Метаболизм жиров (липидный обмен) в организме. Липидный обмен: основные этапы метаболизма жиров

Пора перейти к более тонкой настройке питания атлета. Понимание всех нюансов метаболизма – ключ к спортивным достижениям. Тонкая настройка позволит вам отойти от классических диетических формул и подстроить питание индивидуально под сосбвенные потребности, достигая максимально быстрых и стойких результатов в тренировках и соревнованиях. Итак, изучим самый спорный аспект современной диетологии – метаболизм жиров.

Общие сведения

Научный факт: жиры усваиваются и расщепляются в нашем организме весьма избирательно. Так, в пищеварительном тракте человека просто нет ферментов, способных переварить транс-жиры. Инфильтрат печени просто стремится вывести их из организма кратчайшим путем. Пожалуй, каждый знает, что, если съесть много жирной пищи, это вызывает тошноту.

Постоянный избыток жиров ведет к таким последствиям, как:

  • диарея;
  • несварение желудка;
  • панкреатит;
  • высыпания на лице;
  • апатия, слабость и усталость;
  • так называемое «жировое похмелье».

С другой стороны, баланс жирных кислот в организме крайне важен для достижения спортивных результатов — в частности в плане повышения выносливости и силы. В процессе метаболизма липидов происходит регулирование всех систем организма, включая гормональные и генетические.

Рассмотрим подробнее, какие жиры полезны для нашего организма, и как их употреблять, чтобы они помогали достигать желаемого результата.

Виды жиров

Основные виды жирных кислот, поступающие в наш организм:

  • простые;
  • сложные;
  • произвольные.

По другой классификации жиры делятся на мононенасыщенные и полиненасыщенные (например, тут подробно об ) жирные кислоты. Это полезные для человека жиры. Есть ещё насыщенные жирные кислоты, а также транс-жиры: это вредные соединения, которые препятствуют усвоению незаменимых жирных кислот, затрудняют транспорт аминокислот, стимулируют катаболические процессы. Другими словами, такие жиры не нужны ни спортсменам, ни обычным людям.

Простые

Для начала рассмотрим самые опасные но, при этом, самые часто встречающиеся жиры, которые попадают в наш организм – это простые жирные кислоты.

В чем их особенность: они распадаются под воздействием любой внешней кислоты, включая желудочный сок, на этиловый спирт и ненасыщенные жирные кислоты.

Кроме того, именно эти жиры становятся источником дешевой энергии в организме. Они образуются как результат превращения углеводов в печени. Этот процесс развивается по двум направлениям — либо в сторону синтезирования гликогена, либо в сторону нарастания жировой ткани. Такая ткань практически целиком состоят из окисленной глюкозы, чтобы в критической ситуации организм мог быстро синтезировать из неё энергию.

Простые жиры наиболее опасны для спортсмена:

  1. Простая структура жиров практически не нагружает ЖКТ и гормональную систему. В результате человек с легкостью получает избыточную нагрузку по калорийности, что в приводит к набору лишнего веса.
  2. При их распаде выделяется отравляющий организм спирт, который с трудом метаболизируется и ведет к ухудшению общего самочувствия.
  3. Они транспортируются без помощи дополнительных транспортировочных белков, а значит, могут прилипать к стенкам сосудов, что чревато образованием холестериновых бляшек.

Подробнее о продуктах, которые метаболизириуются в простые жиры, читайте в разделе Таблица продуктов.

Сложные

Сложные жиры животного происхождения при правильном питании входят в составы мышечной ткани. В отличие от своих предшественников, это многомолекулярные соединения.

Перечислим основные особенности сложных жиров в плане влияния на организм спортсмена:

  • Сложные жиры практически не метаболизируются без помощи свободных транспортировочных белков.
  • При правильном соблюдении жирового баланса в организме сложные жиры метаболизируются с выделением полезного холестерина.
  • Они практически не откладываются в виде холестериновых бляшек на стенках сосудов.
  • Со сложными жирами невозможно получить переизбыток калорийности — если сложные жиры метаболизируются в организме без открытия инсулином транспортировочного депо, которое обуславливает понижение глюкозы в крови.
  • Сложные жиры нагружают клетки печени, что может привести к дисбалансу кишечника и к дисбактериозу.
  • Процесс расщепления сложных жиров приводит к увеличению кислотности, что негативно сказывается на общем состоянии ЖКТ и чревато развитием гастрита и язвенной болезни.

В то же время жирные кислоты многомолекулярной структуры содержат радикалы, связанные липидными связями, а значит, они могут денатурировать до состояния свободных радикалов под воздействием температуры. В умеренном количестве сложные жиры полезны для атлета, но не стоит подвергать их термической обработке. В этом случае они метаболизируются в простые жиры с выделением огромного количества свободных радикалов (потенциальных канцерогенов).

Произвольные

Произвольные жиры – это жиры с гибридной структурой. Для атлета это наиболее полезные жиры.

В большинстве случаев организм способен самостоятельно превращать сложные жиры в произвольные. Однако в процессе липидного изменения формулы выделяются спирты и свободные радикалы.

Употребление произвольных жиров:

  • снижает вероятность образования свободных радикалов;
  • уменьшает вероятность появления холестериновых бляшек;
  • положительно влияет на синтез полезных гормонов;
  • практически не нагружает пищеварительную систему;
  • не ведет к переизбытку калорийности;
  • не вызывают притока дополнительной кислоты.

Несмотря на множество полезных свойств, полиненасыщенные кислоты (по сути это и есть произвольные жиры) легко метаболизируются в простые жиры, а сложные структуры, имеющие недостаток молекул – легко метаболизируются в свободные радикалы, получая завершенную структуру из молекул глюкозы.

Что нужно знать спортсмену?

А теперь перейдем к тому, что из всего курса биохимии нужно знать атлету об обмене липидов в организме:

Пункт 1. Классическое питание, не приспособленное под спортивные нужды, содержит множество простых молекул жирных кислот. Это плохо. Вывод: радикально уменьшать потребление жирных кислот и перестать жарить на масле.

Пункт 2. Под воздействием термической обработки полиненасыщенные кислоты распадаются до простых жиров. Вывод: заменить жареную пищу на печеную. Основным источником жиров должны стать растительные масла — заправляйте ими салаты.

Пункт 3 . Не употребляйте жирные кислоты вместе с углеводами. Под воздействием инсулина жиры практически без воздействия транспортных белков в своей завершенной структуре попадают в липидное депо. В дальнейшем даже при жиросжигательных процессах они будут выделять этиловый спирт, а это — дополнительный удар по метаболизму.

А теперь о пользе жиров:

  • Жиры нужно употреблять обязательно, так как они смазывают суставы и связки.
  • В процессе обмена жиров происходит синтез основных гормонов.
  • Для создания положительного анаболического фона нужно поддерживать в организме баланс полиненасыщенных омега 3, омега 6 и омега 9 жиров.

Для достижения правильного баланса нужно ограничить общее потребление калорий из жиров до 20% по отношению к общему плану питания. При этом важно принимать их в соединении с белковыми продуктами, а не с углеводными. В этом случае транспортировочные , которые будут синтезироваться в кислотной среде желудочного сока, смогут практически сразу метаболизировать излишек жиров, выводя его из кровеносной системы и переваривая до конечного продукта жизнедеятельности организма.

Таблица продуктов

Продукт Омега-3 Омега-6 Омега- 3: Омега-6
Шпинат (в готовом виде) 0.1
Шпинат 0.1 Остаточные моменты, меньше милиграмма
свежая 1.058 0.114 1: 0.11
Устрицы 0.840 0.041 1: 0.04
0.144 - 1.554 0.010 — 0.058 1: 0.005 – 1: 0.40
Треска тихоокеанская 0.111 0.008 1: 0.04
Скумбрия тихоокеанская свежая 1.514 0.115 1: 0.08
Скумбрия атлантическая свежая 1.580 0.1111 1: 0. 08
тихоокеанская свежая 1.418 0.1111 1: 0.08
Свекольная ботва. припущенная Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма
Сардины атлантические 1.480 0.110 1: 0.08
Рыба-меч 0.815 0.040 1: 0.04
Рапсовое жидкий жир в виде масла 14.504 11.148 1: 1.8
Пальмовое жидкий жир в виде масла 11.100 0.100 1: 45
Палтус свежий 0.5511 0.048 1: 0.05
Оливковое жидкий жир в виде масла 11.854 0.851 1: 14
Атлантический угорь свежий 0.554 0.1115 1: 0.40
Атлантический гребешок 0.4115 0.004 1: 0.01
Морские моллюски 0.4115 0.041 1: 0.08
Жидкий жир в виде масла макадамии 1.400 0 Нет Омега-3
Жидкий жир в виде масла льняного семени 11.801 54.400 1: 0.1
Жидкий жир в виде масла лесного ореха 10.101 0 Нет Омега-3
Жидкий жир в виде масла авокадо 11.541 0.1158 1: 14
Лосось консервированный 1.414 0.151 1: 0.11
Лосось атлантический. выращенный на ферме 1.505 0.1181 1: 0.411
Лосось атлантический атлантический 1.585 0.181 1: 0.05
Листовые элементы репы. припущенные Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма
Листовые элементы одуванчика. припущенные 0.1 Остаточные моменты, меньше милиграмма
Листовые элементы мангольда в тушёном виде 0.0 Остаточные моменты, меньше милиграмма
Листовые элементы красного салата в свежем виде Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма
Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма
Листовые элементы желтого салата в свежем виде Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма
Листовая капуста коллард. тушеная 0.1 0.1
Кубанское подсолнечное жидкий жир в виде масла (содержание олеиновой кислоты 80% и выше) 4.505 0.1111 1: 111
Креветки 0.501 0.018 1: 0.05
Кокосовое жидкий жир в виде масла 1.800 0 Нет Омега-3
Кейл. припущенный 0.1 0.1
Камбала 0.554 0.008 1: 0.1
Какао жидкий жир в виде масла 1.800 0.100 1: 18
Икра чёрная и 5.8811 0.081 1: 0.01
Горчичные листовые элементы. припущенные Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма
Бостонский салат в свежем виде Остаточные моменты, меньше милиграмма Остаточные моменты, меньше милиграмма

Итог

Итак, рекомендация всех времён и народов «есть меньше жирного» верна лишь отчасти. Некоторые жирные кислоты просто незаменимы и должны обязательно входить в рацион спортсмена. Чтобы правильно понять, как атлету употреблять жиры, приведём такую историю:

Молодой атлет подходит к тренеру и спрашивает: как правильно есть жиры? Тренер отвечает: не ешь жиры. После этого, атлет понимает, что жиры вредны для организма и учится планировать свое питание без липидов. Затем он находит лазейки, при которых использование липидов оправдано. Он учится составлять идеальный план питания с вариативными жирами. И когда он сам становится тренером, а к нему подходит молодой атлет и спрашивает, как правильно есть жиры, он тоже отвечает: не ешь жиры.

Поступая в организм человека через пищеварительную систему, жирные кислоты в составе микроскопических капель попадают в кровь. Небольшая часть поступивших с пищей жиров превращается в специфические человеческие жиры уже в стенках кишечника.

А дальнейшая судьба жировых капель из крови во многом зависит от гормонального баланса в организме.

В метаболизме жирных кислот в организме наиболее активно участвуют жировая ткань и клетки печени. Частично жирные кислоты преобразуются в энергию в красных мышечных волокнах и других органах и тканях.

Если в крови присутствует инсулин, жирные кислоты из неё быстро переходят в клетки жировой ткани. Более того, повышенная концентрация в крови инсулина к тому же усиливает синтез жирных кислот из углеводов в клетках печени. Далее эти кислоты выходят в кровь и поступают в жировую ткань.

Таким образом, в присутствии инсулина происходит накапливание жира в жировой ткани и происходит стимуляция синтеза жиров из углеводов. Причём, чем выше концентрация инсулина (чем выше уровень глюкозы в крови), тем выше скорость отложения жиров и их синтеза. «Быстрые углеводы» приводят к наибольшей концентрации инсулина.

Отсутствие инсулина и повышенная концентрация таких гормонов, как адреналин, норадреналин, глюкагон, соматотропин (гормон роста), адренокортикотропный гормон и других, приводит к выходу жирных кислот из жировых клеток в кровь. Стимуляция выработки этих гормонов происходит при интенсивных силовых тренировках. Ключевую роль в выводе жирных кислот из жировых клеток играют щитовидной железы. Поэтому недостаточная функция этой железы может напрямую приводить к ожирению.

Выйдя из жировой ткани в кровь, жирные кислоты поступают в клетки печени и мышц, и подвергаются разложению с образованием большого количества энергии.

Повышенное содержание кислорода и повышенная потребность в энергии на фоне выработки гормонов, стимулирующих выход жирных кислот из жировой ткани, приводят к переводу запасов жира в энергию. Такие условия возникают при регулярных силовых (стимуляция нужных гормонов, повышенная потребность в энергии) и аэробных (повышают содержание кислорода в тканях и потребность в энергии) тренировках.

Около 5% жирных кислот, поступивших в организм с пищей, выводится в неизменном виде через потовые и сальные железы кожи.

Полезные факты о жирах:

При некоторых патологических состояниях может наблюдаться усиленное отложение жира в отдельных местах тела, например в области талии, бёдер. Отложение жира может наблюдаться в отдельных участках жировой ткани, в т.ч. располагающихся по зонам распространения определенных нервных волокон. Это связано с в этой области. Заболевания, при которых наблюдается подобное явление, называются липоматозами, липидозами.

В результате радиоактивного облучения организм может отреагировать усилением синтеза жиров. Возникает пострадиационная гиперлипемия (ожирение).

Гиперфункция щитовидной железы ведет к уменьшению запасов жира, а гипофункция нередко сопровождается ожирением.

Организм здорового человека нормального веса содержит около 15 кг жиров (140 000 ккал ) и только 0,35 кг гликогена (1410 ккал ). На калориях своей жировой ткани здоровый человек может запросто прожить не менее 40 суток (в условиях полного голода).

Растительные жиры не могут быть отложены в жировую ткань. Это связано с особенностью их химического строения и физическими свойствами (наличие ненасыщенных химических связей). Вещества с большим количеством ненасыщенных связей не характерны для организма человека и быстро вовлекаются в метаболизм в качестве источника энергии.

Любые искусственно гидрированные жиры (маргарины) крайне вредны для организма. Они не могут быть полноценно переработаны в реакциях окисления, однако могут быть «ошибочно» использованы организмом для создания клеточных мембран. А поскольку физические свойства гидрированных жирных кислот отличаются от свойств нормальных органических кислот, клетки начинают давать сбои и ошибки. В итоге – нарушения здоровья, новообразования и прочие неприятности вплоть до рака.

Ставшее широко известным в последние годы вещество выполняет в клетках функцию переноса жирных кислот из цитоплазмы клеток в митохондрии. Этот процесс крайне важен для здорового снижения веса, поскольку жирные кислоты преобразуются в энергию именно в митохондриях. И чем активнее идёт перенос, тем быстрее сжигается жир в теле. Однако, заметное влияние дополнительного приёма препаратов L-карнитина на этот процесс сомнительно.

Приём препаратов может дать заметный эффект, если в организме наблюдается нехватка этой аминокислоты. Такое бывает при некоторых заболеваниях и нарушениях в работе организма, при очень скудном питании. Но в здоровом организме любое вещество, находящееся в избытке, с большей вероятностью будет разложено, нежели будет сдвигать метаболические реакции. Если и наблюдаются положительные тенденции при приёме L-карнитина, то всегда вкупе с интенсивной нагрузкой, которая сама по себе приводит к метаболическим сдвигам.

Таким образом, эта добавка может служить не основным, а лишь дополнительным средством стимуляции снижения веса. При этом соотношение цена-эффективность весьма не выгодно, ведь препарат достаточно дорог.

Липидов состоит из четырех этапов: расщепления, всасывания, промежуточного и конечного обменов.

Липидный обмен: расщепление. Большинство липидов, которые входят в состав пищи, усваиваются организмом только после предварительного расщепления. Под воздействием пищеварительных соков они гидролизируются (расщепляются) до простых соединений (глицерола, высших жирных кислот, стеролов, фосфорной кислоты, азотистых оснований, высших спиртов и т.п.), которые всасываются слизистой оболочкой пищеварительного канала.

В ротовой полости пища, содержащая липиды, механически измельчается, перемешивается, смачивается слюной и превращается в пищевой ком. Измельченные пищевые массы по пищеводу поступают в желудок. Здесь они перемешиваются и просачиваются содержит липолитический фермент - липазу, которая может расщеплять эмульгированые жиры. Из желудка пищевые массы мелкими порциями поступают в двенадцатиперстную кишку, потом в тощую и подвздошную. Здесь завершается процесс расщепления липидов и происходит всасывание продуктов их гидролиза. В расщеплении липидов принимают участие желчь, сок поджелудочной железы и кишечный сок.

Желчь - это секрет, который синтезируется гепатоцитами. В входят желчные кислоты и пигменты, продукты распада гемоглобина, муцин, холестерол, лецитин, жиры, некоторые ферменты, гормоны и т.п. Желчь принимает участие в эмульгировании липидов, их расщеплении и всасывании; способствует нормальной перистальтике кишечника; проявляет бактерицидное действие на микрофлору кишечника. синтезируются из холестерола. Жирные кислоты снижают поверхностное натяжение жировых капель, эмульгируя их, стимулируют выделение сока поджелудочной железы, а также активируют действие многих ферментов. В тонком отделе кишечника пищевые массы просачиваются соком поджелудочной железы, в состав которого входят гидрокарбонат натрия и липолитические ферменты: липазы, холинэстеразы, фосфолипазы, фосфатазы и т.д.

Липидный обмен: всасывание. Большая часть липидов всасывается в нижней части двенадцатиперстной и в верхней части Продукты расщепления липидов пищи всасываются эпителием ворсинок. Всасывающая поверхность увеличена за счет микроворсинок. Конечные продукты гидролиза липидов состоят из мелких частиц жира, ди- и моноглицеридов, высших жирных кислот, глицерола, глицерофосфатов, азотистых основ, холестерола, высших спиртов и фосфорной кислоты. В толстом отделе кишечника липолитические ферменты отсутствуют. Слизь толстой кишки содержит незначительное количество фосфолипидов. Холестерол, который не всосался, восстанавливается до копростерина кала.

Липидный обмен: промежуточный обмен. У липидов он имеет некоторые особенности, которые заключаются в том, что в тонком отделе кишечника сразу после всасывания продуктов расщепления происходит ресинтез липидов, присущих человеку.

Липидный обмен: конечный обмен. Основными конечными продуктами липидного обмена являются углекислый газ и вода. Последняя выделяется в составе мочи и пота, частично кала, выдыхаемого воздуха. Углекислый газ выделяется преимущественно легкими. Конечный обмен для отдельных групп липидов имеет свои особенности.

Нарушения липидного обмена. Липидный обмен нарушается при многих инфекционных, инвазионных и незаразных болезнях. Патология липидного обмена наблюдается при нарушении процессов расщепления, всасывания, биосинтеза и липолиза. Среди нарушения обмена липидов наиболее часто регистрируют ожирение.

Ожирение - это предрасположенность организма к чрезмерному увеличению массы тела вследствие избыточного отложения жира в подкожной клетчатке и других тканях организма и межклеточном пространстве. Жиры откладываются внутри жировых клеток в виде триглицеридов. Количество липоцитов не увеличивается, а только увеличивается их объем. Именно такая гипертрофия липоцитов является основным фактором ожирения.

Текст: Кира Ищеева

Метаболизм жиров включает в себя множество химических процессов, задача которых – хранение жиров и их утилизация. Активность процессов метаболизма жиров меняется в зависимости от состояния организма и его потребности в получении дополнительной энергии.

Анаболизм – копилка для жиров

Если в организме есть излишки пищевых калорий, метаболизм жиров способствует процессам их хранения. Когда организм нуждается в энергии, начинает доминировать процесс распада жиров. Сохранять метаболизм жиров сбалансированным помогает здоровая диета без переизбытка калорий.

Анаболизм – часть процесса метаболизма жиров, которая отвечает за их хранение. В человеческом организме печень является первой остановкой, на которой происходит усваивание пищевых жиров. Жиры обрабатываются, упаковываются в «белковые конверты» и выбрасываются в кровь. Пищевые жиры, кроме холестерина, перерабатываются в триглицериды.

Каждая молекула триглицерида имеет химическую основу – сочетание глицерина с тремя жирными кислотами. Жировые клетки захватывают триглицериды и хранят их до тех пор, пока организму не потребуется энергия. Если вы потребляете больше сахара, чем это нужно вашему организму, ваша печень отводит избыток сахара в производство жировых кислот. Через этот механизм избыток диетического сахара превращается в триглицериды, упакованные и помещенные на хранение в жировые клетки.

Катаболизм

Другая часть процесса метаболизма жиров – катаболизм. Когда организм человека нуждается в энергии, сахар является тем топливом, которое используется в первую очередь. Если сахара в организме недостаточно для того, чтобы удовлетворить потребности в энергии, жировые клетки разрушаются и высвобождают хранящийся в них триглицерид, а с ним и жирные кислоты. А микроскопические электростанции, которые называются митохондрии, усваивают жирные кислоты для получения энергии.

Когда наше тело сжигает жир, появляется побочные продукты этого процесса - химические вещества, которые называются кетонами. Кетоны могут служить топливом для мозга, когда количество сахара в организме низкое. Высокий уровень кетонов, связанный с диабетическим кризисом или диабетическим кетоацидозом, может быть потенциально опасным для жизни.

Обмен липидов в организме (жировой обмен)

Биохимия липидного обмена

Жировым обменом называют совокупность процессов переваривания и всасывания нейтральных жиров (триглицеридов) и продуктов их распада в желудочно-кишечном тракте, промежуточного обмена жиров и жирных кислот и выведение жиров, а также продуктов их обмена из организма . Понятия «жировой обмен» и «липидный обмен» часто используются как синонимы, т.к. входящие в состав тканей животных и растений входят нейтральные жиры и жироподобные соединения, объединяются под общим названием липиды.

По среднестатистическим данным в организм взрослого человека с пищей ежесуточно поступает в среднем 70 г жиров животного и растительного происхождения. В ротовой полости жиры не подвергаются никаким изменениям, т.к. слюна не содержит расщепляющих жиры ферментов. Частичное расщепление жиров на глицерин и жирные кислоты начинается в желудке. Однако оно протекает с небольшой скоростью, поскольку в желудочном соке взрослого человека активность фермента липазы, катализирующего гидролитическое расщепление жиров, крайне невысока, а величина рН желудочного сока далека от оптимальной для действия этого фермента (оптимальное значение рН для желудочной липазы находится в пределах 5,5--7,5 единиц рН). Кроме того, в желудке отсутствуют условия для эмульгирования жиров, а липаза может активно гидролизовать только жир, находящийся в форме жировой эмульсии. Поэтому у взрослых людей жиры, составляющие основную массу пищевого жира, в желудке особых изменений не претерпевают.

Однако в целом желудочное пищеварение значительно облегчает последующее переваривание жира в кишечнике. В желудке происходит частичное разрушение липопротеиновых комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Кроме того, даже незначительное по объему расщепление жиров в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и там способствуют эмульгированию жира.

Наиболее сильным эмульгирующим действием обладают желчные кислоты, попадающие в двенадцатиперстную кишку с желчью. В двенадцатиперстную кишку вместе с пищевой массой заносится некоторое количество желудочного сока, содержащего соляную кислоту, которая в двенадцатиперстной кишке нейтрализуется в основном бикарбонатами, содержащимися в панкреатическом и кишечном соке и желчи. Образующиеся при реакции бикарбонатов с соляной кислотой пузырьки углекислого газа разрыхляют пищевую кашицу и способствуют более полному перемешиванию ее с пищеварительными соками. Одновременно начинается эмульгирование жира. Соли желчных кислот адсорбируются в присутствии небольших количеств свободных жирных кислот и моноглицеридов на поверхности капелек жира в виде тончайшей пленки, препятствующей слиянию этих капелек. Кроме того, соли желчных кислот, уменьшая поверхностное натяжение на границе раздела фаз вода -- жир, способствуют дроблению больших капелек жира на меньшие. Создаются условия для образования тонкой и устойчивой жировой эмульсии с частицами диаметром 0,5 мкм и меньше. В результате эмульгирования резко увеличивается поверхность капелек жира, что увеличивает площадь их взаимодействия с липазой, т.е. ускоряет ферментативный гидролиз, а также всасывание.

Основная часть пищевых жиров подвергается расщеплению в верхних отделах тонкой кишки при действии липазы панкреатического сока. Так называемая панкреатическая липаза проявляет оптимум действия при рН около 8,0.

В кишечном соке содержится липаза, катализирующая гидролитическое расщепление моноглицеридов и не действующая на ди- и триглицериды. Ее активность, однако, невысока, поэтому практически основными продуктами, образующимися в кишечнике при расщеплении пищевых жиров, являются жирные кислоты и в-моноглицериды.

Всасывание жиров, как и других липидов, происходит в проксимальной части тонкой кишки. Фактором, лимитирующим этот процесс, по-видимому, является величина капелек жировой эмульсии, диаметр которых не должен превышать 0,5 мкм. Однако основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты и моноглицериды. Всасывание этих соединений происходит при участии желчи.

Небольшие количества глицерина, образующиеся при переваривании жиров, легко всасываются в тонкой кишке. Частично глицерин превращается в б-глицерофосфат в клетках кишечного эпителия, частично поступает в кровяное русло. Жирные кислоты с короткой углеродной цепью (менее 10 углеродных атомов) также легко всасываются в кишечнике и поступают в кровь, минуя какие-либо превращения в кишечной стенке.

Продукты расщепления пищевых жиров, образовавшиеся в кишечнике и поступившие в его стенку, используются для ресинтеза триглицеридов. Биологический смысл этого процесса состоит в том, что в стенке кишечника синтезируются жиры, специфичные для человека и качественно отличающиеся от пищевого жира. Однако способность организма к синтезу жира, специфичного для организма, ограничена. В его жировых депо могут откладываться и чужеродные жиры при их повышенном поступлении в организм.

Механизм ресинтеза триглицеридов в клетках стенки кишечника в общих чертах идентичен их биосинтезу в других тканях.

Через 2 ч после приема пищи, содержащей жиры, развивается так называемая алиментарная гиперлипемия, характеризующаяся повышением концентрации триглицеридов в крови. После приема слишком жирной пищи плазма крови принимает молочный цвет, что объясняется присутствием в ней большого количества хиломикронов (класс липопротеинов, образующихся в тонком кишечнике в процессе всасывания экзогенных липидов). Пик алиментарной гиперлипемии отмечается через 4--6 ч после приема жирной пищи, а через 10--12 ч содержание жира в сыворотке крови возвращается к норме, т. е. составляет 0,55--1,65 ммоль/л, или 50--150 мг/100 мл. К этому же времени у здоровых людей из плазмы крови полностью исчезают хиломикроны. Поэтому взятие крови для исследования вообще, а особенно для определения содержания в ней липидов, должно проводиться натощак, спустя 14 ч после последнего приема пищи .

Печень и жировая ткань играют наиболее важную роль в дальнейшей судьбе хиломикронов. Допускают, что гидролиз триглицеридов хиломикронов может происходить как внутри печеночных клеток, так и на их поверхности. В клетках печени имеются ферментные системы, катализирующие превращение глицерина в б-глицерофосфат, а неэтерифицированных жирных кислот (НЭЖК) -- в соответствующие ацил-КоА, которые либо окисляются в печени с выделением энергии, либо используются для синтеза триглицеридов и фосфолипидов. Синтезированные триглицериды и частично фосфолипиды используются для образования липопротеинов очень низкой плотности (пре-в-липопротеинов), которые секретируются печенью и поступают в кровь. Липопротеины очень низкой плотности (в этом виде за сутки в организме человека переносится от 25 до 50 г триглицеридов) являются главной транспортной формой эндогенных триглицеридов.

Хиломикроны из-за своих больших размеров не способны проникать в клетки жировой ткани, поэтому триглицериды хиломикронов подвергаются гидролизу на поверхности эндотелия капилляров, пронизывающих жировую ткань, под действием фермента липопротеинлипазы. В результате расщепления липопротеинлипазой триглицеридов хиломикронов (а также триглицеридов пре-в-липопротеинов) образуются свободные жирные кислоты и глицерин. Часть этих жирных кислот проходит внутрь жировых клеток, а часть связывается с альбуминами сыворотки крови. С током крови покидают жировую ткань глицерин, а также частицы хиломикронов и пре-в-липопротеинов, оставшиеся после расщепления их триглицеридного компонента и получившие название ремнантов. В печени ремнанты подвергаются полному распаду.

После проникновения в жировые клетки жирные кислоты превращаются в свои метаболически активные формы (ацил-КоА) и вступают в реакцию с б-глицерофосфатом, образующимся в жировой ткани из глюкозы. В результате этого взаимодействия ресинтезируются триглицериды, которые пополняют общий запас триглицеридов жировой ткани.

Расщепление триглицеридов хиломикронов в кровеносных капиллярах жировой ткани и печени приводит к фактическому исчезновению самих хиломикронов и сопровождается просветлением плазмы крови, т.е. потерей ею молочного цвета. Это просветление может быть ускорено гепарином. Промежуточный жировой обмен включает следующие процессы: мобилизацию жирных кислот из жировых депо и их окисление, биосинтез жирных кислот и триглицеридов и превращение непредельных жирных кислот.

В жировой ткани человека содержится большое количество жира, преимущественно в виде триглицеридов. которые выполняют в обмене жиров такую же функцию, как гликоген печени в обмене углеводов. Запасы триглицеридов могут потребляться при голодании, физической работе и других состояниях, требующих большой затраты энергии. Запасы этих веществ пополняются после потребления пищи. Организм здорового человека содержит около 15 кг триглицеридов (140 000 ккал) и только 0,35 кг гликогена (1410 ккал) .

Триглицеридов жировой ткани при средней энергетической потребности взрослого человека, составляющей 3500 ккал в сутки, теоретически достаточно, чтобы обеспечить 40-дневную потребность организма в энергии.

Триглицериды жировой ткани подвергаются гидролизу (липолизу) под действием ферментов липаз. В жировой ткани содержится несколько липаз, из которых наибольшее значение имеют так называемые гормоночувствительная липаза (триглицеридлипаза), диглицеридлипаза и моноглицеридлипаза. Ресинтезированные триглицериды остаются в жировой ткани, способствуя таким образом сохранению ее общих запасов.

Усиление липолиза в жировой ткани сопровождается нарастанием концентрации свободных жирных кислот в крови. Транспорт жирных кислот осуществляется весьма интенсивно: в организме человека за сутки переносится от 50 до 150 г жирных кислот.

Связанные с альбуминами (простые растворимые в воде белки, проявляющие высокую связывающую способность) жирные кислоты с током крови попадают в органы и ткани, где подвергаются в-окислению (цикл реакций деградации жирных кислот), а затем окислению в цикле трикарбоновых кислот (цикл Кребса). Около 30% жирных кислот задерживается в печени уже при однократном прохождении через нее крови. Некоторое количество жирных кислот, не использованных для синтеза триглицеридов, окисляется в печени до кетоновых тел. Кетоновые тела, не подвергаясь дальнейшим превращениям в печени, попадают с током крови в другие органы и ткани (мышцы, сердце и др.), где окисляются до СО 2 и Н 2 О.

Триглицериды синтезируются во многих органах и тканях, но наиболее важную роль в этом отношении играют печень, стенка кишечника и жировая ткань. В стенке кишечника для ресинтеза триглицеридов используются моноглицериды, в больших количествах поступающие из кишечника после расщепления пищевых жиров. При этом реакции осуществляются в следующей последовательности: моноглицерид + жирнокислотный ацил-КоА (активированная уксусная кислотыа)> диглицерид; диглицерид + жирно-кислотный ацил-КоА > триглицерид.

В норме количество триглицеридов и жирных кислот, выделяющихся из организма человека в неизмененном виде, не превышает 5% от количества жира, принятого с пищей. В основном выведение жира и жирных кислот происходит через кожу с секретами сальных и потовых желез. В секрете потовых желез содержатся главным образом водорастворимые жирные кислоты с короткой углеродной цепью; в секрете сальных желез преобладают нейтральные жиры, эфиры холестерина с высшими жирными кислотами и свободные высшие жирные кислоты, выведение которых обусловливает неприятный запах этих секретов. Небольшое количество жира выделяется в составе отторгающихся клеток эпидермиса.

При заболеваниях кожи, сопровождающихся повышенной секрецией сальных желез (себорея, псориаз, угри и др.) или усиленным ороговением и слущиванием клеток эпителия, выведение жира и жирных кислот через кожу значительно увеличивается.

В процессе переваривания жиров в желудочно-кишечном тракте всасывается около 98% жирных кислот, входящих в состав пищевых жиров, и практически весь образовавшийся глицерин. Оставшееся небольшое количество жирных кислот выделяется с калом в неизмененном виде или же подвергается превращению под воздействием микробной флоры кишечника. В целом за сутки у человека с калом выделяется около 5 г жирных кислот, причем не менее чем половина их имеет полностью микробное происхождение. С мочой выделяется небольшое количество короткоцепочечных жирных кислот (уксусная, масляная, валериановая), а также в-оксимасляная и ацетоуксусная кислоты, количество которых в суточной моче составляет от 3 до 15 мг. Появление высших жирных кислот в моче наблюдается при липоидном нефрозе, переломах трубчатых костей, при заболеваниях мочевых путей, сопровождающихся усиленным слущиванием эпителия, и при состояниях, связанных с появлением в моче альбумина (альбуминурия).

Схематическое изображение ключевых процессов в системе липидного метаболизма представлено в Приложении А.