой излагает свой взгляд на то, кто во всей этой истории внес наибольший вклад и почему. Чем вызван порыв Лендера разобраться в этом вопросе именно сейчас - желанием повлиять на патентное бюро или чисто академическим интересом, - не понятно. Вполне ожидаемо, однако, что он (как основатель Института Броуда, от которого Женг подавал свой патент), придает вкладу Дудны и Шарпентье не такое большое значение, как хотелось бы последним. Ясно, что Дудна и Шарпеньтье, каким бы большим ни был академический и аппаратный вес Лендера, не сдадутся без боя. Достаточно посмотреть на их

Если бы у вас была возможность уничтожить рак, вы бы сделали это? Избавить мир от ВИЧ-инфекции или истребить вид комаров, переносящих вирус Зика? CRISPR - новый метод редактирования генов, позволяющий ученым вырезать нежелательные фрагменты ДНК с хирургической точностью, способен на это. И именно эта технология может радикально изменить наш привычный мир уже в самом ближайшем будущем.
Сегодня мы поговорим как раз о CRISPR. Данная технология редактирования генов может не только значительно развить сферу медицины, но и избавить нас от известных проблем продовольственного снабжения. Возможности и потенциал CRISPR кажутся бесконечными, поэтому мы решили объединить наиболее интересные из них в одном материале.

Что такое CRISPR

CRISPR (также известный как «CRISPR-Cas9») - уникальный инструмент для редактирования генома. Позволяет генетикам и медицинским исследователям редактировать части генома путем удаления, добавления или изменения последовательных участков ДНК. Более того, CRISPR быстрее, дешевле и точнее, чем все предыдущие известные методы редактирования ДНК и имеет широкий спектр потенциальных применений.

На данный момент технология CRISPR является самым простым, универсальным и точным методом генетической манипуляции. Мир науки потрясен от одного только потенциала CRISPR, и это нисколько не преувеличено.

Как это работает?
Система CRISPR-Cas9 состоит из двух ключевых молекул, которые вводят изменение (мутацию) в ДНК. Это:

  • Фермент, называемый «Cas9» . Данная молекула CRISPR действует как пара «молекулярных ножниц». Cas9 может вырезать нити ДНК в определенном месте в геноме, чтобы затем можно было добавить или удалить фрагменты ДНК.
  • Часть РНК, называемая «гРНК» (гидовая РНК) . гРНК состоит из небольшого фрагмента предварительно разработанной последовательности РНК (длиной около 20 оснований), расположенного в более длинном участке ДНК. Этот участок связывается с ДНК и РНК для «направления» Cas9 в правую часть генома.
Так что же может CRISPR и почему эта технология изменит мир?

Укрепление продовольственной культуры

Методы технологии CRISPR позволяют ученым навсегда забыть о ГМО-продуктах и слабой пищевой культуре, подверженной ошибкам и различным заболеваниям. С помощью CRISPR можно вывести пищевую промышленность на новый уровень - наращивать производство, одновременно избавляя продукты от трифосфатов (пищевой стабилизатор, признанный вредным для здоровья человека). В таком случае также отпадает необходимость в использовании вредных пестицидов - препаратов для борьбы с вредителями растений.

Министерство сельского хозяйства США отрицательно отреагировало на продукты, подверженные редактированию CRISPR. Жители тем временем встали на защиту своих урожаев и выразились против генетически модифицированных продуктов. Тем не менее, CRISPR-продукты - это не ГМО. Посредством этой технологии можно удалять потенциально опасные гены и делать продукты здоровыми, качественными и долговечными.

Уничтожение рака

Редактирование генов человека с помощью CRISPR по-прежнему является очень противоречивым. Однако, эта технология может улучшить иммунотерапию рака и даже вырезать гены, вызывающие раковые клетки, прежде чем они начнут наносить смертельный ущерб человеческому телу.

В 2016 году Национальные институты здравоохранения начали исследование по уничтожению трех различных видов рака на людях через технологию редактирования генов CRISPR. Проект получил поддержку интернет-миллиардера Шона Паркера (Sean Parker) и был возглавлен опытными учеными из Университета Пенсильвании.

Результаты исследования станут известны не скоро, поскольку проект все еще ждет одобрения со стороны FDA (Управление по контролю за качеством пищевых продуктов и лекарственных препаратов).

Избавление от комаров с вирусом Зика

Ученым уже удалось реализовать возможность искоренения комаров вида Aedes Aegypti (желтолихорадочный), которые могут распространять вирус Зика. Технология CRISPR же способна уничтожить целый вид в одном поколении.

Несмотря на то, что CRISPR может уничтожить вредоносный вид комаров прямо сейчас, идея эта является довольно спорной. Существует единственный, но очень существенный аргумент против использования редактирования генома для комаров - это создание непредвиденной экологической катастрофы. Человечество еще не полностью понимает, какую роль играют москиты в окружающей среде, поэтому просто убрать их как вид нельзя. Иначе последствия неизбежны, и самое страшное - никто не знает, что случится.

Второй возможный вариант развития событий - использование CRISPR может привести к ошибке и непреднамеренно создать новый, усовершенствованный вид супер-комаров. Например, они будут абсолютно невосприимчивыми к современным технологиями. Или дефектная ДНК может каким-то образом перейти к другим насекомым и, опять же, вызвать экологическую катастрофу.

Лекарства от всех болезней

Потенциал технологии CRISPR может привести к созданию усовершенствованных лекарственных препаратов со способностью модифицирования клеток в организме. Примерное представление возможностей таких лекарств - лечение практически всех болезней, простых и сложных, редких и унаследованных.

В прошлом году компания Bayer заключила сделку с CRISPR Therapeutics - стартапом команды новаторов, открывших технологию Cas9 Emmanuelle Charpentiere для создания лекарств с использованием этой технологии. Вскоре появились другие фармацевтические компании, открывшие двери для создания эффективнейших лекарств.

Как итог - CRISPR вполне может устроить революцию в фармацевтической промышленности.

Исцеление слепых

В конце прошлой осени ученые опубликовали первое исследование, в котором CRISPR применяется для исцеления слепоты. Инструмент для редактирования генов использовался на крысах для замены некачественной генетики, вызывающей слепоту, с помощью рабочего набора здоровых генов.

Исследование, проведенное в Институте Салк в Калифорнии, привело к частичному восстановлению зрения.

Также в другом исследовании, которое проводилось Колумбийским и Айовским университетами в начале 2016 года, ученые смогли показать, что можно успешно вылечить человека с врожденным генетическим дефектом зрения используя технологию CRISPR.

Таким образом, через редактирование генома человеку можно восстановить зрение. В реальности это звучит как чудо, но это более чем возможно.

Устранение ВИЧ-инфекции

В настоящее время людей со смертельной ВИЧ-инфекцией лечат с помощью токсичной смеси антиретровирусных препаратов. Они подавляют вирус, тем самым не давая ему себя реплицировать и превратиться в полномасштабный СПИД. CRISPR может , что доказало недавнее исследование, о котором мы писали на Трешбоксе.

Исследование с участием мышей показало, что CRISPR можно запрограммировать на уничтожение любого в носителе с невероятной точностью. Речь идет и о возможном удалении первичной ДНК ВИЧ-1 из организма. В конечном счете, если полностью вырезать ДНК вируса, можно остановить его распространение.

Следующим этапом исследования станет повторение процесса на приматах, после чего начнутся испытания на людях. Люди будущего смогут жить без боязни приобретения иммунодефицита.

Удаление генетических заболеваний до рождения

На прошлой неделе ученые из Университета здоровья и науки штата Орегон опубликовали документ, в котором изложили способ успешного использования CRISPR для уничтожения генетически унаследованной сердечной мутации у эмбрионов человека. Проще говоря, еще даже не родившийся ребенок может появиться на свет без унаследованных заболеваний.

Зародышам разрешалось расти в течение нескольких дней, но технология дала положительный результат. Это был первый случай, когда ученые использовали CRISPR на человеческих эмбрионах. Тогда же ученые смогли впервые продемонстрировать, что технология редактирования генома может производить здоровые эмбрионы.

Представьте себе мир, в котором люди рождаются без болезней. CRISPR - ключ к такому будущему.

Заключение

Как вы можете видеть, CRISPR - действительно удивительная технология, способная в корне изменить текущие методы лечения. Несмотря на то, что сейчас на базе этой технологии в основном проводятся только разнообразные исследования и тестирования, невероятные результаты есть уже сейчас. Они опубликованы в сети и доступны для просмотра любому желающему. И они вселяют надежду на лучшее будущее для человечества.