Органы зрения насекомых. Аппозиционное и суперпозиционное зрение. Сколько глаз у мухи или пчелы

Показать все


Разновидности строения органов зрения

У насекомых глаза могут быть представлены в трех разновидностях:

  • (фасеточные);
  • (дорсальные, оцелли);
  • личиночные (латеральные, личиночные). (фото)

Они имеют различное строение и неодинаковую способность видеть.

Сложные глазавстречаются у большинства насекомых, причем, чем более высокоразвитыми являются последние, тем лучше у них обычно развиты органы зрения. еще называют фасеточными, потому что их наружная поверхность представлена совокупностью расположенных рядом друг с другом линз - фасеток.

Омматидий

Омматидий

А(слева) - аппозиционный омматидий,

B (справа) - суперпозиционный омматидий

1 - аксоны зрительных клеток, 2 - ретинулярные клетки,

3 - роговица, 4 - кристаллический конус,

5 - пигментные клетки, 6 - световод, 7 - рабдом

Сложный глаз состоит из различного, как правило, большого количества отдельных структурных единиц - омматидиев. включают в себя ряд структур, обеспечивающих проведение, преломление света (фасетка, корнеагенные клетки, хрустальный конус) и восприятие зрительных сигналов (ретинальные клетки, рабдом, нервные клетки). Кроме того, у каждого имеется аппарат пигментной изоляции, благодаря чему, он оказывается полностью или частично защищен от попадания боковых лучей.

Схема строения простого глазка

Из всех разновидностей глаз насекомых обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные .

Особенности зрения насекомых

Изучению зрения насекомых посвящено огромное количество научных трудов. Ввиду такого интереса со стороны специалистов, многие особенности работы глаз у Insectaна сегодняшний день достоверно выяснены. Тем не менее, строение органов зрения у этих организмов отличается настолько большим разнообразием, что качество видения, восприятие цвета и объема, различение движущихся и неподвижных предметов, распознавание знакомых визуальных образов и другие свойства зрения колоссальным образом различаются у разных групп насекомых. На это способны повлиять следующие факторы: в сложном глазу - структура омматидиев и их количество, выпуклость, расположение и форма глаз; в простых глазках и - их число и тонкие черты строения, которые могут быть представлены значительным многообразием вариантов. Лучше всего на сегодня изучено зрение пчел.

Определенную роль в восприятии формы играет движение объекта. Насекомые охотнее садятся на цветы, которые колышутся на ветру, чем на неподвижные. стрекоз бросаются за движущейся добычей, а самцы бабочек реагируют на летящих самок и плохо видят сидящих. Вероятно, дело в определенной частоте раздражения омматидиев глаз при движении, мелькании и мерцании.

Узнавание знакомых объектов

Насекомые узнают знакомые объекты не только по цвету и форме, но и по расположению предметов, находящихся вокруг них, так что представление об исключительной примитивности их зрения нельзя назвать верным. Например, Песчаная оса находит вход в норку, ориентируясь по тем предметам, что располагаются вокруг нее (трава, камни). Если же их убрать или изменить их расположение, это может сбить насекомое с толку.

Восприятие расстояния

Эта особенность лучше всего исследована на примере стрекоз, жужелиц и других хищных насекомых.

Возможность определять расстояние обусловлена наличием у высших насекомых бинокулярного зрения, то есть, двух глаз, поля зрения которых частично пересекаются. Особенности строения глаз определяют, насколько велико расстояние, доступное обзору того или иного насекомого. Например, жуки-скакуны реагируют на добычу и набрасываются на нее, когда находятся от объекта на расстоянии 15 см.

Светокомпасное движение

Многие насекомые двигаются так, что у них постоянно сохраняется один и тот же угол падения света на сетчатку. Таким образом, солнечные лучи являются своеобразным компасом, по которому ориентируется насекомое. По тому же принципу ночные бабочки перемещаются в направлении искусственных источников света.

Способность видеть окружающую действительность во всём разнообразии цветов и оттенков - это уникальная возможность, которую природа даровала человеку. У насекомых, как и у людей, тоже есть орган зрения, но они воспринимают мир красок иначе. Современные учёные, воспользовавшись специальными приборами, сумели немного приблизиться к разгадке тайны и понять, как видят насекомые предметы, цвета и различные очертания.

Способы восприятия

У разных насекомых органы зрения неодинаковы. Если одни представители класса беспозвоночных могут лишь отличить свет от темноты или наблюдать за миром в чёрно-белых тонах, тогда другие способны распознавать цвета или вовсе видеть всё в ультрафиолетовом спектре.

Способность видеть у насекомых несколько отличается от зрения других живых существ. Некоторые виды имеют несколько пар глаз, которые могут находиться не только на голове, но и на других частях тела. Насекомые не различают мелких деталей и видят всего лишь на расстоянии 1-2 метров. Они могут хорошо ориентироваться на закате благодаря своему умению определять плоскость поляризации света. Мигание световых волн они различают в десятки раз лучше людей. Насекомые воспринимают окружающий мир тремя путями:

  1. С помощью всей поверхности тела . Это довольно интересная способность многих насекомых, при которой не нужно иметь глаза. Большой минус состоит в том, что живые существа не различают предметы, а способны лишь распознать свет от темноты. Он проникает к голове, сначала проходя через кутикулу и внешний слой кожи. В клетках мозга начинается реакция, и насекомое ощущает, что на него попадает свет. Такая способность помогает насекомым, живущим под землёй. Подобная разновидность зрения существует у тараканов, отдельных видов гусениц и тли.
  2. Простыми глазами . Насекомым, имеющим подобные зрительные органы, повезло гораздо больше, ведь они способны не только отличить день от ночи, но и различать некоторые объекты, а также их форму. Как правило, простые глаза располагаются на передней части головы насекомого и состоят из роговицы, которая принимает свет из зрительных нервов. Зрительные органы этого типа чаще всего бывают у личинок насекомых. У личинки комара вместо глаз есть пигментные пятна, улавливающие свет. Зато гусеницы имеют по 5-6 органов зрения с каждой стороны головы. С их помощью они неплохо разбираются в формах. Вертикальные предметы они видят лучше, чем горизонтальные, поэтому из двух деревьев, скорее всего, выберут то, что выше, а не шире.
  3. . Они зачастую встречаются у взрослых насекомых и обычно расположены по бокам их головы. Такие глаза помогают распознавать любые формы объектов и даже различать цвета. Они имеют сложную структуру и состоят из совокупности линз, именуемых фасетками. Интересная особенность состоит в том, что беспозвоночные млекопитающие не видят окружающий мир целиком, а только кусочки изображений, которые уже в мозге собираются в единый пазл. К примеру, муха в процессе полёта успевает соединить все фрагменты в полную картину, поскольку именно в движении она видит гораздо лучше, чем в состоянии покоя.

Чёткость изображения у различных представителей класса беспозвоночных неодинаковая и зависит от роли, которую играет в их жизни зрительное восприятие. Одни могут рассмотреть только очертания объектов, другие представляют предметы вытянутыми в длину, а третьи видят чёткие и пропорциональные изображения.

Цветовое зрение насекомых

Давно известно, что некоторые виды насекомых хорошо различают цвета, а диапазон воспринимаемых ими оттенков отличается от человеческого. Цветовое зрение играет немалую роль в жизни этих членистоногих животных. Они распознают сигналы цветущего растения (запах, окраску венчиков) и находят цветы с необходимым нектаром или пыльцой. Насекомые, отыскав подходящий цветок, запоминают его детали, что помогает потом им найти нужное растение и сэкономить время в период сбора пыльцы.

Удивительными, необычными глазами обладает обыкновенная муха!
Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Экснер доказал наличие необычного мозаичного зрения у насекомых. Он сфотографировал окно сквозь фасеточный глаз светляка, помещенный на предметное стекло микроскопа. На фотографии было видно изображение оконного переплета, а за ним расплывчатые очертания собора.

Сложные глаза мухи называются фасеточными, состоят они из многих тысяч крохотных, отдельных шестиугольных глазков-фасеток, называемых омматидиями. Каждый омматидий состоит из линзочки и примыкающего к ней длинного прозрачного кристаллического конуса.

У насекомых фасеточный глаз может иметь от 5000 до 25 000 фасеток. Глаз комнатной мухи состоит из 4000 фасеток. Острота зрения у мухи низкая, видит она в 100 раз хуже человека. Интересно, что у насекомых острота зрения зависит от числа фасеток в глазу!
Каждая фасетка воспринимает лишь часть изображения. Части складываются в одну картину, и муха видит "мозаичную картину" окружающего мира.

Благодаря этому муха имеет почти круговое поле зрения на 360 градусов. Она видит не только то, что находится впереди нее, но и то, что творится вокруг и сзади, т.е. крупные фасеточные глаза позволяют мухе одновременно смотреть в разные стороны.

В глазах мухи отражение и преломление света происходит таким образом, что максимальная его часть попадает внутрь глаза под прямым углом, вне зависимости от угла падения.

Фасеточный глаз - это растровая оптическая система, в которой в отличие от глаза человека нет единой сетчатки.
Каждый омматидий имеет свой диоптрический аппарат. Кстати, понятия аккомодации, близорукости или дальнозоркости для мухи не существует.

Муха, как и человек, видит все цвета видимого спектра. Кроме того муха способна различать ультрафиолет и поляризованный свет.

Понятия аккомодации, близорукости или дальнозоркости мухе не знакомы.
Глаза мухи очень чувствительны к изменению яркости света.

Изучение фасеточных глаз мухи показало инженерам, что муха способна очень точно определять скорость объектов, движущихся на огромной скорости. Инженеры скопировали принцип мушиных глаз для создания быстродействующих детекторов, определяющих скорость летящих самолетов. Такой прибор получил название "глаз мухи"

Панорамная камера «глаз мухи»

Ученые Федеральной политехнической школы Лозанны изобрели камеру с обзором на 360 градусов, позволяющую трансформировать изображение в формат 3D, не искажая его. Они предложили совершенно новую конструкцию, источником вдохновения послужило устройство глаза мухи.
По форме камера напоминает маленькую полусферу размером с апельсин, по поверхности расположены 104 мини-камеры, наподобие тех, что встроены в мобильные телефоны.

Эта панорамная камера дает трехмерное изображение на 360 градусов. Однако каждую из составных камер можно использовать и отдельно, перенося внимание зрителя на определенные участки пространства.
Этим изобретением ученые разрешили две основные проблемы традиционных кинокамер: неограниченного в пространстве ракурса и глубины резкости.


ГИБКАЯ КАМЕРА НА 180 ГРАДУСОВ

Группа исследователей из университета Иллинойса под руководством профессора Джона Роджерса создали фасетчатую камеру, работающую принципу глаза насекомого.
Новое устройство внешне, и по своиму внутреннему строению напоминает глаз насекомого.


Камера состоит из 180 крошечных линз, у каждой из которых есть свой собственный фотодатчик. Это позволяет каждой из 180 микрокамер действовать автономно, в отличие от обычных камер. Если проводить аналогию с миром животных, то 1 микролинза - это 1 фасетка глаза мухи. Далее данные в низком разрешении, полученные микрокамерами, поступают в процессор, где эти 180 маленьких картинок собираются в панораму, ширина которой соответствует углу обзора в 180 градусов.

Камера не требует фокусировки, т.е. объекты, находящиеся близко, видно так же хорошо, как и объекты, находящиеся вдали. Форма камеры может быть не только полусферической. Ей можно придать практически любую форму. . Все оптические элементы выполнены из эластичного полимера, который используют при изготовлении контактных линз.
Новое изобретение может найти широкое применение не только в системах охраны и наблюдения, но и в компьютерах нового поколения.

У многих насекомых сложные фасеточные глаза, состоящие из многочисленных отдельных глазков - омматидий. Насекомые видят мир так, будто он собран из мозаики. Большинство насекомых являются «близорукими». Отдельные из них, как, например, муха диопсиду, видят на расстоянии 135 метров. Бабочка - а она имеет самое острое зрение среди наших насекомых - не видит дальше двух метров, а пчела ничего не видит уже на расстоянии одного метра. Насекомые, глаза которых состоят из большого количества омматидий, способны замечать малейшее движение вокруг себя. Если объект изменяет свое положение в пространстве, то его отражение в составных глазах также меняет место расположения, перемещаясь на некоторое количество омматидий, и насекомое это замечает. Сложные глаза играют огромную роль в жизни хищных насекомых. Благодаря такому строению органов зрения насекомое может сфокусировать глаза на нужном объекте или наблюдать за ним только частью сложного глаза. Интересно, что ночные бабочки ориентируются с помощью зрения и всегда летят к источнику света. Азимут их глаз по отношению к лунному свету всегда меньше 90°.

Цветовое зрение

Для того, чтобы видеть определенный цвет, глаз насекомого должен воспринимать электромагнитные волны определенной длины. Насекомые хорошо воспринимают как ультракороткие, так и ультрадолгие световые волны и цвета спектра, видимого человеческим глазом. Известно, что человек видит цвета от красного до фиолетового, однако его глаз не способен воспринимать ультрафиолетовое излучение - волны, которые длиннее красных и короче фиолетовых. Насекомые видят ультрафиолетовый свет, но не различают цвета красного спектра (только бабочки видят красный цвет). Например, цветок мака воспринимается насекомыми как бесцветный, зато на других цветах глаза насекомые видят такие ультрафиолетовые узоры, которые человеку даже трудно представить. Насекомые ориентируются по этими узорам в поисках нектара. На крыльях бабочек также есть ультрафиолетовые рисунки, которые невидимы для человека. Пчелы различают такие цвета: голубовато-зеленый, фиолетовый, желтый, синий, пчелиный пурпурный и ультрафиолетовый. Насекомые также способны ориентироваться при помощи поляризованного света. При прохождении сквозь атмосферу Земли луч света преломляется, и в результате того, что возникает поляризация света, на разных участках неба длина волн разная. Благодаря этому, даже когда солнца не видно из-за туч, насекомое точно определяет направление.

Интересные факты

У личинок некоторых жуков развиты простые глазки, благодаря которым они хорошо видят и спасаются от хищников. У взрослых жуков развиваются сложные глаза, однако зрение у них не лучше, чем у личинок. Сложные фасеточные глаза есть не только у насекомых, но и в некоторых ракообразных, таких как крабы и омары. Вместо хрусталиков в омматидиях в них расположены миниатюрные зеркальца. Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Число мелких глазков у насекомых (в зависимости от вида) варьирует от 25 до 25 000. Глаза насекомых, например, жуков, которые плавают на поверхности воды, разделенные на две части: верхняя часть служит для того, чтобы видеть в воздухе, а нижняя - под водой. Фасеточные глаза насекомых видят не так хорошо, как глаза птиц и млекопитающих, поскольку они не способны передавать мелкие детали (у насекомых может быть от 25 до 25 000 фасеток). Зато они хорошо воспринимают объекты, которые двигаются, и регистрируют даже те цвета, которые недоступны для человеческого глаза.

Органы зрения развиты у большинства насекомых. Наибольшего развития достигают сложные, или фасеточные, глаза . Число зрительных элементов - омматидиев, или фасеток, в глазу комнатной мухи достигает 4 тыс., а у стрекоз даже 28 тыс. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волокнами с зрительными долями мозга. Каждый омматидий окружают пигментные клетки.

В зависимости от восприятия света различной интенсивности различают аппозиционный и суперпозиционный типы глаз. Первая разновидность строения глаз характерна дневным насекомым, вторая – ночным.

В аппозиционном глазе каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики.

В суперпозиционном глазе омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.

Глазки́ (дорсальные простые глаза) – это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.

Стеммы, или латеральные простые глаза – имеются у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук. У личинок пилильщиков они сходны с дорсальными, а у гусениц бабочек напоминают омматидий сложного глаза. Гусеницы воспринимают форму предметов, различают мелкие детали на их поверхности.