Чем отличается антиген от антитела. Антигены организма человека. Иммунная система человека

10.1. Антигены

10.1.1. Общие сведения

Жизнедеятельность каждого макроорганизма проходит в непосредственном контакте с чужеродными для него клетками, доклеточными формами жизни и отдельными биоорганическими молекулами. Будучи чужеродными, эти объекты таят в себе огромную опасность, так как могут нарушить гомеостаз, повлиять на течение биологических процессов в макроорганизме и даже повлечь его гибель. Контакт с чужеродными биологическими объектами представляет собой ранний сигнал опасности для иммунной системы, они являются основным раздражителем и объектом системы приобретенного иммунитета. Такие объекты получили название антигенов (от греч. anti - против, genos - создавать).

Современное определение термина «антиген» - это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознается его иммунной системой и вызывает иммунные реакции, направленные на его устранение. Учение об антигенах является ключевым для понимания основ молекулярно-генетических механизмов иммунной защиты макроорганизма, так как антиген является движущей силой иммунного ответа, а также принципов иммунотерапии и иммунопрофилактики.

Антигены имеют разнообразное происхождение. Они являются продуктом природного биологического синтеза любого чужеродного организма, могут образовываться в собственном организме при структурных изменениях уже синтезированных молекул в ходе биодеградации, нарушении их нормального биосинтеза или генетической мутации клеток. Кроме того, антигены могут быть по-

лучены искусственно в результате научной работы или путем направленного химического синтеза. Однако в любом случае молекулу антигена будет отличать генетическая чужеродность по отношению к макроорганизму, в который она попала. Теоретически антигеном может быть молекула любого органического соединения.

Антигены могут попадать в макроорганизм самыми разными путями: через кожные покровы или слизистые оболочки, непосредственно во внутреннюю среду организма, минуя покровы или образовываясь внутри него. При попадании в макроорганизм антигены распознаются иммунокомпетентными клетками и вызывают каскад разнообразных иммунных реакций, направленных на их инактивацию, разрушение и удаление.

10.1.2. Свойства антигенов

Характерными свойствами антигенов являются антигенность, иммуногенность и специфичность.

Антигенность - это потенциальная способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клон эффекторных лимфоцитов). При этом компоненты иммунной системы взаимодействуют не со всей молекулой антигена, а только с ее небольшим участком, который получил название антигенной детерминанты, или эпитопа.

Различают линейные, или секвенциальные, антигенные детерминанты, например первичная аминокислотная последовательность пептидной цепи, и поверхностные, или конформационные, расположенные на поверхности молекулы антигена и возникшие в результате вторичной или более высокой конформации. На концевых участках молекулы антигена расположены концевые эпитопы, а в центре молекулы - центральные. Существуют также глубинные, или скрытые, антигенные детерминанты, которые проявляются при разрушении биополимера.

Размер антигенной детерминанты невелик. Он определяется характеристиками рецепторной части фактора иммунитета и структурой эпитопа. Например, антигенсвязывающий участок молекулы иммуноглобулина способен распознать линейную антигенную детерминанту, состоящую из 5 аминокислотных остатков. Для образования конформационной детерминанты требуется 6-12 аминокислотных остатков. Рецепторному аппарату Т-киллера для

определения чужеродности требуется нанопептид, включенный в состав MHC I класса, Т-хелперу - олигопептид размером 12- 25 аминокислотньгх остатков в комплексе с MHC II класса.

Молекулы большинства антигенов имеют довольно большие размеры. В их структуре определяется множество антигенных детерминант, которые распознаются разными по специфичности антителами и клонами лимфоцитов. Поэтому антигенность вещества зависит от наличия и числа антигенных детерминант в структуре его молекулы.

Структура и состав эпитопа имеют критическое значение. Замена хотя бы одного структурного компонента молекулы приводит к образованию принципиально новой антигенной детерминанты. Денатурация приводит к потере имеющихся антигенных детерминант или появлению новых, а также специфичности.

Чужеродность является обязательным условием для реализации антигенности. Понятие «чужеродность» относительное, так как иммунокомпетентные клетки не способны напрямую анализировать чужеродный генетический код, а лишь продукты, синтезированные с чужеродной генетической матрицы. В норме иммунная система невосприимчива к собственным биополимерам, если он не приобрел черты чужеродности. Кроме того, при некоторых патологических состояниях в результате нарушения регуляции иммунного ответа (см. аутоантигены, аутоантитела, аутоиммунитет, аутоиммунные болезни) собственные биополимеры могут восприниматься иммунной системой как чужие.

Чужеродность находится в прямой зависимости от эволюционного расстояния между организмом и источником антигенов. Чем дальше в таксономическом плане организмы отстоят друг от друга, тем большей чужеродностью и, следовательно, иммуногенностью обладают их антигены. Чужеродность заметно проявляется даже между особями одного вида, так как замена хотя бы одной аминокислоты эффективно распознается антителами в серологических реакциях.

Вместе с тем антигенные детерминанты даже генетически неродственных существ или веществ могут иметь определенное подобие и способны специфически взаимодействовать с одними и теми же факторами иммунитета. Такие антигены получили название перекрестно реагирующих. Обнаружено также сходство антигенных детерминант стрептококка, сарколеммы миокарда и базальной

мембраны почек, Treponema pallidum и липидной вытяжки из миокарда крупного рогатого скота, возбудителя чумы и эритроцитов человека 0(I) группы крови. Явление, когда один организм маскируется антигенами другого для защиты от факторов иммунитета, получило название антигенной мимикрии.

10.1.2.1. Иммуногенность

Иммуногенность - потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфический продуктивный ответ. Иммуногенность зависит от трех групп факторов: молекулярных особенностей антигена, кинетики антигена в организме, реактивности макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярная масса, структура и некоторые другие характеристики.

Природа антигена в значительной степени определяет иммуногенность. Наиболее выраженной иммуногенностью обладают белки и полисахариды, наименьшей - нуклеиновые кислоты и липиды. В то же время их сополимеры - липополисахариды, гликопротеиды, липопротеиды - способны в достаточной мере активировать иммунную систему.

Иммуногенность в определенной мере зависит от химического состава молекулы антигена. Для белковых антигенов важно разнообразие их аминокислотного состава. Монотонные полипептиды, построенные из одной аминокислоты, практически не активируют иммунную систему. Наличие в структуре молекулы белка ароматических аминокислот, таких, как тирозин, триптофан, существенно повышает иммуногенность.

Важна оптическая изомерия структурных компонентов молекулы антигена. Пептиды, построенные из L-аминокислот, высокоиммуногенны. Полипептидная цепочка, построенная из правовращающих изомеров аминокислот, напротив, может проявлять ограниченную иммуногенность при введении в малых дозах.

В спектре иммуногенности существует определенная иерархия антигенных детерминант: эпитопы различаются по способности индуцировать иммунный ответ. При иммунизации некоторым антигеном будут преобладать реакции к отдельным антигенным детерминантам. Это явление получило название иммунодоминантности. По современным представлениям она обусловлена различиями в сродстве эпитопов к рецепторам антигенпрезентирующих клеток.

Большое значение имеют размер и молекулярная масса антигена. Небольшие полипептидные молекулы с массой менее 5 кД, как правило, низкоиммуногенны. Олигопептид, способный индуцировать иммунный ответ, должен состоять из 6-12 аминокислотных остатков и иметь молекулярную массу около 450 Д. С увеличением размера пептида возрастает его иммуногенность, однако эта зависимость на практике не всегда выполняется. Так, при равной молекулярной массе (около 70 кД) альбумин является более сильным антигеном, чем гемоглобин.

Опытным путем было доказано, что высокодисперсные коллоидные растворы антигена плохо индуцируют иммунный ответ. Гораздо большей иммуногенностью обладают агрегаты молекул и корпускулярные антигены - цельные клетки (эритроциты, бактерии и т.д.). Это связано с тем, что корпускулярные и высокоагрегированные антигены лучше фагоцитируются, чем отдельные молекулы.

Оказалась также существенной стерическая стабильность молекулы антигена. При денатурации белков до желатина вместе с конформационной жесткостью теряется иммуногенность. Поэтому растворы желатина широко используются для парентерального введения.

Важным условием иммуногенности является растворимость антигена. Например, высокомолекулярные соединения кератин, меланин, натуральный шелк и др. нерастворимы в воде, не образуют коллоидных растворов в нормальном состоянии и не являются иммуногенами. Благодаря этому свойству конский волос, шелк, кетгут и др. прменяют в клинической практике для сшивания органов и тканей.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведения. Так, хорошо известна зависимость иммуногенности антигена от места и способа его введения, что обусловлено особенностями строения иммунной системы в местах интервенции антигена.

Сила иммунного ответа зависит от количества поступающего антигена: чем его больше, тем выраженнее иммунная реакция макроорганизма.

Третья группа объединяет факторы, определяющие зависимость иммуногенности от состояния макроорганизма: наследственности и функциональных характеристик. Хорошо известно, что резуль-

тат иммунизации в определенной мере связан с генотипом особи. Существуют чувствительные и нечувствительные к определенным антигенам роды и виды животных. Например, кролики и крысы практически не реагируют на некоторые бактериальные антигены, которые могут вызывать у морской свинки или мыши чрезвычайно бурный иммунный ответ.

10.1.2.2. Специфичность

Специфичностью называют способность антигена индуцировать иммунный ответ к строго определенному эпитопу. Специфичность антигена во многом определяется свойствами составляющих его эпитопов.

10.1.3. Классификация антигенов

Основываясь на отдельных характерных свойствах, все многообразие антигенов можно классифицировать по происхождению, природе, молекулярной структуре, степени иммуногенности, степени чужеродности, направленности активации и обеспеченности иммунного реагирования.

По происхождению различают экзогенные (возникшие вне организма) и эндогенные (возникшие внутри организма) антигены. Среди эндогенных особого внимания заслуживают ауто- и неоантигены. Аутогенные антигены (аутоантигены) - это структурно неизмененные антигены собственного организма, синтезируемые в организме в физиологических условиях. В норме аутоантигены неиммуногенны вследствие сформировавшейся иммунологической толерантности (невосприимчивости) либо их недоступности для контакта с факторами иммунитета - это так называемые забарьерные антигены. При срыве толерантности или нарушении целостности биологических барьеров (воспаление, травма) компоненты иммунной системы начинают специфически реагировать на аутоантигены выработкой специфических факторов иммунитета (аутоантитела, клон аутореактивных лимфоцитов). Неоантигены, в отличие от аутоантигенов, возникают в организме в результате генетических мутаций или модификаций и всегда чужеродны.

По природе: биополимеры белковой (протеиды) и небелковой (полисахариды, липиды, липополисахариды, нуклеиновые кислоты и др.) природы.

По молекулярной структуре: глобулярные (молекула имеет шаровидную форму) и фибриллярные (форма нити).

По степени иммуногенности: полноценные и неполноценные. Полноценные антигены обладают выраженной антигенностью и иммуногенностью - иммунная система чувствительного организма реагирует на их введение выработкой факторов иммунитета. Такие вещества, как правило, имеют достаточно большую молекулярную массу (более 10 кД), большой размер молекулы (частицы) в виде глобулы и хорошо взаимодействуют с факторами иммунитета.

Неполноценные антигены, или гаптены (термин предложен К. Ландштейнером), обладают антигенностью - способны специфически взаимодействовать с уже готовыми факторами иммунитета (антителами, лимфоцитами), но не способны при введении в нормальных условиях индуцировать в организме иммунный ответ. Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса менее 10 кД).

Если искусственно укрупнить молекулу гаптена - соединить ее прочной связью с достаточно большой белковой молекулой, удается заставить иммунную систему макроорганизма специфически реагировать на гаптен как на полноценный антиген и вырабатывать факторы иммунитета. Молекула белка-носителя получила название шлеппера (тягача). При этом специфичность в составе молекулы конъюгата определяется гаптенной частью, а иммуногенность - белком-носителем. Используя для иммунизации конъюгаты, получают антитела к гормонам, лекарственным препаратам и другим низкоиммуногенным соединениям.

По степени чужеродности: ксено-, алло- и изоантигены. Ксеногенные антигены (или гетерологичные) - общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Впервые феномен общности ряда антигенов у животных разных видов был отмечен Д. Форсманом (1911 г.). При иммунизации кролика суспензией органов морской свинки ученый получил иммунную сыворотку, способную взаимодействовать с эритроцитами барана. Позже было установлено, что морская свинка и баран имеют ряд структурно сходных антигенных детерминант, дающих перекрестное реагирование. В дальнейшем перечень подобных ксеногенных антигенов был значительно расширен и они получили обобщенное название «антигены Форсмана».

Аллогенные антигены (или групповые) - общие для генетически неродственных организмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены групп крови (системы АВ0 и др.). Аллогенные ткани при трансплантации иммунологически несовместимы - они отторгаются или лизируются реципиентом. Микробы на основании групповых антигенов могут быть подразделены на серогруппы, что используется в микробиологической диагностике.

Изогенные антигены (или индивидуальные) - общие только для генетически идентичных организмов, например для однояйцовых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунной совместимостью и не отторгаются. К изоантигенам у людей относятся антигены гистосовместимости, а у бактерий - типовые антигены, не дающие дальнейшего расщепления.

В пределах отдельного организма в определенных органах или тканях обнаруживаются специфичные для них антигены, которые нигде больше не встречаются. Такие антигены получили название органо- и тканеспецифических.

В зависимости от физико-химических свойств антигена, условий его внедрения, характера реакции и реактивности макроорганизма различают иммуногены, толерогены и аллергены. Иммуногены способны индуцировать нормальную продуктивную реакцию иммунной системы - выработку факторов иммунитета (антитела, антигенореактивные клоны лимфоцитов). В клинической практике иммуногены используют для иммунодиагностики, иммунотерапии и иммунопрофилактики многих патологических состояний.

Толероген является полной противоположностью иммуногену. Он формирует иммунологическую толерантность или неотвечаемость на эпитопы данного вещества (см. раздел 11.6). Толероген, как правило, - мономер с низкой молекулярной массой, высокой эпитопной плотностью и высокой дисперсностью. Толерогены используют для профилактики и лечения иммунологических конфликтов и аллергии путем наведения искусственной неотвечаемости на отдельные антигены.

Аллерген, в отличие от иммуногена, формирует патологическую реакцию организма в виде гиперчувствительности немедленного или замедленного типа (см. раздел 11.4). По своим свойствам

аллерген не отличается от иммуногена. В клинической практике аллергены применяют для диагностики инфекционных и аллергических заболеваний.

По направленности активации и обеспеченности иммунного реагирования, т.е. необходимости вовлечения Т-лимфоцитов в индукцию иммунного ответа, выделяют Т-зависимые и Т-независимые антигены. Иммунная реакция в ответ на введение Т-зависимого антигена реализуется при обязательном участии Т-хелперов. К ним относится большая часть известных антигенов. Для развития иммунного ответа на Т-независимые антигены не требуется привлечение Т-хелперов. Эти антигены способны непосредственно стимулировать В-лимфоциты к антителопродукции, дифференцировке и пролиферации, а также вызывать иммунный ответ у бестимусных животных. Т-независимые антигены имеют относительно простое строение. Это крупные молекулы с молекулярной массой более 10 3 кД, поливалентны и имеют многочисленные однотипные эпитопы. Т-независимые антигены являются митогенами и поликлональными активаторами, например полимерный флагеллин (сократительный белок жгутиков бактерий), липополисахарид, туберкулин и др.

От Т-независимых антигенов следует отличать суперантигены. Это группа веществ, в основном микробного происхождения, которые могут неспецифически вызывать поликлональную реакцию. Молекула суперантигена способна вмешиваться в кооперацию антигенпрезентирующей клетки и Т-хелпера и формировать ложный сигнал распознавания чужеродной субстанции.

Суперантигены способны одновременно неспецифически активировать огромное количество иммунокомпетентных клеток (до 20% и более), вызывать гиперпродукцию цитокинов и низкоспецифичных иммуноглобулинов, массовую гибель лимфоцитов вследствие апоптоза и развитие вторичного функционального иммунодефицита. Свойства суперантигена обнаружены у стафилококкового энтеротоксина, белков вирусов Эпштейна-Барр, бешенства, ВИЧ и некоторых других микробных агентов.

10.1.4. Антигены организма человека

Начало изучению аллоантигенных свойств тканей было положено К. Ландштайнером, который в 1901 г. открыл систему групповых антигенов эритроцитов (АВ0). В организме человека

выделяют множество разнообразных антигенов. Они не только нужны для полноценного развития и функционирования всего организма в целом, но также несут важную информацию при клинико-лабораторной диагностике, определении иммунной совместимости органов и тканей в трансплантологии, а также в научных исследованиях. Наибольший медицинский интерес из числа аллогенных антигенов представляют антигены групп крови, среди изогенных - антигены гистосовместимости, а в группе органо- и тканеспецифических - раково-эмбриональные антигены.

10.1.4.1. Антигены групп крови человека

Антигены групп крови человека располагаются на цитоплазматической мембране клеток, но наиболее легко определяются на поверхности эритроцитов. Поэтому они получили название «эритроцитарные антигены». На сегодняшний день известно более 250 различных эритроцитарных антигенов. Однако наиболее важное клиническое значение имеют антигены системы АВ0 и Rh (резус-фактор): их необходимо учитывать при проведении переливания крови, пересадке органов и тканей, предупреждении и лечении иммуноконфликтных осложнений беременности и т.д.

Антигены системы АВ0 обнаруживаются в плазме крови, лимфе, секретах слизистых оболочек и других биологических жидкостях, но наиболее выражены на эритроцитах. Они синтезируются многими клетками организма, включая ядросодержащие предшественники эритроцитов, и свободно секретируются в межклеточное пространство. На мембране клеток эти антигены могут появиться либо как продукт клеточного биосинтеза, либо в результате сорбции из межклеточных жидкостей.

Антигены системы АВ0 представляют собой высокогликозилированные пептиды: 85% приходится на углеводную часть и 15% - на полипептидную. Пептидный компонент состоит из 15 аминокислотных остатков. Он постоянен для всех групп крови АВ0 и иммунологически инертен. Иммуногенность молукулы антигена системы АВ0 определяется его углеводной частью.

В системе антигенов АВ0 выделяют три варианта антигенов, различающихся по строению углеводной части: Н, А и В. Базовой молекулой является антиген Н, специфичность которого определяют три углеводных остатка. Антиген А имеет в структуре дополнительный четвертый углеводный остаток - N-ацетил-D-галактозу, а антиген В - D-галактозу. Антигены системы АВ0 имеют неза-

висимое аллельное наследование, что определяет наличие в популяции 4 групп крови: 0(I), А(II), B(III) и АВ(IV). Кроме того, антигены А и В имеют несколько аллотипов (например, А 1 , А 2 , А 3 ... или В 1 , В 2 , В 3 ...), которые встречаются в популяции людей с разной частотой.

Антигены системы АВ0 определяют в реакции агглютинации. Однако, учитывая высокий популяционный полиморфизм данной антигенной системы, перед гемотрансфузией обязательно проводят биологическую пробу на совместимость крови реципиента и донора. Ошибка в определении групповой принадлежности и переливание пациенту несовместимой по группе крови приводят к развитию острого внутрисосудистого гемолиза.

Другой важнейшей системой эритроцитарных антигенов является система резус-антигенов (Rh ) или резус-факторов. Эти антигены синтезируются предшественниками эритроцитов и обнаруживаются главным образом на эритроцитах, так как они водонерастворимы. Резус-антиген представляет собой термолабильный липопротеид. Выделяют 6 разновидностей этого антигена. Генетическая информация о его строении закодирована в многочисленных аллелях трех сцепленных между собой локусов (D/d, C/c, E/e). В зависимости от наличия или отсутствия резус-антигена в популяции людей различают две группы: резус-положительных и резус-отрицательных индивидуумов.

Совпадение по резус-антигену важно не только при переливании крови, но также для течения и исхода беременности. При беременности резус-отрицательной матери резус-положительным плодом может развиться резус-конфликт. Это патологическое состояние связано с выработкой антирезусных антител, способных вызвать иммунологический конфликт: невынашивание беременности или желтуху новорожденного (внутрисосудистый иммунный лизис эритроцитов).

Вследствие того что плотность резус-антигена на мембране эритроцитов невысока и его молекула обладает слабой антигенностью, резус-фактор определяют на мембране эритроцитов в реакции непрямой агглютинации (реакция Кумбса).

10.1.4.2. Антигены гистосовместимости

На цитоплазматических мембранах практически всех клеток макроорганизма обнаруживаются антигены гистосовместимости. Большая часть из них относится к системе главного комплекса

гистосовместимости, или MHC (от англ. Main Hystocompatibility Complex). Установлено, что антигены гистосовместимости играют ключевую роль в осуществлении специфического распознавания «свой-чужой» и индукции приобретенного иммунного ответа, определяют совместимость органов и тканей при трансплантации в пределах одного вида и другие эффекты. Большая заслуга в изучении MHC принадлежит Дж. Доссе, П. Догерти, П. Гореру, Г. Снеллу, Р. Цинкернагелю, Р.В. Петрову, ставшими основоположниками иммуногенетики.

Впервые MHC был обнаружен в 60-х годах ХХ века в опытах на генетически чистых (инбредных) линиях мышей при попытке межлинейной пересадки опухолевых тканей (П. Горер, Г. Снелл). У мышей этот комплекс получил название Н-2 и был картирован в 17-й хромосоме.

У человека MHC был описан несколько позже в работах Дж. Доссе. Его обозначили как HLA (от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоцитами. Биосинтез HLA определяется генами, локализованными сразу в нескольких локусах короткого плеча 6-й хромосомы.

MHC имеет сложную структуру и высокую полиморфность. Антигены гистосовместимости представляют собой гликопротеины, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурное сходство с молекулами иммуноглобулинов и поэтому относятся к единому суперсемейству. Различают два основных класса молекул MHC (I и II), которые объединяют множество сходных по структуре антигенов, кодируемых множеством аллельных генов. На клетках индивидуума могут одновременно экспрессироваться не более двух разновидностей продуктов каждого гена MHC. MHC I класса индуцирует преимущественно клеточный иммунный ответ, а MHC II класса - гуморальный.

MHC I класса состоит из двух нековалентно связанных полипептидных цепей (α и β) с разной молекулярной массой (рис. 10.1). α-Цепь имеет внеклеточный участок с доменным строением (α 1 -, α 2 - и а 3 -домены), трансмембранный и цитоплазматический. β-Цепь представляет собой β 2 -микроглобулин, адгезированный на α,-домен после экспрессии α-цепи на цитоплазматической мембране клетки. α 1 - и α 2 -Домены α-цепи формируют щель Бъеркмана - участок, ответственный за сорбцию и презентацию молекул

Рис. 10.1. Схема строения антигенов главного комплекса гистосовместимости: I - МНС I класса; II - МНС II класса

антигена. Щель Бъеркмана MHC I класса вмещает нанопептид, который легко выявляется специфическими антителами.

Сборка комплекса MHC I класса - антиген протекает внутриклеточно непрерывно в эндоплазматическом ретикулуме. В его состав включаются любые эндогенно синтезированные пептиды, в том числе вирусные, куда они переносятся из цитоплазмы при помощи особого белка, протеосомы. Включенный в комплекс пептид придает структурную устойчивость MHC I класса. В его отсутствие функцию стабилизатора выполняет шаперон (калнексин).

MHC I класса экспрессируются на поверхности практически всех клеток, кроме эритроцитов и клеток ворсинчатого трофобласта (профилактика отторжения плода). Плотность MHC I класса достигает 7000 молекул на клетку, и они покрывают около 1% ее поверхности. Для них характерна высокая скорость биосинтеза - процесс завершается за 6 ч. Экспрессия MHC I класса усиливается под влиянием цитокинов, например γ-интерферона.

В настоящее время у человека различают более 200 различных вариантов HLA I класса. Они кодируются генами, картированными

в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B и HLA-C. Локус А объединяет более 60 вариантов, В - 130, а С - около 40. Независимое наследование генов сублокусов в популяции формирует бесконечное множество неповторяющихся комбинаций HLA I класса. Каждый человек строго уникален по набору антигенов гистосовместимости, исключение составляют только однояйцовые близнецы. Основная биологическая роль HLA I класса - они определяют биологическую индивидуальность (биологический паспорт) и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или ее мутация изменяют структуру HLA I класса, что является сигналом для активации Т-киллеров (CD8 + -лимфоциты) к уничтожению объекта.

HLA I класса выявляют на лимфоцитах в реакции микролимфоцитолиза со специфическими сыворотками, которые получают от многорожавших женщин, пациентов после массивной гемотрансфузии, а также с использованием моноклональных антител.

В структуре и функции MHC II класса есть ряд принципиальных отличий. Комплекс образован двумя нековалентно связанными полипептидными цепями (α и β), имеющими сходное доменное строение (см. рис. 10.1). Обе цепи являются трансмембранными пептидами и «заякорены» в цитоплазматической мембране. Щель Бъеркмана в MHC II класса образована одновременно обеими цепями. Она вмещает олигопептид размером 12-25 аминокислотных остатков, недосягаемый специфическими антителами. MHC II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный самой клеткой. Молекулы МНС II класса экспрессируются на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хелперах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение MHC II класса на нетипичных клетках расценивается в настоящее время как иммунопатология. Биосинтез MHC II класса протекает в эндоплазматическом ретикулуме и экспрессируется на цитоплазматической мембране клетки в течение 1 ч после эндоцитоза антигена. Экспрессия комплекса может быть усилена γ-интерфероном и снижена простагландином Е 2 .

У мыши антиген гистосовместимости получил название Ia- антигена, а у человека по аналогии - HLA II класса.

По имеющимся данным, человеческому организму свойствен чрезвычайно высокий полиморфизм HLA II класса, который в большей степени определяется особенностями строения β-цепи. В состав комплекса входят продукты трех основных локусов: HLA- DR, DQ и DP. При этом локус DR объединяет около 300 аллельных форм, DQ - около 400, а DP - около 500.

Наличие и тип MHC II класса определяют в серологических (микролимфоцитотоксический тест) на В-лимфоцитах и клеточных реакциях иммунитета (смешанная культура лимфоцитов). Специфические антитела к MHC II класса получают так же, как и к I классу. Тестирование в смешанной культуре лимфоцитов позволяет выявить минорные компоненты MHC II класса, не определяемые серологически.

MHC II класса участвуют в индукции приобретенного иммунного ответа. Фрагменты молекулы антигена экспрессируются на цитоплазматической мембране особой группы клеток, которая получила название антигенпрезентирующих. Основными являются дендритная клетка, макрофаг и В-лимфоцит. Структура MHC II класса с включенным в него пептидом в комплексе с кофакторными молекулами CD-антигенов воспринимается и анализируется Т-хелперами (CD4 + -лимфоциты). В случае распознавания чужеродности Т-хелпер начинает синтез соответствующих иммуноцитокинов, и включается механизм специфического иммунного реагирования: пролиферация и дифференцировка антигенспецифических клонов лимфоцитов.

Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул MHC. Локус, содержащий кодирующие их гены, вклинивается между I и II классами и разделяет их. К MHC III класса относятся некоторые компоненты комплемента (С2, С4), белки теплового шока, факторы некроза опухоли и др.

10.1.4.3. Опухольассоциированные антигены

В 1948-1949 гг. видный отечественный микробиолог и иммунолог Л.А. Зильбер при разработке вирусной теории рака доказал наличие антигена, специфичного для опухолевой ткани. Позже в 60-х годах ХХ века Г.И. Абелев (в опытах на мышах) и Ю.С. Татаринов (при обследовании людей) обнаружили в сыворотке крови больных первичным раком печени эмбриональный вариант сывороточного альбумина - α-фетопротеин. К настоящему моменту обнаружено и охарактеризовано множество опухольассоциирован-

ных антигенов. Однако не все опухоли содержат специфические маркерные антигены, равно как и не все маркеры обладают строгой тканевой специфичностью.

Опухольассоциированные антигены классифицируют по локализации и генезу. Различают сывороточные, секретируемые опухолевыми клетками в межклеточную среду, и мембранные. Последние получили название опухолеспецифических трансплантационных антигенов, или TSTA (от англ. Tumor-Specific Transplantation Antigen).

Выделяют также вирусные, эмбриональные, нормальные гиперэкспрессируемые и мутантные опухольассоциированные антигены. Вирусные - являются продуктами онковирусов, эмбриональные в норме синтезируются в зародышевом периоде. Хорошо известен α-фетопротеин (эмбриональный альбумин), нормальный протеин тестикул (MAGE 1,2,3 и др.), маркеры меланомы, рака молочной железы и др. Хорионический гонадотропин, в норме синтезируемый в плаценте, обнаруживается при хориокарциноме и других опухолях. В меланоме в большом количестве синтезируется нормальный фермент тирозиназа. Из мутантных белков следует отметить протеин Ras - ГТФ-связывающий белок, участвующий в трансмембранном проведении сигнала. Маркерами рака молочной и поджелудочной желез, карцином кишечника являются модифицированные муцины (MUC 1, 2 и др.).

В большинстве случаев опухольассоциированные антигены представляют собой продукты экспрессии генов, в норме включаемых в эмбриональном периоде. Они являются слабыми иммуногенами, хотя в отдельных случаях могут индуцировать реакцию цитотоксических Т-лимфоцитов (Т-киллеров) и распознаваться в составе молекул MHC (HLA) I класса. Синтезируемые к опухольассоциированным антигенам специфические антитела не угнетают рост опухолей.

10.1.4.4. CD-антигены

На мембране клеток обнаруживаются групповые антигены, объединяющие клетки с определенными морфофункциональными характеристиками. Эти молекулы получили название антигенов кластеров дифференцировки клетки, или CD-антигенов (от англ. Cell Differentiation Antigens, или Claster Definition). По структуре они являются гликопротеинами и в большинстве своем относятся к суперсемейству иммуноглобулинов.

Список CD-маркеров довольно обширный и насчитывает около 200 вариантов. Среди многообразия CD-антигенов наиболее широкое распространение получили маркеры иммунокомпетентных клеток. Например, CD3 экспрессируется в популяции Т-лимфоцитов, CD4 - Т-хелперов, а CD8 - цитотоксических Т-лимфоцитов Т-киллеров, CD11a - моно- и гранулоцитов, CD11b - естественных киллеров, CD19-22 - В-лимфоцитов. Информация о структуре закодирована в различных участках генома, а экспрессия зависит от стадии дифференцировки клетки и ее функционального состояния.

CD-антигены имеют значение в диагностике иммунодефицитных состояний. Определение CD-маркеров осуществляется в иммунологических реакциях с использованием моноклональных антител.

10.1.5. Антигены микробов

10.1.5.1. Антигены бактерий

В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены (рис. 10.2). Жгутиковые, или Н-антигены, локализуются в их жгутиках и представляют собой эпитопы сократительного белка флагеллина. При нагревании флагеллин денатурирует и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют липополисахариды. О-антиген термостабилен и не разрушается при длительном кипячении. Однако альдегиды (например, формалин) и спирты нарушают его структуру.

Если проиммунизировать животное живыми бактериями, имеющими жгутики, то будут вырабатываться антитела одновременно к О- и Н-антигенам. Введение животному прокипяченной культуры стимулирует биосинтез антител к соматическому антигену. Культура бактерий, обработанная фенолом, вызовет образование антител к жгутиковым антигенам.

Капсульные, или К-антигены, встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из полипептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В и L.

Рис. 10.2. Основные бактериальные антигены (пояснение в тексте)

Наибольшая термостабильность характерна для группы А - они не денатурируют даже при длительном кипячении. Группа В выдерживает непродолжительное нагревание (около 1 ч) до 60 °С. Группа L быстро разрушается при этой температуре. Поэтому частичное удаление К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного тифа и других энтеробактерий, которые обладают высокой вирулентностью, можно обнаружить особый вариант капсульного антигена. Он получил название антигена вирулентности, или Vi-антигена. Обнаружение этого антигена или специфичных к нему антител имеет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие вещества, которые секретируются бактериями в окружающую среду (например, тубер-

кулин). Столбнячный, дифтерийный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэтому их используют для получения молекулярных вакцин - анатоксинов.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выраженной иммуногенностью, чья биологическая активность играет ключевую роль в формировании патогенности возбудителя - связывание таких антигенов специфическими антителами практически полностью инактивирует вирулентные свойства микроорганизма и обеспечивает к нему иммунитет. Эти антигены получили название протективных.

10.1.5.2. Антигены вирусов

В структуре вирусной частицы различают ядерные (или коровые), капсидные (или оболочечные) и суперкапсидные антигены. На поверхности некоторых вирусных частиц встречаются особые V-антигены - гемагглютинин и фермент нейраминидаза. Антигены вирусов различаются по происхождению. Часть из них вирусоспецифические, кодируются в нуклеиновой кислоте вируса. Другие, являющиеся компонентами клетки хозяина (углеводы, липиды), формируют суперкапсид вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. В просто организованных вирусах антигены ассоциированы с нуклеопротеидами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (от лат. solutio - раствор). У сложноорганизованных вирусов часть антигенов связана с нуклеокапсидом, а другая находится во внешней оболочке, или суперкапсиде.

Антигены многих вирусов отличаются высокой степенью изменчивости, что связано с постоянными мутациями в генетическом материале вирусов. Примером могут служить вирус гриппа,

10.1.6. Процессы, происходящие с антигеном в макроорганизме

Антигенная интервенция - это процесс, протекающий поэтапно с определенной динамикой во времени. При этом на каждом этапе появления и распространения в макроорганизме антиген сталкивается с мощным противодействием развитой сети разнообразных факторов иммунитета (табл. 10.1).

Таблица 10.1. Процессинг антигена в макроорганизме

Выделяют несколько путей проникновения и распространения антигена в макроорганизме. Они могут появляться внутри самого макроорганизма (эндогенное происхождение) или поступать извне (экзогенное происхождение). Экзогенные антигены могут проникнуть в макроорганизм:

Через дефекты кожных покровов и слизистых оболочек (как результат ранений, микротравм, укусов насекомых, расчесов и др.);

Путем всасывания в желудочно-кишечном тракте (эндоцитоз эпителиальными клетками);

Межклеточно (при незавершенном фагоцитозе);

В организме антиген может распространяться с лимфой (лимфогенный путь) и кровью (гематогенный путь) по различным органам и тканям. При этом чаще всего он фильтруется в лимфоузлах, селезенке, а также в лимфоидных скоплениях печени, кишечника и других органов, где вступает в контакт с факторами иммунной защиты.

Ответная реакция этих факторов возникает практически немедленно. Первыми вступают в действие факторы врожденного иммунитета, так как эта система не требует длительного времени для активации. Если антиген не был инактивирован или элиминирован в течение 4 ч, включается система приобретенного иммунитета: обеспечивается специфическое распознавание «свой-чужой», вырабатываются факторы регуляции (цитокины) и иммунной защиты (специфические антитела, клоны антигенореактивных лимфоцитов).

Совокупный эффект всех звеньев и уровней иммунной защиты макроорганизма, независимо от степени их вовлечения в процесс, направлен на:

Связывание и блокирование биологически активных участков молекулы антигена;

Разрушение или отторжение антигена;

Утилизацию, изоляцию (инкапсуляцию) или выведение остатков антигена из макроорганизма.

В итоге достигается восстановление гомеостаза и структурной целостности макроорганизма. Параллельно формируется иммунная память, толерантность или аллергия.

10.2. Иммунная система человека

Специфическую функцию надзора за генетическим постоянством внутренней среды организма, сохранения его биологической и видовой индивидуальности осуществляет иммунная система.

10.2.1. Структурно-функциональные элементы иммунной системы

Иммунная система - это специализированная, анатомически обособленная лимфоидная ткань. Она распределена по всему организму в виде различных лимфоидных образований и отдельных клеток, и на ее долю приходится 1-2% от массы тела. В анатомическом плане иммунная система подразделена на центральные и периферические органы, в функциональном - на органы воспроизводства и селекции клеток (костный мозг, тимус), контроля внешней среды или экзогенной интервенции (лимфоидные системы кожи и слизистых оболочек), контроля генетического постоянства внутренней среды (селезенка, лимфатические узлы, печень, кровь, лимфа).

Основными функциональными клетками являются лимфоциты. Их количество в организме достигает 10 12 . К числу функциональных клеток иммунной системы относят также мононуклеарные и гранулярные лейкоциты, тучные и дендритные клетки. Часть клеток сосредоточена в отдельных органах иммунной системы, другие свободно перемещаются по всему организму. Схематическое строение иммунной системы представлено на рис. 10.3.

10.2.1.1. Центральные органы иммунной системы

Центральные органы иммунной системы, костный мозг и вилочковая железа или тимус, - это органы воспроизводства и селекции клеток иммунной системы. Здесь происходят лимфопоэз - рождение, размножение (пролиферация) и дифференцировка лимфоцитов до стадии предшественников или зрелых неиммунных (наивных) клеток, а также их «обучение». У птиц к центральным органам иммунной системы относят сумку Фабрициуса (bursa Fabricii), локализованную в области клоаки.

Костный мозг располагается в губчатом веществе костей (эпифизы трубчатых костей, грудина, ребра и др.). Здесь находятся полипотентные стволовые клетки (ППСК), которые являются ро-

Рис. 10.3. Органы иммунной системы человека

доначальницами всех форменных элементов крови, включая иммунокомпетентные клетки. В строме костного мозга формируются предшественники В- и Т-лимфоцитов, которые впоследствии мигрируют соответственно в В-зоны макроорганизма и тимус. Фагоциты и некоторые дендритные клетки также образуются в костном мозгу. В нем можно также обнаружить плазматические клетки - результат терминальной дифференцировки В-лимфоцитов.

Вилочковая железа, тимус, или зобная железа, располагается в верхней части загрудинного пространства. Этот орган отличается особым морфогенезом. Тимус формируется в период внутриутробного развития. К моменту рождения масса тимуса достигает 10-15 г, окончательно он созревает к пятилетнему возрасту, а максимального размера достигает к 10-12 годам жизни (масса 30-40 г). После периода полового созревания начинается инволюция органа - происходит замещение лимфоидной ткани жировой и соединительной.

Тимус имеет дольчатое строение. В его структуре различают мозговой и корковый слои. В строме коркового слоя находится большое количество эпителиальных клеток коры, названных «клеткиняньки», которые своими отростками образуют мелкоячеистую сеть, где располагаются созревающие лимфоциты. В пограничном, корково-мозговом, слое располагаются дендритные клетки тимуса, а в мозговом - эпителиальные клетки мозгового слоя.

Предшественники Т-лимфоцитов поступают из костного мозга в корковый слой тимуса. Здесь под влиянием тимических факторов они активно размножаются, дифференцируются (превращаются) в зрелые Т-лимфоциты и «учатся» распознавать чужеродные антигенные детерминанты.

Процесс «обучения» включает положительную и отрицательную селекцию. Критерием «обученности» являются качество Т-клеточной антигенной рецепции (специфичность и аффинность) и жизнеспособность клетки.

Положительная селекция происходит в корковом слое при помощи эпителиальных клеток. Суть ее заключается в поддержке клонов Т-лимфоцитов, рецепторы которых эффективно связались с экспрессированными на эпителиальных клетках молекулами MHC, независимо от структуры инкорпорированных собственных олигопептидов. Эпителиоциты коры выделяют ростовые факторы тимуса, активирующие размножение Т-лимфоцитов.

Отрицательную селекцию осуществляют дендритные клетки в пограничной корково-мозговой зоне тимуса. Ее цель - выбраковка аутореактивных клонов Т-лимфоцитов. Клетки, позитивно реагирующие на комплекс MHC-аутологичный пептид, подвергаются уничтожению путем индукции у них апоптоза.

В итоге селекции более 99% Т-лимфоцитов не выдерживают испытаний и погибают. Лишь менее 1% клеток превращается в зрелые формы, способные распознать в комплексе с аутологичными MHC только чужеродные биополимеры. Ежесуточно около 10 6 зрелых «обученных» Т-лимфоцитов покидают тимус с крово- и лимфотоком и мигрируют в различные органы и ткани.

Созревание и «обучение» Т-лимфоцитов в тимусе имеет важное значение для формирования иммунитета. Отсутствие или недоразвитие тимуса при врожденном дефекте развития вилочковой железы - аплазии или гипоплазии органа, ее хирургическом удалении или радиационном поражении ведет к резкому снижению эффективности иммунной защиты макроорганизма. Между тем тимэктомия у взрослых практически не приводит к серьезным дефектам в иммунитете.

10.2.1.2. Периферические органы иммунной системы

К периферическим органам иммунной системы относят селезенку, лимфатические узлы, аппендикс, печень, миндалины глоточного кольца, групповые лимфатические фолликулы, кровь, лимфу и др. В этих органах проходит иммуногенез - размножение и окончательное созревание предшественников иммунокомпетентных клеток и осуществляется иммунологический надзор. В функциональном плане периферические органы иммунной системы могут быть подразделены на органы контроля внутренней среды организма (лимфатические узлы, селезенка, тканевые мигрирующие клетки) и его кожных и слизистых покровов (аппендикс, лимфатические фолликулы и скопления).

Лимфатические узлы - мелкие округлые анатомические образования бобовидной формы, которые располагаются по ходу лимфатических сосудов. Каждый участок тела имеет региональные лимфоузлы. В общей сложности в организме человека насчитывается до 1000 лимфоузлов. Лимфатические узлы выполняют функцию биологического сита - через них фильтруется лимфа и задерживаются и концентрируются антигены. Через лимфоузел проходит в среднем около 10 9 лимфоцитов в 1 ч.

В строении лимфоузла различают корковое и мозговое вещество. Строма коры разделена соединительнотканными трабекулами на сектора. В ней выделяют поверхностный корковый слой и паракортикальную зону. В секторах поверхностного коркового слоя расположены лимфатические фолликулы с центрами размножения В-лимфоцитов (герминативные центры). Здесь же обнаруживаются фолликулярные дендритные клетки, способствующие созреванию В-лимфоцитов. Паракортикальный слой - это зона Т-лимфоцитов и интердигитальных дендритных клеток, потомков дермальных клеток Лангерганса. Мозговое вещество образовано тяжами соединительной ткани, между которыми располагаются макрофаги и плазматические клетки.

В пределах лимфоузла происходит антигенная стимуляция иммунокомпетентных клеток и включается система специфического иммунного реагирования, направленная на обезвреживание антигена.

Селезенка - это орган, через который фильтруется вся кровь. Он располагается в левой подвздошной области и имеет дольчатое строение. Лимфоидная ткань образует белую пульпу. В строении различают первичные, периартериальные лимфоидные фолликулы (окружают артерии по их ходу) и вторичные, располагающиеся на границах первичных фолликулов. Первичные лимфоидные скопления заселены преимущественно Т-лимфоцитами, а вторичные - В-лимфоцитами и плазматическими клетками. Кроме того, в строме селезенки обнаруживают фагоциты и ретикулярные дендритные клетки.

В селезенке, как в сите, задерживаются антигены, оказавшиеся в кровотоке, и состарившиеся эритроциты. Этот орган называют кладбищем эритроцитов. Здесь происходят антигенная стимуляция иммунокомпетентных клеток, развитие специфической иммунной реакции на антиген и его обезвреживание.

Печень играет особую роль в иммунной системе. В ней находится более половины всех тканевых макрофагов и большая часть естественных киллеров. Лимфоидные популяции печени обеспечивают толерантность к пищевым антигенам, а макрофаги утилизируют иммунные комплексы, в том числе сорбированные на стареющих эритроцитах.

Групповые лимфатические фолликулы (пейеровы бляшки) являются скоплением лимфоидной ткани в слизистой оболочке тонкой кишки. Такие образования также находятся в червеобразном отростке слепой кишки - аппендиксе. Кроме того, на всем протяже-

нии желудочно-кишечного тракта, начиная с пищевода и кончая анальным отверстием, располагаются единичные лимфатические фолликулы. Они обеспечивают местный иммунитет слизистой оболочки кишки и ее просвета и регулируют видовой и количественный состав ее нормальной микрофлоры.

Скопление лимфоидных элементов в виде миндалин глоточного кольца обеспечивает местный иммунитет в носоглотке, ротовой полости и верхних дыхательных путях, защищает их слизистые оболочки от внедрения микробов и других генетически чужеродных агентов, передающихся воздушно-капельным или воздушнопылевым путем, и регулирует локальную нормофлору.

Лимфа - жидкая ткань организма, которая содержится в лимфатических сосудах и узлах. Она включает в себя все соединения, поступающие из межтканевой жидкости. Основными и практически единственными клетками лимфы являются лимфоциты. В ее составе эти клетки осуществляют кругооборот в организме.

В кровь циркулируют предшественники и зрелые Т- и В-лимфоциты, полиморфно-ядерные лейкоциты, моноциты. Лимфоциты составляют 30% общего количества лейкоцитов. Одномоментно в крови присутствует менее 2% общего количества лимфоцитов.

10.2.1.3. Клетки иммунной системы

Специфическую функцию иммунной защиты непосредственно осуществляет многочисленный пул клеток миелоидного и лимфоидного ростков крови: лимфоциты, фагоциты и дендритные клетки. Это основные клетки иммунной системы. Кроме них, в иммунный ответ может вовлекаться множество других клеточных популяций (эпителий, эндотелий, фибробласты и др.). Перечисленные клетки различаются морфологически, по функциональной активности, маркерам (специфические молекулярные метки), рецепторному аппарату и продуктам биосинтеза. Тем не менее большую часть клеток иммунной системы объединяет близкое генетическое родство: они имеют общего предшественника, полипотентную стволовую клетку костного мозга (рис. 10.4).

На поверхности цитоплазматической мембраны клеток иммунной системы существуют особые молекулы, которые служат их маркерами. В 80-х годах прошлого века была принята международная номенклатура мембранных маркеров лейкоцитов человека, названных «CD-антигены» (табл. 10.2)

Рис. 10.4. Схема иммуногенеза (пояснения в тексте)

Таблица 10.2. Основные CD-маркеры клеток, участвующих в иммунном ответе

Продолжение табл. 10.2

Окончание табл. 10.2

Примечание. АЗКЦТ - антителозависимая клеточно-опосредованная цитотоксичность; АПК - антигенпрезентирующие клетки.

По функциональной активности клетки-участники иммунного ответа подразделяют на регуляторные (индукторные), эффекторные и антигенпрезентирующие. Регуляторные клетки управляют функционированием компонентов иммунной системы путем выработки медиаторов - иммуноцитокинов и лигандов. Эти клетки определяют направление развития иммунного реагирования, его интенсивность и продолжительность. Эффекторы являются непосредственными исполнителями иммунной защиты путем прямого воздействия на объект либо путем биосинтеза биологически активных веществ со специфическим эффектом (антитела, токсичные субстанции, медиаторы и пр.).

Антигенпрезентирующие клетки выполняют ответственную задачу: захватывают, процессируют (перерабатывают путем ограниченного протеолиза) и представляют антиген иммунокомпетентным Т-клеткам в составе комплекса с MHC II класса. АПК лишены специфичности в отношении самого антигена. Молекула MHC II класса может включать в себя любые эндоцитированные из межклеточной среды олигопептиды, как свои собственные, так и чужие. Установлено, что большая часть комплексов MHC II класса содержит аутогенные молекулы и лишь малая доля - чужеродный материал.

Помимо MHC II класса, АПК экспрессируют ко-стимулирующие факторы (CD40, 80, 86) и множество молекул адгезии. Последние обеспечивают тесный, пространственно стабильный и продолжительный контакт АПК с Т-хелпером. Кроме того, АПК экспрессируют молекулы CD1, с помощью которых могут презентировать липосодержащие или полисахаридные антигены.

Основными профессиональными АПК являются дендритные клетки костно-мозгового происхождения, В-лимфоциты и макро-

фаги. Дендритные клетки почти в 100 раз эффективнее макрофагов. Функцию непрофессиональных АПК могут также выполнять некоторые другие клетки в состоянии активации - эпителиальные клетки и эндотелиоциты.

Осуществление целенаправленной иммунной защиты макроорганизма возможно благодаря наличию на клетках иммунной системы специфических антигенных рецепторов (иммунорецепторов). По механизму функционирования они подразделяются на прямые и непрямые. Прямые иммунорецепторы непосредственно связываются с молекулой антигена. Непрямые иммунорецепторы взаимодействуют с молекулой антигена опосредованно - через Fc-фрагмент молекулы иммуноглобулина (см. раздел 11.1.2). Это так называемый Fc-рецептор (FcR).

Fc-рецепторы различаются по аффинности. Высокоаффинный рецептор может связываться с интактными молекулами IgE или IgG4 и образовывать рецепторный комплекс, в котором антигенспецифическую ко-рецепторную функцию выполняет молекула иммуноглобулина. Такой рецептор есть у базофилов и тучных клеток. Низкоаффинный FcR распознает молекулы иммуноглобулина, уже образовавшие иммунные комплексы. Он обнаруживается на макрофагах, естественных киллерах, эпителиальных, дендритных и множестве других клеток.

Иммунное реагирование основано на тесном взаимодействии различных клеточных популяций. Это достигается при помощи биосинтеза клетками иммунной системы широкого спектра иммуноцитокинов. Подавляющее большинство клеток иммунной системы постоянно перемещается во внутренних средах организма с крово- и лимфотоком и благодаря амебоидной подвижности.

Клеточно-элементный состав иммунной системы постоянно возобновляется за счет деления стволовых клеток. Состарившиеся, выработавшие свой биологический ресурс, ложно активированные, зараженные и генетически трансформированные клетки уничтожаются.

10.2.1.3.1. Лимфоциты

Лимфоциты - подвижные мононуклеарные клетки. В зависимости от места созревания эти клетки подразделяются на две популяции Т- (тимус) и В- (бурса Фабрициуса, костный мозг) лимфоцитов. Лимфоциты играют ключевую роль в обеспечении приобретенного (адаптивного) иммунитета. Они осуществляют

специфическое распознавание антигена, индукцию клеточного и гуморального иммунного ответа, различные формы иммунного реагирования.

В организме непрерывно идет возобновление популяций лимфоцитов, клетки активно мигрируют между различными органами и тканями. Вместе с тем миграция и расселение лимфоцитов в тканях не являются хаотическим процессом. Он имеет направленный характер и строго регулируется экспрессией на мембране лимфоцитов, эндотелии сосудов и клеточных элементах стромы особых молекул адгезии (интегрины, селектины и др.). Так, незрелые Т-лимфоциты активно мигрируют в тимус. Зрелые неиммунные («наивные») лимфоциты тропны к периферическим лимфоидным органам и тканям. При этом Т- и В-лимфоциты заселяют только «свои» области - это так называемый эффект хоминговой рецепции (от англ. home - дом). Зрелые иммунные (активированные) лимфоциты распознают эпителий в очаге воспаления. Клетки иммунологической памяти всегда возвращаются в места своего происхождения.

Продолжительность жизни неиммунных лимфоцитов достаточно большая. У Т-лимфоцитов она достигает нескольких месяцев или лет, а у В-клеток - недель или месяцев. Дольше всех живут клетки иммунологической памяти (см. раздел 11.5) - до 10 лет и более. Однако активированные или терминально дифференцированные лимфоциты имеют короткую продолжительность жизни (несколько суток). Состарившиеся, ложно активированные и аутореактивные (реагирующие на аутоантигены) лимфоциты подвергаются уничтожению путем индукции у них апоптоза. Погибшие лимфоциты постоянно заменяются новыми за счет их пролиферации в центральных и периферических органах иммунной системы. Численность лимфоидных популяций находится под жестким контролем клеток самой иммунной системы.

Для выполнения специфической функции лимфоциты несут на своей поверхности прямые антигенные рецепторы и являются иммунокомпетентными клетками. Иммунорецептор В-лимфоцита и особого γδТ-лимфоцита распознает нативный эпитоп, т.е. непосредственно отличает чужеродные субстанции. Иммунорецептор традиционного Т-лимфоцита ориентирован на олигопептиды в составе MHC, т.е. распознает измененное «свое».

Антигенспецифические рецепторы лимфоцитов имеют сложное молекулярное строение, уникальное для каждой клетки. Напри-

мер, у Т-лимфоцитов они состоят из нескольких полипептидных субъединиц, имеющих полигенное кодирование. Число генов, детерминирующих структуру V-области этого рецептора (вариабельный участок, ответственный за специфическое распознавание), в незрелой клетке достигает 100. При созревании лимфоцита в результате рекомбинационных перестроек в V-генах, индивидуальных для каждой клетки, образуется бесконечно большое количество вариантов антигенной специфичности рецептора, достигающее 10 12 , что сопоставимо с общей численностью популяции Т-лимфоцитов. Формирование В-клеточного рецептора имеет те же закономерности. Биологический смысл феномена чрезвычайно важен: в организме постоянно поддерживается широкий репертуар специфической направленности лимфоидных рецепторов, и клетки готовы в любой момент ответить защитной реакцией на любой возможный антиген.

В такой ситуации закономерно появление Т-лимфоцитов, специфичных для антигенов собственного организма. Однако они должны элиминироваться в тимусе на ранних этапах своего развития. Поэтому различают первичный и вторичный антигенраспознающий репертуар лимфоидных популяций. Первичный характеризуется набором рецепторных специфичностей, формирующимся при образовании лимфоцитов в костном мозгу индивидуума. Вторичный, или клональный, репертуар является совокупностью вариантов рецептора после отбраковки аутореактивных клонов клеток.

Антигенспецифическая рецепция в лимфоцитах имеет стандартные механизмы реализации. Полученный внеклеточной частью рецептора сигнал от раздражителя (антигена) передается по трансмембранному участку на его внутриклеточную часть, которая уже активирует внутриклеточные ферменты (тирозинкиназу, фосфорилазу и др.).

Для запуска продуктивной реакции лимфоцита необходима агрегация его рецепторов. Кроме того, для стабилизации рецепторлигандного взаимодействия и восприятия ко-стимулирующего сигнала требуются вспомогательные молекулы.

Среди лимфоцитов встречаются клетки без отличительных признаков Т- и В-лимфоцитов. Они получили название нулевых клеток. В костном мозгу на их долю приходится около 50% всех лимфоцитов, а в крови - примерно 5%. Функциональная активность остается неясной.

В-лимфоциты. В-лимфоциты - это преимущественно эффекторные иммунокомпетентные клетки, на долю которых приходится около 15% всей численности лимфоцитов. Выделяют две субпопуляции В-лимфоцитов: традиционные В-клетки, не имеющие маркера CD5 - , и CD5 + В1-лимфоциты.

При электронной микроскопии CD5 - В-лимфоциты имеют шероховатую поверхность, на ней определяются CD19-22 и некоторые другие. Функцию антигенспецифического рецептора (BCR) выполняют особые мембранные формы иммуноглобулинов. Клетки экспрессируют MHC II класса, ко-стимулирующие молекулы CD40, 80, 86, FcR к иммунным комплексам и нативным молекулам иммуноглобулина класса G, рецептор к эритроцитам мыши, иммуноцитокинам и др.

Рис. 10.5. Схема дифференцировки В-лимфоцита: Р - плазматическая клетка; МВ - В-лимфоцит иммунологической памяти; Вαα - синтезирует полимерный иммуноглобулин А в слизистых оболочках

Функцией зрелых CD5 - В-лимфоцитов и их потомков (плазмоцитов) является продукция иммуноглобулинов. Кроме того, В-лимфоциты являются профессиональными АПК. Они участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Дифференцировка и созревание В-лимфоцитов (рис. 10.5) происходят сначала в костном мозге, а затем в периферических органах иммунной системы, куда они отселяются на стадии предшественников. Потомками В-лимфоцитов являются клетки иммунологической памяти и плазматические клетки. Основные морфологические признаки последних - развитый эндоплазматический ретикулум и аппарат Гольджи с большим количеством рибо-

сом. Плазмоцит имеет короткий период жизни - не более 2-3 сут.

В1-лимфоциты считают филогенетически наиболее древней ветвью антителопродуцирующих клеток. Предшественники этих клеток рано мигрируют в ткани слизистых оболочек, где автономно от центральных органов иммунной системы поддерживают численность своей популяции. Клетки экспрессируют CD5, синтезируют низкоаффинные IgA и IgM к полисахаридным и липидным антигенам микробов и обеспечивают иммунную защиту слизистых оболочек от условно-патогенных бактерий.

Функциональной активностью В-лимфоцитов управляют молекулярные антигены и иммуноцитокины Т-хелпера, макрофага и других клеток.

Т-лимфоциты. Т-лимфоциты - это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. На долю этих клеток приходится около 75% всей лимфоидной популяции. На электронограмме все Т-лимфоциты имеют гладкую поверхность, их общим маркером являются CD3, а также рецептор к эритроцитам барана. В зависимости от строения антигенного рецептора (TCR) и функциональной направленности сообщество Т-лимфоцитов может быть разделено на группы.

Различают два типа TCR: αβ и γδ. Первый тип - гетеродимер, который состоит из двух полипептидных цепей - α и β. Он характерен для традиционных Т-лимфоцитов, известных как Т-хелперы и Т-киллеры. Второй обнаруживается на поверхности особой популяции γδТ-лимфоцитов.

Т-лимфоциты функционально также разделяются на две субпопуляции: иммунорегуляторов и эффекторов. Задачу регуляции иммунного ответа выполняют Т-хелперы. Ранее предполагалось существование Т-супрессоров, способных тормозить развитие иммунной реакции (супрессия). Однако до сих пор клетка морфологически не идентифицирована, хотя сам супрессорный эффект существует. Эффекторную функцию осуществляют цитотоксические лимфоциты Т-киллеры.

В организме Т-лимфоциты обеспечивают клеточные формы иммунного ответа (гиперчувствительность замедленного типа, трансплантационный иммунитет и т.д.), определяют силу и продолжительность иммунной реакции. Их созреванием, дифференцировкой и активностью управляют цитокины и макрофаги.

Т-хелперы. Т-хелперы или Т-помощники - субпопуляция Т-лимфоцитов, которые выполняют регуляторную функцию. На их долю приходится около 75% всей популяции Т-лимфоцитов. Они несут маркер CD4, а также αβ TCR , с помощью которого анализируют природу антигена, представляемую им АПК.

Рецепция антигена Т-хелпером, т.е. анализ его чужеродности, - весьма сложный процесс, требующий высокой точности. Ему способствуют (рис. 10.6) молекула CD3 (комплексируется с TCR), ко-рецепторные молекулы CD4 (имеют сродство к молекулярному комплексу MHC II класса), молекулы адгезии (стабилизируют межклеточный контакт), рецепторы (взаимодействуют с ко-стимулирующими факторами АПК - CD28, 40L).

Рис. 10.6. Схема активации Т-хелпера (пояснение в тексте)

Активированный Т-хелпер продуцирует широкий спектр иммуноцитокитов, при помощи которых он управляет биологической активностью множества клеток, вовлеченных в иммунный ответ.

Популяция Т-хелперов гетерогенна. Активированный CD4 + Т-лимфоцит (Т Ω -хелпер) дифференцируется в одного из своих потомков: T 1 - или Т 2 -хелпер (рис. 10.7). Эта дифференцировка является альтернативной и направляемой цитокинами. Т 1 - или Т 2 -хелперы различаются лишь функционально по спектру продуцируемых цитокинов.

Т 1 -хелпер образует ИЛ-2, 3, γ-ИФН, ФНО и др., необходимые для развития клеточного иммунного ответа, гиперчувствительности замедленного типа, иммунного воспаления. Формирование этой клетки определяют активированный макрофаг, естественный и Т-киллеры, синтезирующие ИЛ-12 и γ-ИФН.

Т 2 -хелпер продуцирует ИЛ-4, 5, 6, 9, 10, 13 и др., которые поддерживают гуморальный иммунный ответ, а также гиперчув-

Рис. 10.7. Схема дифференцировки Т-хелпера: Т-х - Т-хелпер; аМ - активированный макрофаг; Т-к - Т-киллер; аЕК - активированный естественный киллер; Э - эозинофил; Б - базофил; Т - тучная клетка; γδТ - γδТ-лимфоцит

ствительность немедленного типа. Дифференцировку в сторону Т 2 -хелпера потенцируют γδТ-клетки, базофилы, тучные клетки и эозинофилы, синтезирующие ИЛ-4 и 13.

В организме поддерживается баланс Т 1 -/Т 2 -хелперов, который необходим для развития адекватного иммунного ответа. Т 1 - и Т 2 - хелперы являются антагонистами и тормозят развитие друг друга. Установлено, что в организме новорожденных преобладают Т 2 -хелперы. Нарушение заселения желудочно-кишечного тракта нормальной микрофлорой тормозит развитие субпопуляции Т 1 - хелперов и ведет к аллергизации организма.

Т-киллеры (цитотоксические Т-лимфоциты). Т-киллер - субпопуляция Т-лимфоцитов-эффекторов, на долю которых приходится примерно 25% всех Т-лимфоцитов. На поверхности Т-киллера определяются молекулы CD8, а также αβTCR к антигену в комплексе с MHC I класса, по которому «свои» клетки отличаются от «чужих». В рецепции принимают участие молекула CD3, комплексирующая с TCR, и ко-рецепторные молекулы CD8, тропные к MHC I класса (рис. 10.8).

Т-киллер анализирует клетки собственного организма в поисках чужеродного MHC I класса. Клетки мутантные, пораженные вирусом, или аллогенного трансплантата несут на своей поверхности такие признаки генетической чужеродности, поэтому являются мишенью Т-киллера.

Рис. 10.8. Схема активации Т-киллера (пояснения в тексте)

Т-киллер устраняет клетки-мишени путем антителонезависимой клеточно-опосредованной цитотоксичности (АНКЦТ) (см. раздел 11.3.2), для чего синтезирует ряд токсичных субстанций: перфорин, гранзимы и гранулизин. Перфорин - токсичный белок, который синтезируют цитотоксические лимфоциты-Т-киллеры и естественные киллеры. Обладает неспецифическим свойством. Вырабатывается только зрелыми активированными клетками. Перфорин образуется в виде растворимого белка-предшественника и накапливается в цитоплазме в гранулах, которые сосредоточиваются около TCR, связавшегося с клеткой-мишенью для обеспечения локального, адресного поражения клетки-мишени. Содержимое гранул высвобождается в узкую синаптическую щель, образованную тесным контактом цитотоксического лимфоцита и клеткимишени. За счет гидрофобных участков перфорин встраивается в цитоплазматическую мембрану клетки-мишени, где в присутствии ионов Са 2+ полимеризуется в трансмембранную пору диаметром 16 нм. Образовавшийся канал может вызвать осмотический лизис клетки-мишени (некроз) и/или обеспечить проникновение в нее гранзимов и гранулизина.

Гранзимы - это обобщающее название сериновых протеаз, синтезируемых зрелыми активированными цитотоксическими лимфоцитами. Различают три типа гранзимов: А, В и С. После синтеза гранзимы накапливаются в гранулах подобно перфорину и вместе

Гранулизин - эффекторная молекула с ферментативной активностью, синтезируемая цитотоксическими лимфоцитами. Способен запускать в клетках-мишенях апоптоз, повреждая мембрану их митохондрий.

Т-киллер обладает огромным биологическим потенциалом - его называют серийным убийцем. За короткий срок он может уничтожить несколько клеток-мишеней, затрачивая на каждую около 5 мин. Эффекторную функцию Т-киллера стимулирует Т 1 -хелпер, хотя в ряде случаев его помощь не требуется. Помимо эффекторной функции, активированный Т-киллер синтезирует γ-ИФН и ФНО, стимулирующие макрофаг и потенцирующие иммунное воспаление.

γδТ-лимфоциты. Среди Т-лимфоцитов существует малочисленная популяция клеток с фенотипом CD4 - CD8 - , которые несут на своей поверхности особый TCR γδ-типа - γδТ-лимфоциты. Локализуются в эпидермисе и слизистой оболочке желудочнокишечного тракта. Их общая численность не превышает 1% общего пула Т-лимфоцитов, однако в покровных тканях она может достигать 10%.

γδТ-лимфоциты происходят из автономного ростка стволовых клеток, мигрировавших в покровные ткани на ранних этапах эмбриогенеза. В созревании минуют тимус. Активируются клетками поврежденного эпителия желудочно-кишечного тракта и эпидермиса, размножение усиливается ИЛ-7.

Антигенный рецептор γδТ-лимфоцита сходен с BCR, его активный центр непосредственно связывается с эпитопом антигена без его предварительного процессинга и участия MHC. Антигенные детерминанты могут быть представлены, например, молекулами CD1. γδTCRориентированы на распознавание некоторых широко распространенных микробных антигенов (липопротеинов, белков теплового шока, бактериальных суперантигенов и др.).

γδТ-лимфоциты могут быть как эффекторными, цитотоксическими клетками (принимают участие в удалении патогенов на ранних этапах антиинфекционной защиты), так и регуляторами иммунореактивности. Синтезируют цитокины, активирующие местный иммунитет и локальную воспалительную реакцию, в том числе усиливают образование Т 2 -хелперов. Кроме того, γδ-клетки продуцируют ИЛ-7 и управляют численностью собственной популяции.

Рецептор к MHC I класса анализирует плотность его экспрессии на мембране клетки. Дефицит этих молекул, наблюдающийся при раковой трансфорации клеток, также потенцирует цитотоксичность ЕК.

Тканевые ЕК ведут более оседлый образ жизни и обнаруживаются в большом количестве в печени и децидаульной оболочке беременной матки. Несут маркер CD16 - CD56 много и много Fas -лиганда. Реализуют АНКЦТ (см. раздел 11.3.2). Клетками-мишенями являются лимфоциты, активированные, например, пищевыми антигенами или аллоантигенами плода и экспрессирующие Fas .

Помимо цитотоксических функций, ЕК вырабатывают цитокины (ИЛ-5, 8, γ-ИФН, ФНО, гранулоцит-моноцит-колониестимулирующий фактор-ГМ-КСФ и др.), активирует макрофагально-фагоцитарное звено, развитие иммунного ответа и иммунного воспаления. Эффекторная функция ЕК усиливается цитокинами (ИЛ-2, 4, 10, 12, γ-ИФН и др.).

Фагоциты (см. раздел 9.2.3.1) - самая многочисленная морфологически гетерогенная фракция иммунокомпетентных клеток. Выполняют регуляторную и эффекторную функции. Вырабатывают иммуноцитокины, ферменты, ион-радикалы и другие биологически активные вещества, осуществляют вне- и внутриклеточный киллинг и фагоцитоз. Кроме того, макрофаги являются АПК - обеспечивают процессинг и презентацию антигена Т-хелперам.

Эозинофилы - гранулярные лейкоциты крови. Содержатся в крови, рыхлой соединительной ткани, в большом количестве накапливаются в очагах местного воспаления, вызванного гельминтами, и обеспечивают АЗКЦТ.

Эозинофилы также синтезируют цитокины (ИЛ-3, 5, 8, ГМ-КСФ и др.), стимулирующие клеточное звено иммунитета и образование Т 2 -хелпера, и липидные медиаторы (лейкотриены, тромбоцитактивирующий фактор и др.), запускающие воспалительную реакцию в месте внедрения гельминта.

Тучные клетки - немигрирующие морфологические элементы неясного происхождения, располагаются оседло вдоль барьерных тканей (lamina propria слизистых оболочек, в подкожной соединительной ткани) и в соединительной ткани кровеносных сосудов. По набору синтезируемых биологически активных соединений и локализации выделяют две разновидности тучных клеток - клетки слизистых оболочек и соединительной ткани.

Базофилы - гранулоциты, происходящие из костно-мозговой стволовой ППСК и родственные эозинофилам. Их дифференцировка альтернативно определяется цитокинами. Постоянно мигрируют с кровотоком, привлекаются в очаг воспаления анафилотоксинами (С3а, С4а и С5а) и задерживаются там с помощью соответствующих хоминговых рецепторов.

Базофил и тучная клетка синтезируют сходный набор биологически активных веществ. Вырабатывают, накапливая в гранулах, вазоактивные амины (гистамин у человека и серотонин у грызунов), сульфатированные глюкозаминогликаны (хондроитинсульфат, гепарин), ферменты (сериновые протеазы и др.), а также цитокин α-ФНО. Напрямую выделяют в межклеточное пространство лейкотриены (С4, Д4, Е4), простагландины (PGD2, PGE2), цитокины (ИЛ-3, 4, 5, 13 и ГМ-КСФ) и фактор активации тромбоцитов.

На поверхности базофил и тучная клетка несут высокоаффинный FcR к IgE и G4. Образованный рецепторный комплекс специфически взаимодействует с эпитопом антигена/аллергена. Экспрессируют также FcR к IgG в составе иммунного комплекса. Базофил и тучная клетка активируются аллергенами, анафилотоксинами, медиаторами активированных нейтрофилов, норадреналином, ингибируются иммунными комплексами.

Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки - залповый выброс биологически активных соединений, содержащихся в гранулах, в межклеточное пространство, которые вызывают развитие гиперчувствительности немедленного типа (аллергической реакции I типа).

Базофил и тучная клетка направляют дифференцировку Т-хелперов в сторону Т 2 -субпопуляции и усиливают эозинофилогенез.

Дендритные клетки - отростчатые клетки костно-мозгового происхождения. Локализуются в лимфоидных органах и барьерных тканях. Экспрессируют на своей поверхности MHC II класса и ко-стимулирующие факторы (CD40, 80, 86). Способны погло-

щать путем эндоцитоза, перерабатывать (процессировать) и представлять (презентировать) антиген Т-хелперам в комплексе с MHC II класса. Является наиболее активной АПК. Из числа дендритных клеток хорошо известны клетки Лангерганса (в эпидермисе), интердигитальные клетки (в лимфатических узлах) и дендритные клетки тимуса.

10.2.2. Организация функционирования иммунной системы

Иммунная система имеет сложную организацию - для осуществления специфической функции задействовано множество различных клеточных популяций и растворимых факторов иммунитета. Клетки постоянно циркулируют в организме, погибают в процессе жизнедеятельности и воспроизводятся.

В зависимости от конкретной потребности специфическая функция иммунной системы может быть активирована либо подавлена (супрессирована). Однако любое реагирование иммунной системы осуществляется только при постоянном взаимодействии практически всех типов ее клеток, т.е. в условиях межклеточной кооперации. Раздражителем (активирующим сигналом) является антиген. В развитии любого иммунного реагирования прослеживается каскад последовательно сменяющихся этапов.

10.2.2.1. Взаимодействие клеток иммунной системы

Необходимым условием функционирования иммунной системы является тесная межклеточная кооперация, основу которой составляет рецептор-лигандное взаимодействие. Для связи между собой клетки используют различные дистантные растворимые факторы и прямой контакт.

Синтез растворимых факторов является одним из универсальных способов коммутации клеток между собой. К таковым относятся цитокины, которых в настоящее время известно более 25. Они представляют собой гетерогенное семейство разнообразных по структуре и функции биологически активных молекул, имеющих ряд общих свойств:

Как правило, цитокины не депонируются в клетке, а синтезируются после соответствующего стимула;

Для восприятия цитокинового сигнала клетка экспрессирует соответствующий рецептор, который может взаимодействовать с несколькими различными цитокинами;

Цитокины синтезируются клетками разных ростков, уровней и направлений дифференцировки;

Субпопуляции клеток иммунной системы различаются по спектру синтезируемых цитокинов и их рецепторов;

Цитокины обладают универсальностью, множественностью эффектов и синергизмом;

Цитокины могут воздействовать как на рядом расположенную клетку (паракринная регуляция), так и на сам продуцент (аутокринная регуляция);

Цитокиновая регуляция носит каскадный характер: активация клетки одним цитокином вызывает синтез другого;

В подавляющем большинстве это короткодистантные медиаторы - их эффекты проявляются на месте выработки. Вместе с тем ряд провоспалительнъгх цитокинов (ИЛ-1, 6, α-ФНО и др.) могут оказывать системное действие.

Цитокины различаются по ведущей функциональной направленности:

Медиаторы доиммунного воспаления (ИЛ-1, 6,12, α-ФНОидр);

Медиаторы иммунного воспаления (ИЛ-5, 9, 10, γ-ИФН

Стимуляторы пролиферации и дифференцировки лимфоцитов (ИЛ-2, 4, 13, трансформирующий фактор роста - β-ТФР

Факторы роста клеток, или колониестимулирующие факторы

(ИЛ-3, 7, ГМ-КСФ и др.);

Хемокины, или клеточные хемоаттрактанты (ИЛ-8 и др.). Краткая характеристика некоторых цитокинов приведена в

Прямое межклеточное взаимодействие основано на рецепции структур, экспрессированных на мембране клетки-оппонента. Для этого требуется достаточно продолжительный и стабильный контакт клеток. Такой способ коммутации используют Т-хелперы и Т-киллеры при анализе чужеродности презентированных структур. Механизм действия ко-стимулирующих факторов (пары CD40- CD40-лиганд, CD28-CD80, 86) также требует непосредственного контакта.

10.2.2.2. Активация иммунной системы

Активация иммунной системы подразумевает развитие продуктивной иммунной реакции в ответ на антигенное раздражение

Таблица 10 .3. Характеристика основных цитокинов

Продолжение табл. 10.3

Продолжение табл. 10.3

Окончание табл. 10.3

Примечание. МИФ - миграцию ингибирующий фактор.

и появление продуктов деструкции тканей макроорганизма. Это сложный многоступенчатый процесс, требующий продолжительного времени для своей индукции - около 4 сут. Критическим событием является невозможность элиминации антигена факторами врожденного иммунитета в течение указанного срока.

Пусковым механизмом адаптивного иммунитета является распознавание «свой-чужой», которое осуществляют Т-лимфоциты при помощи своих прямых иммунорецепторов - TCR. В случае установления чужеродности биоорганической молекулы включается второй этап реагирования - запускается интенсивное тиражирование клона высокоспецифичных для антигена лимфоцитовэффекторов, способных прервать антигенную интервенцию. Это явление получило название «экспансия клона». Параллельно, но несколько позже пролиферации стимулируются дифференцировка иммунных лимфоцитов и формирование из него клеток иммунологической памяти, гарантирующих выживание в будущем.

Таким образом, продуктивная активация иммунной системы связана с размножением и дифференцировкой антигенореактивных клонов иммунокомпетентных клеток. Антигену в этом процессе отведена роль индуктора и фактора клональной селекции. Механизмы основных этапов активации иммунной системы рассмотрены ниже.

Активация Т-хелпера. Процесс (см. рис. 10.6) осуществляется при непосредственном участии АПК (дендритные клетки, В-лимфоциты и макрофаги). После эндоцитоза и процессинга антигена во внутриклеточных везикулах АПК встраивает образовавшийся олигопептид в молекулу MHC II класса и выставляет полученный комплекс на наружной мембране. На поверхности АПК также экспрессируются ко-стимулирующие факторы - молекулы CD40, 80, 86, мощным индуктором которых являются продукты разрушения покровных тканей на этапе доиммунного воспаления.

Т-хелпер при помощи молекул адгезии прочно соединяется с поверхностью АПК. Иммунорецептор Т-хелпера совместно с молекулой CD3 при поддержке ко-рецепторной молекулы CD4 взаимодействует с комплексом антиген-MHC II класса и анализирует чужеродность его структуры. Продуктивность рецепции зависит от ко-стимулирующих воздействий в парах CD28-CD80/86 и CD40- лиганд-CD40.

В случае признания чужеродности комплекса антиген-MHC II класса (точнее, «не своего») Т-хелпер активируется. Он экспресси-

рует рецептор к ИЛ-2 и начинает синтезировать ИЛ-2 и другие цитокины. Итогом активации Т-хелпера являются его размножение и дифференцировка в одного из своих потомков - T 1 - или Т 2 -хелпер (см. рис. 10.2). Любое изменение условий рецепции прекращает активацию Т-хелпера и может индуцировать в нем апоптоз.

Активация В-лимфоцита. Для активации В-лимфоцита (рис. 10.9) необходима суммация трех последовательных сигналов. Первый сигнал - результат взаимодействия молекулы антигена со специфичным для него BCR, второй - интерлейкиновый стимул активированного Т-хелпера и третий - результат взаимодействия ко-стимулирующих молекул CD40 с CD40-лигандом.

Активация инициирует размножение и дифференцировку специфичного для конкретного антигена В-лимфоцита (см. рис. 10.2). В итоге в пределах зародышевых (герминативных) центров лимфоидных фолликулов появляется клон специфических антителопродуцентов. Дифференцировка позволяет переключить биосинтез иммуноглобулинов с классов M и D на более экономные: G, A или Е (редко), повысить аффинность синтезируемых антител и образовать В-клетки иммунологической памяти или плазматические клетки.

Активация В-лимфоцита - весьма тонкий процесс. Отсутствие хотя бы одного из стимулов (нарушение межклеточной кооперации, неспецифичность рецептора В-лимфоцита или элиминация антигена) блокирует развитие антительного иммунного ответа.

Активация Т-киллера. Для исполнения надзорной функции Т-киллер вступает в тесный и прочный контакт с потенциальной

Рис. 10.9. Схема активации В-лимфоцита (пояснения в тексте)

клеткой-мишенью, используя молекулы адгезии (см. рис. 10.8). Затем иммунорецептор Т-киллера (αβTCR) совместно с молекулой CD3 при поддержке ко-рецепторной молекулы CD8 взаимодействует с антигенным комплексом MHC I класса и анализирует его структуру. Обнаружение отклонений в пользу аллогенности активирует Т-киллер к экспрессии рецептора к ИЛ-2 и синтезу ИЛ-2 и высвобождение эффекторных молекул (перфорин, гранзимы, гранулизин) из цитоплазматических гранул в синаптическую щель межклеточного контакта.

Для адекватного развития клеточной формы иммунного ответа требуются активизирующие стимулы со стороны Т 1 -хелпера. Т-киллер может функционировать автономно, самостоятельно инициируя и поддерживая клонообразование за счет аутокринной стимуляции ИЛ-2. Однако это свойство реализуется редко.

10.2.2.3. Супрессия иммунного ответа

Супрессия или подавление иммунного ответа является физиологической реакцией организма, которая в норме завершает иммунный ответ и направлена на торможение экспансии антигенспецифических клонов лимфоцитов. В отличие от иммунологической толерантности, супрессии подвергается уже инициированное иммунное реагирование. Различают три механизма иммуносупрессии: уничтожение клонов иммунокомпетентных клеток, торможение активности иммунокомпетентных клеток, элиминация антигенного стимула.

Устранить иммунокомпетентные клетки можно путем апоптоза. При этом элиминации подвергаются следующие группы клеток:

Терминально дифференцированные лимфоциты, завершившие свою биологическую программу;

Активированные лимфоциты, не получившие антигенного стимула;

«изношенные» лимфоциты;

Аутореактивные клетки.

Естественными факторами, инициирующими апоптоз, яляются глюкокортикоидные гормоны, Fas -лиганд, α-ФНО и другие иммуноцитокины, гранзимы и гранулизин. Апоптотическое уничтожение клеток-мишеней могут активировать Т-киллеры, ЕК с фенотипом CD16 - CD56 много и Т 1 -хелперы.

Помимо апоптоза возможен антителозависимый лимфоцитолиз. Например, с медицинской целью применяют антилимфоцитарную

сыворотку, которая в присутствии комплемента вызывает лизис лимфоцитов. Устранить лимфоидную популяцию возможно также воздействием ионизирующего излучения или цитостатиков.

Функциональная активность иммунокомпетентных клеток может быть ингибирована растворимыми факторами их конкурентов или потомков. Ведущая роль принадлежит иммуноцитокинам с множественными эффектами. Известно, например, что Т 2 - хелперы, γδТ-лимфоциты и тучные клетки при помощи ИЛ-4, 13 препятствуют дифференцировке Т0-хелпера в Т 1 -клетку. Последний, в свою очередь, может блокировать образование Т 2 -хелпера, синтезируя γ-ИФН. Пролиферацию Т- и В-лимфоцитов ограничивает β-ТФР, который продуцируют терминально дифференцированные Т-хелперы. Уже упомянутые продукты Т 2 -хелпера (ИЛ-4, 13 и β-ТФР) подавляют биологическую активность макрофагов.

Супрессия гуморального звена иммунитета может быть вызвана иммуноглобулинами. Избыточные концентрации иммуноглобулина класса G, связываясь со специальными рецепторами на мембране В-лимфоцита, тормозят биологическую активность клетки и ее способность дифференцироваться в плазмоцит.

Устранение из организма антигена в природе наблюдается при полном освобождении организма от патогена при развитии стерильного иммунитета. В клинической практике эффект достигается очищением организма плазмоили лимфосорбцией, а также нейтрализацией антигена антителами, специфичными для высокоиммуногенных эпитопов.

10.2.2.4. Возрастные изменения иммунной системы

В развитии иммунной системы четко прослеживаются два этапа. Первый, антигеннезависимый, который начинается с эмбрионального периода развития и частично продолжается всю жизнь. В течение этого периода образуются стволовые клетки и разнообразные антигенспецифические клоны лимфоцитов. Предшественники γδT и В1-лимфоцитов мигрируют в покровные ткани и формируют автономные лимфоидные ростки.

Второй этап, антигензависимый, продолжается с момента рождения особи до ее гибели. В этот период идет «ознакомление» иммунной системы с многообразием окружающих нас антигенов. По мере накопления биологического опыта, т.е. количества и качества продуктивных контактов с антигенами, происходят селекция

и тиражирование отдельных клонов иммунокомпетентных клеток. Особенно интенсивная экспансия клонов характерна для детского возраста. В течение первых 5 лет жизни иммунной системе ребенка приходится усваивать примерно 90% биологической информации. Еще 9% воспринимается до наступления пубертата, на взрослое состояние остается лишь около 1%.

Иммунной системе ребенка приходится справляться с чудовищными нагрузками, которые в основном падают на гуморальное звено иммунитета. В местах с повышенной плотностью населения и частыми межиндивидуальными контактами (крупные города) создаются условия для длительной персистенции высокой концентрации разнообразных патогенов. Поэтому дети в мегаполисах часто болеют. Однако создается впечатление о тотальном иммунодефиците, порожденном крайним экологическим неблагополучием. Между тем эволюционно заложенные механизмы иммунной защиты позволяют организму ребенка успешно справиться с трудными естественными испытаниями на жизнеспособность и адекватно отреагировать на вакцинопрофилактику.

С возрастом иммунная система меняет свою структуру. В организме взрослого до 50% всего лимфоидного пула представлено клонами клеток, прошедших антигенную стимуляцию. Накопленный иммунной системой биологический опыт проявляется образованием узкой «библиотеки» жизненно важных (актуальных) клонов лимфоцитов, специфичных для основных патогенов. Благодаря долгоживучести клеток иммунологической памяти актуальные клоны со временем становятся самодостаточными. Они приобретают способность к самоподдержанию и независимость от центральных органов иммунной системы. Функциональная нагрузка на тимус снижается, что проявляется его возрастной инволюцией. Тем не менее в организме сохраняется широкий набор невостребованных «наивных» клеток. Они способны отреагировать на любую новую антигенную агрессию.

точных элементов организма. Поэтому после рождения начинает усиленно развиваться система адаптивного клеточного иммунитета, а вместе с ним образование клонов Т 1 -хелперов и Т-киллеров. Отмечено, что нарушение постнатальной колонизации желудочнокишечного тракта нормальной флорой тормозит процесс адекватного формирования популяции Т 1 -хелперов в пользу Т 2 -клеток. Избыточная активность последних оборачивается аллергизацией детских организмов.

Продуктивный иммунный ответ после своего завершения (нейтрализации и элиминации антигена из организма) также сопровождается изменениями клональной структуры антигенореактивных лимфоцитов. При отсутствии активирующих стимулов клон инволюционирует. Невостребованные клетки со временем погибают от старости или индукции апоптоза, причем этот процесс начинается с более дифференцированных лимфоцитов-эффекторов. Численность клона постепенно снижается и проявляется постепенным угасанием иммунного ответа. Однако в организме длительно персистируют клетки иммунологической памяти.

Старческий период жизни характеризуется доминированием в иммунной системе актуальных клонов антигенспецифических лимфоцитов в сочетании с нарастающей иммунодепрессией и снижением общей реактивности. Инфекции, вызванные даже условно-патогенными микробами, зачастую принимают затяжной или угрожающий характер. Клеточный иммунитет также теряет эффективность, постепенно нарастает объем злокачественно трансформированных клеток. Поэтому у пожилых людей часто встречаются новообразования.

Задания для самоподготовки (самоконтроля)

А. Отметьте эффекторные клетки иммунной системы:

1. Дендритные клетки.

2. В-лимфоциты.

3. Т-хелперы.

4. Т-киллеры. Б. Отметьте АПК:

1. Дендритные клетки.

2. В-лимфоциты.

3. Макрофаги.

4. Т-хелперы.

В. Отметьте клетки, на которых экспрессируется рецептор 2-го класса МНС:

1. Т-киллеры.

2. Дендритные клетки.

3. Макрофаги.

4. В-лимфоциты.

Г. Отметьте маркеры В-лимфоцитов:

1. МНС 2-го класса.

Д. Отметьте рецепторные молекулы Т-хелперов:

Е. Назовите клетки и медиаторы, принимающие участие в формировании Т 1 -хелперов:

2. Т-киллеры.

3. γ-Интерферон.

4. Активированный макрофаг.

5. Тучная клетка.

Ж. Назовите клетки и медиаторы, принимающие участие в формировании Т 2 -хелперов:

1. Базофилы.

2. Т-киллеры.

3. Тучные клетки.

З. Назовите рецептор-лигазную пару, необходимую для костимуляции Т-хелперов АПК. Без этой ко-стимуляции представление антигена Т-хелперу может привести к его функциональной инактивации:

2. MHC класс2/CD4.

3. MHC класс1CD8.

4. MHC класс2/TCR

И. Назовите рецептор-лигазную пару, необходимую для стимуляции Т-киллера (CD8):

1. MHC класс 2/CD4.

2. MHC класс 1/CD8.

К. Некоторые вирусы и бактериальные токсины обладают свойством суперантигенов, вызывая неспецифическую активацию лимфоцитов, приводящую их к гибели. Объясните механизм их действия.

Антигеном называют вещество или формы вещества, способные, при попадании внутрь организма, вызвать (индуцировать) иммунный ответ. Такие вещества в медицинской литературе часто называют иммуногенами. Процедура введения антигена в организм называется иммунизацией .

Антигены (иммуногены) – это крупные молекулы с большой молекулярной массой. Но бывают и исключения, когда иммунная система отвечает и на не слишком большие молекулы. Может получиться антиген при связывании маленьких молекул (например, молекулы ароматических веществ) с большой молекулой (макромолекулой), которая будет носителем, а маленькую молекулу в этом случае называют гаптеном . Случаи аллергических реакций немедленного или замедленного типа связывают часто именно с гаптенами.

В роли антигена могут выступать разнообразные объекты, содержащие в себе соответствующие вещества. Это могут быть пищевые, пыльцевые, инсектицидные, бытовые объекты, латекс, красители, ксенобиотики, различные виды имплантатов, опухолевые клетки и много других объектов. По своей химической природе антигенами являются белки, полисахариды, фосфолипиды и их комбинации.

Антигены несут признаки чужеродной информации. Но что именно и каким образом распознает иммунная система организма? Иммунная система обладает разнообразным арсеналом клеточных структур для распознавания и дестабилизации антигенов . Важную роль в деле идентификации антигена играют Т- и В-лимфоциты, они наделены специальными рецепторами (анализаторами) для узнавания антигена. И с помощью этих рецепторов лимфоциты анализируют молекулы наружных мембран клеток и межклеточных тканей чужеродного объекта. Зарождаясь в органах иммунной системы , лимфоциты наделяются рецепторами, которые изначально «заточены» на определение любого вида антигена, поступающего в организм, даже потенциально неизвестного иммунной системе.

В-лимфоцит находит антиген, поглощает и начинает процесс расщепления антигена, превращая его в антигенпрезентирующий комплекс (набор веществ «удобоваримый» для Т-лимфоцита), подготавливая его к презентации для Т-лимфоцита (без такой подготовительной работы Т-лимфоцит не в состоянии распознать антиген). Т-лимфоцит распознает подходящий для него подготовленный антиген и начинает делиться, то есть формировать клон себе подобного Т-лимфоцита. Число таких клонов может достигать нескольких миллионов, и каждый имеет специфические рецепторы для того же антигена. Клоны необходимы для того, чтобы на все молекулы антигена хватило клеток Т-лимфоцитов. Элиминируя молекулы антигена Т-лимфоциты привлекают к работе и другие фагоциты, чтобы с их помощью вывести из организма антигены. Весь процесс называется гуморальным иммунным ответом .

Существует интересная особенность иммунной системы строить иммунный ответ на антигены с помощью Т-лимфоцитов и В-лимфоцитов или с помощью только В-лимфоцитов. В этом смысле все антигены подразделяют на тимусозависимые, когда участвуют Т- и В-лимфоциты, и тимусонезависимые, когда участвуют только В-лимфоциты. Тимусонезависимые антигены обозначают как ТН-антигены.

Антитела - это ответ иммунной системы на наличие в организме антигена. Антитела представляют собой молекулы иммуноглобулинов, особых растворимых белков. За выработку антител отвечают В-лимфоциты. Иммуноглобулины связывают молекулы антигенов, нейтрализуя их. Далее путем фагоцитоза молекулы элиминируют (выводят) из организма. Антитела, то есть иммуноглобулины, имеют уникальную возможность связывать молекулы антигена в том виде, в котором эти молекулы попадают в организм (без предварительной обработки молекулы, как в случаях с Т-лимфоцитами), поэтому иммуноглобулины называют антигенраспознающими и антигенсвязывающими молекулами. В таких случаях тратится меньше времени на ответную иммунную реакцию организма. Такие иммуноглобулины (антитела) участвуют в иммунном ответе, когда речь идет о нахождении в организме тимусонезависимых антигенов (ТН-антигенов).

Вот такая довольно замысловатая схема работы иммунной системы при попадании антигена в организм позволяет человеку бороться с вредоносными микроорганизмами и веществами, обеспечивая себе дальнейшую жизнь.


    Экзогенные, эндогенные;

    Полноценные и неполноценные (гаптены, полугаптены);

    Тимус-зависимые и тимус-независимые;

    Суперантигены;

    Гетерогенные;

    Аутоантигены;

    Опухолевые;

    Бактериальные (группоспецифические, видоспецифические, типоспецифические, О-, К-, Н-антигены и другие);

    Вирусные;

    Грибковые;

    Протективные;

    Изоантигены;

    Антигены главного комплекса гистосовместимости.

Экзогенные антигены – попадают в организм из окружающей среды, подвергаются эндоцитозу и расщеплению в Аг-представляющих клетках (макрофагах, дендритных клетках тимуса, фолликулярных отросчатых клетках лимфатических узлов и селезёнки, М-клетках лимфатических фолликулов пищеварительного тракта, клетках Лангерганса кожи). Затем Аг-детерминанта (эпитоп) в комплексе с молекулой класса II МНС, встраивается в плазматическую мембрану Аг-представляющей клетки и предъявляется CD 4 + Т-лимфоцитам (Т-хелперам);

Эндогенные антигены – продукты собственных клеток организма. Чаще всего это аномальные белки опухолевых клеток и вирусные белки, синтезируемые вирусинфицированными клетками хозяина. Их антигенные детерминанты (эпитопы) предъявляются в комплексе с молекулой класса I МНС CD 8 + Т-лимфоцитам (Т-киллерам).

Полноценные Аг – обладают способностью индуцировать образование антител и взаимодействовать с ними;

Неполноценные Аг (гаптены) – низкомолекулярные вещества, которые не обладают способностью индуцировать образование антител и, но взаимодействуют с готовыми специфичными антителами. Гаптены приобретают свойства полноценных антигенов при связывании с высокомолекулярными веществами, например белками (шлепперами). К гаптенам относятся лекарственные препараты, например, антибиотики, которые способны запускать иммунный ответ при связывании с белками организма (альбумином), а также с белками на поверхности клеток (эритроцитов, лейкоцитов). В результате образуются антитела, способные взаимодействовать с гаптеном. При повторном введении в организм гаптена возникает вторичный иммунный ответ, нередко в виде аллергической реакции, например анафилаксии;

Полугаптены – неорганические вещества – йод, бром, хром, никель, нитрогруппа, азот и т.д. – связываясь с белками, например, кожи, способны вызвать аллергический контактный дерматит (ГЗТ), развивающийся при повторных соприкосновениях кожи с хромированными, никелированными предметами, нанесении на кожу йода и т.д.

Тимус-зависимые антигены – это антигены, которые для индукции иммунного ответа требуют участия Т-лимфоцитов, этих антигенов большинство;

Тимус-независимые – антигены, которые способны стимулировать синтез антител без помощи Т-клеток, например, ЛПС бактериальных клеточных стенок, высокомолекулярные синтетические полимеры.

Суперантигены (бактериальные энтеротоксины (стафилококковый, холерный), некоторые вирусы (ротавирусы) и др. – особая группа антигенов, которые в значительно меньших дозах, чем другие антигены, вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов (более 20%, тогда как обычные антигены стимулируют 0,01% Т-лимфоцитов). При этом вырабатывается много ИЛ-2 и других цитокинов, вызывающих воспаление и повреждение тканей.

Гетерогенные Аг – это перекрёстно реагирующие Аг, общие антигены у различных видов микробов, животных и человека. Это явление называется антигенной мимикрией. Например, гемолитические стрептококки группы А содержат перекрестно реагирующие антигены (в частности, М-белок), общие с антигенами эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводи к развитию ревматизма и постстрептококкового гломерулонефрита. У возбудителя сифилиса имеются антигены фосфолипиды сходные с фосфолипидами сердца человека и животных, поэтому кардиолипиновый антиген сердца быка используется для выявления антител к бледной трепонеме в серодиагностике сифилиса (реакция Вассермана). Антиген Форсмана – выявлен в эритроцитах барана, кошек, собак, почках морских свинок, сальмонеллах.

Аутоантигены – это эндогенные антигены, вызывающие выработку аутоантител. Различают:

- естественные первичные (нормальная ткань хрусталика глаза, нервная ткань и др.), что связано с нарушением аутотолерантности,

Приобретенные вторичные – продукты повреждения тканей микробами, вирусами, ожоговые, лучевые, холодовые, которые возникают из собственных тканей в результате изменения тканей при ожогах, отморожениях, при действии радиоактивного излучения.

Опухолевые (онкоантигены, Т-антигены ( tumor - опухоль ) - в результате злокачественной трансформации нормальных клеток в опухолевые в них начинают экспрессироваться (проявляться) специфические аномальные антигены, отсутствующие в составе нормальных клеток. Выявление иммунологическими методами опухолевых антигенов даст возможность ранней диагностики онкологических заболеваний.

Бактериальные антигены:

    группоспецифические – общие антигены у разных видов одного рода или семейства,

    видоспецифические – антигены характерные представителям одного вида,

    типоспецифические – определяют серологические варианты (серовары, серотипы) внутри одного вида,

    Н-антигены (жгутиковый) – белок флагеллин, входящий в состав бактериальных жгутиков, термолабилен;

    О-антигены (соматический) – представляет собой ЛПС Гр- бактерий, термостабильны. Эпитопы соматического антигена представлены гексозами (галакторза, рамноза и др.) и аминосахарами (N-ацетилглюкозамин, N-ацетилгалактозамин). У Гр+ бактерий соматический антиген представлен глицерилтейхоевой и рибитолтейхоевой кислотами.

    К-антигены (капсульные антигены) – находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки. Содержат кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая и идуроновая кислоты. Капсульные антигены используют для приготовления вакцин против менингококков, пневмококков, клебсиелл. Однако введение больших доз полисахаридных антигенов может вызвать толерантность. У –кишечной палочки К-антиген подразделяют на фракции А (термостабильная), В, L (термолабильные). Разновидностью К-антигена является поверхностный Vi-антиген (у сальмонелл), который обусловливает вирулентность микроба и персистенцию возбудителя у бактерионосителей.

    Антигенами бактерий являются также их токсины, рибосомы, ферменты.

Вирусные – а) суперкапсидные (белковые и гликопротеидные, например гемагглютинин и нейраминидаза вируса гриппа), б) капсидные (белковые), в) серцевинные (нуклеопротеидные).

Грибковые – дрожжеподобные грибы Candida albicans содержат полисахарид клеточной стенки – маннан, цитоплазматические и ядерные белки. Среди них выявлено 80 антигенов. Эти антигены вызывают немедленные (антитела Ig m, Ig G, Ig A, Ig E классов) и замедленные (Т-клеточные) реакции и сенсибилизацию без клинических проявлений. Антигены грибов обладают иммуностимулирующим и иммунодепрессивным действием.

Протективные – это антигенные детерминанты (эпитопы) микроорганизмов, которые вызывают наиболее сильный иммунный ответ, что обеспечивает иммунитет к соответствующему возбудителю при повторной инфекции. Впервые были обнаружены в экссудате пораженной ткани при сибирской язве. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин.

Изоантигены – антигены, по которым индивидуумы одного вида отличаются друг от друга (например, антигены эритроцитов – система АВО групп крови, Rh-фактор, антигены лейкоцитов – главного комплекса гистосовместимости).

Антигены главного комплекса гистосовместимости – гликопротеины клеточных мембран, которые играют важную роль в иммунном ответе, реакции отторжения трансплантата, определяют предрасположенность к некоторым заболеваниям. Спектр молекул главного комплекса гистосовместимости уникален для каждого организма и определяет его биологическую индивидуальность, что позволяет отличать «своё» (гистосовместимое) от «чужого» (несовместимого). Главный комплекс гистосовместимости обозначается как МНС (Major Histocompability Complex). Антигены МНС у разных видов животных обозначают по разному: у мышей - Н2-система, у собаки – DLA, у кролика - RLA, у свиньи – SLA. У человека антигены главного комплекса гистосовместимости обозначают HLA (Human leucocyte antigenes), так как для клинических и экспериментальных целей в качестве антигенов главного комплекса гистосовместимости определяют лейкоцитарные антигены. Человеческие лейкоцитарные антигены кодируются генами локализованными в 6-ой хромосоме. По химической структуре и функциональному назначению HLA подразделяют на два класса.

Антигены l класса МНС представлены на поверхности всех ядросодержащих клеток. Они регулируют взаимодействие мжду Т-киллерами и клетками мишенями. Основная биологическая роль нтигенов l класса заключается в том, что они являются маркерами “своего”. Клетки, несущие антигены l класса не атакуются собственными Т-киллерами в связи с тем, что в эмбриогенезе аутореактивные Т-киллеры, распознающие антигены l класса на собственных клетках, уничтожаются. Антигены l класса взаимодействуют с молекулой CD 8 на мембране Т-киллера.

Антигены ll класса МНС располагаются преимущественно на мембране иммунокомпетентных клеток (макрофагах, моноцитах, В- и активированных Т-лимфоцитах. Антигены ll класса взаимодействуют с молекулой CD 4 мембраны Т-хелпера, что вызываеь выделение лимфокинов, стимулирующих пролиферацию и созревание Т-киллеров и плазматических клеток.

Определение HLA-антигенов необходимо в следующих ситуациях:

    При типировании тканей с целью подбора донора реципиенту;

    Для установления связи наличия определенных антигенов МНС и предрасположенности к тому или иному заболеванию. Наиболее выраженная корреляция выявлена между наличием HLA-В27 и болезнью Бехтерева (анкилозирующий спондилоартрит): 95% больных имеют этот антиген.

    При оценке иммунного статуса (выявление несущих HLA-DR антигены а) активированных Т-лимфоцитов и б) мононуклеаров, участвующих в распознавании антигенов.

Несомненно, вам приходилось слышать о понятиях антиген и антитело. Но, если вы не имеете отношения к медицине или биологии, то, вероятнее всего не знаете о роли антигенов и антител. У большинства людей есть общее представление о том, что делают антитела, но они не осознают их решающую связь с антигенами. В этой статье мы рассмотрим разницу между этими двумя образованиями, узнаем о том, какие их функции в организме.

Какие различия имеют антиген и антитело?

Самый простой способ получить лучшее представление о различии между антигеном и антителом — это провести сравнение этих двух образований. Они имеют разные структуры, функции и местоположения в теле. Одни, как правило, обладают положительными качествами, поскольку защищают организм, а другие могут вызывать негативную реакцию.

Что это такое?

Антиген — чужеродная частица, которая может вызывать иммунный ответ в теле человека. Они в основном состоят из белков, но они также могут быть нуклеиновыми кислотами, углеводами или липидами. Антигены также известны под термином иммуногены. К ним относятся химические соединения, пыльцу растений, вирусы, бактерии и другие вещества биологического происхождения.

Антитела могут называться иммуноглобулинами. Это белки, синтезируемые организмом. Их продукция необходима для борьбы с антигенами.

Какие типы и функции имеют антиген и антитело?

Все антигены делятся на внешние и внутренние. Внутри организма образуются ауто-антигены, такие как раковые клетки. Внешние антигены попадают в организм из внешней среды. Они стимулируют иммунную систему производить больше антител, защищающих организм от различных повреждений.

Существует всего 5 различных типов антител. Это IgA, IgE, IgG, IgM и IgD.

IgA защищают поверхность тела от воздействия внешних веществ.

IgE вызывает защитную реакцию в организме против посторонних веществ, в том числе животного происхождения, пыльцы растений и спор грибов. Эти антитела являются частью аллергических реакций на некоторые яды и лекарства. Те, у кого аллергия, как правило, имеют большое количество антител этого типа.

IgG играет ключевую роль в борьбе с инфекциями бактериальной или вирусной природы. Это единственные антитела, которые способны проникать через плаценту беременной женщины, оказывая защиту плоду, находящемуся еще в утробе матери.

Когда развивается инфекция, антитела IgM представляют собой самый первый тип антител, которые синтезируются в организме в качестве иммунного ответа. Они приведут к другим клеткам иммунной системы, разрушающим посторонние вещества.

Ученым до сих пор не ясно, что именно делают антитела IgD.

Где их можно найти антиген и антитело?

Другое различие между антигеном и антителом заключается в том, где они. Антигены являются своеобразными «крючками» на поверхности клеток и встречаются почти в каждой клетке.

Вы можете найти IgA-антитела во влагалище, глазах, ушах, пищеварительном тракте, дыхательных проходах и носу, а также в крови, слезах и слюне. Приблизительно 10-15% антител в организме составляют IgA. Есть небольшое количество людей, которые не синтезируют IgA-антитела.

IgD-антитела можно обнаружить в небольших количествах в жировой ткани грудной клетки или живота.

Вы найдете IgE-антитела в слизистых оболочках, коже и легких.

IgG антитела находятся во всех жидкостях организма. Они являются наиболее распространенными и самыми малыми по размеру антителами в организме.

IgM-антитела являются самыми большими антителами и могут быть обнаружены в лимфатической жидкости и крови. Они составляют 5-10% антител в организме.

Как действуют антигены и антитела: иммунный ответ

Чтобы лучше понять разницу между антигеном и антителом, он помогает понять иммунный ответ. Все здоровые взрослые имеют тысячи различных антител в небольших количествах по всему телу. Каждое антитело является очень специализированным, признавая единственный тип постороннего вещества. Большинство молекул антител имеют форму Y, имеющую связующее место вдоль каждой руки. Каждый сайт связывания имеет определенную форму, и в него будут входить только антигены с одинаковой формой. Антитела предназначены для связывания с антигенами. При связывании они делают антигены неактивными, позволяя другим процессам в организме захватывать посторонние вещества, удаляя и уничтожая их.

В первый раз, когда инородное вещество попадает в организм, вы можете испытывать симптомы болезни. Это происходит, когда иммунная система создает антитела, которые будут бороться с чужеродным веществом. В будущем, когда тот же антиген повторно атакует организм, стимулируется иммунная память. Это приводит к немедленному производству большого количества антител, которые были созданы при первой атаке. Быстрый ответ на дальнейшие атаки означает, что вы уже можете не испытывать каких-либо симптомов болезни или даже знать, что подверглись воздействию антигена. Вот почему большинство людей повторно не болеют такими болезнями, как ветряная оспа.

Из вышеупомянутой разницы между антигеном и антителом анализ на антитела может предоставить врачу полезную информацию в процессе диагностики.

Ваш врач может проверить вашу кровь на антитела по целому ряду причин, включая:

  • диагностика аллергий или аутоиммунных заболеваний
  • определение текущей инфекции или одной из инфекций в прошлом
  • диагностика рецидивирующих инфекций, причины рецидивов из-за низкого уровня IgG-антител или других иммуноглобулинов
  • проверка реакции иммунизации как способа убедиться, что вы по-прежнему невосприимчивы к определенному заболеванию
  • диагностика эффективности лечения различных видов рака, особенно тех, которые влияют на костный мозг человека
  • диагностика конкретных видов рака, включая макроглобулинемию или множественные миеломы.

Прочитайте еще:

Длительная субфебрильная температура: причины и лечение

Лейкопения: причины, симптомы, лечение

Чем отличается врожденный и приобретенный иммунитет?

В организме при проявлении иммунного ответа взаимодействуют антитела и антигены. Однако в определенных условиях последние могут вызвать состояние так называемой специфической безответности - толерантности. Антитела и антигены способствуют формированию иммунологической памяти. Далее рассмотрим второй тип веществ. В статье выясним, что такое антиген.

Общие сведения

Что такое антиген? Проще говоря, это, как правило, чужеродные соединения. К ним относят полисахариды, белки и их комплексы. При изменении посредством химической модификации можно получить "конъюгированные" вещества. Такие соединения могут быть сформированы на основе белков, которые принадлежат непосредственно самому реципиенту. Аутологичное вещество, денатурированное химическим либо физическим способом, также может превращаться в антиген.

Определение

В организм могут проникнуть биополимеры либо синтетические их аналоги, способные вызвать иммунный ответ. Эти соединения и называются антигенами. Они способствуют выработке клеток-эффекторов тимической природы. Появляющиеся на фоне иммунной реакции антитела начинают специфическим образом взаимодействовать с антигенами или химическими соединениями, имеющими сходное строение. Если последние не провоцируют защитного ответа, то их называют гаптенами. Именно они провоцируют иммунологическую толерантность. Способность вызывать защитную реакцию имеют синтетические полипептиды, выступая в качестве белковых антигенов. Однако необязательно их первичная и пространственная структура должна быть подобна таковой какому-либо конкретному белковому соединению. Существенным фактором проявления антигенных свойств у этих веществ заключается в образовании стойкой пространственной структуры. В связи с этим полимеры, сформированные из одной аминокислоты (гомополимеры) не обладают свойствами вызывать иммунный ответ. Антигенные способности появляются у полипептидов, при образовании которых задействованы 2 аминокислоты.

Вопросы исследования

Что такое антиген? Классическая иммунология называет таким веществом целую клетку животного либо бактериального происхождения. Однако это неверно с химической точки зрения. Выше сказано, что такое антиген по сути. Это не клетка, в которой присутствует большое количество нуклеиновых кислот, белков, полисахаридов. Антигены человека, полученные в очищенном виде, могут использоваться для индукции иммунной реакции. При этом она будет специфична для того или иного биополимера. Рассматривая очищенную структуру в качестве индивидуального антигена, любое их сочетание необходимо описывать как семейство отдельных соединений. Данный термин может применяться при обозначении спонтанно агрегирующего определенного биополимера. Примером могут служить некоторые антигены вирусов или бактерий. Так, жгутиков грамотрицательных микроорганизмов рода Сальмонелл, флагеллин может обнаруживаться как в полимеризованном, так и мономерном виде. И в том, и другом случае данный антиген может индуцировать формирование антител, при том, что условия для этого разные. В частности, полимер феллагелина тимусонезависим, а мономер - тимусозависим.

Связь с молекулярной массой

Установить ее можно только при сравнении веществ одного класса. Например, это касается различных белков с однотипной третичной и вторичной структурами: фибриллярных и глобулярных. В подобных случаях можно устанавливать прямую зависимость между способностью полимера индуцировать формирование антител и его молекулярной массой. Данная закономерность, тем не менее, не является абсолютной. Кроме прочего, она зависит от иных свойств соединения, как химических, так и биологических.

Степень проявления свойств

Выраженность антигенных характеристик белков, выступающих в качестве наиболее обширного и значимого класса, будет зависеть от степени удаленности в эволюционном отношении донора, от которого получено соединение, и реципиента, которому оно вводится. Корректным будет лишь в том случае, если при оценке использованы однотипные вещества. К примеру, если альбумином сыворотки крысы и человека иммунизировать мышей, то на первый ответ будет более выражен. Если биополимер отличается повышенной чувствительностью к расщеплению, то его свойства будут менее выражены, чем у вещества, проявляющего большую стойкость к ферментативному гидролизу. Так, в случае использования синтетических полипептидов либо белковых конъюгатов в качестве антигенов, более выраженным будет ответ на то вещество, в составе которого присутствуют неприродные D-аминокислоты. Решающая роль в проявлении иммунного ответа отводится генотипу реципиента.

Детерминантные группы

Ими обозначают молекулярные участки биополимера, синтетического его аналога либо конъюгированного антигена, которые распознаются антигенсвязывающими В-лимфоцитными рецепторами и антителами. В молекуле обычно присутствует несколько детерминантных групп, различных по своему строению. Каждая из них может по нескольку раз повторяться. Если в молекуле соединения присутствует только одна группа с определенным строением, формирования против нее антител происходить не будет. В процессе увеличения идентичных комплексов будет возрастать и иммунный ответ на них. Однако этот процесс будет идти до определенного момента, после чего будет снижаться и может совершенно не наблюдаться впоследствии. Данное явление было исследовано в процессе использования конъюгированных антигенов с разным количеством заместителей, выполнявших задачу детерминантной группы. Отсутствие иммунной реакции на биополимеры с повышенной эпитопной плотностью обусловлено механизмом активации лимфоцитов В-группы.

Раково-эмбриональный антиген

Он представляет собой одну из разновидностей белков нормальной ткани, которая у здоровых людей вырабатывается в незначительном объеме клетками некоторых органов. РЭА по своей химической структуре является соединением углеводов и белка. Назначение его у взрослых неизвестно. Однако в период внутриутробного формирования он достаточно интенсивно синтезируется органами системы пищеварения, выполняя при этом достаточно важные задачи. Они связаны со стимуляцией клеточного размножения. Раково-эмбриональный антиген выявляется в тканях пищеварительных органов, но в достаточно малом количестве. Название данного онкомаркера отчасти характеризует его биологическую природу, но по большей части все же свойства, являющиеся ценными при лабораторном исследовании. Термин "эмбриональный" имеет связь с физиологическими задачами во время развития в дородовой период, "антиген" свидетельствует о возможности идентификации его в биологических средах при помощи иммунохимического метода связывания. При этом непосредственно в организме он не проявляет каких-либо свойств. В норме у здорового организма концентрация РЭА достаточно низкая. На фоне же онкологического процесса его уровень возрастает достаточно резко, достигая довольно больших показателей. В этой связи его характеризуют как тканевый маркер онкологических патологий, или онкомаркер.

Уровень РЭА

Анализ на антиген применяется в диагностике разных злокачественных новообразований, главным образом рака прямой и толстой кишки. Исследование осуществляется на ранних стадиях патологий, в процессе наблюдения за течением заболевания и контроля над эффективностью терапевтических мероприятий. На фоне рака толстой и прямой кишки тест отличается наивысшей чувствительностью. Именно это позволяет применять его при первичной диагностике. После успешного выполнения операции по удалению всей опухолевой ткани концентрация РЭА приходит в норму максимум спустя два месяца. Регулярные анализы впоследствии позволяют оценивать состояние пациента после получения им лечения. Обнаружение высокого уровня РЭА позволяет своевременно выявить рецидив патологии. При снижении содержания антигена на фоне терапии специалисты делают вывод о результативности лечебного воздействия.

Повышение концентрации РЭА: диапазон патологий

Однако тест не считается для опухолей абсолютно специфичным. Повышение уровня РЭА может отмечаться на фоне разных заболеваний внутренних органов, имеющих воспалительную и другую природу. У 20-50 % пациентов с доброкачественными патологиями поджелудочной железы, кишечника, легких и печени концентрация антигена немного увеличивается. То же самое наблюдается на фоне циррозов, хронических гепатитов, язвенных колитов, муковисцидоза, эмфиземы, бронхитов, болезни Крона, панкреатитов, пневмонии, аутоиммунных болезней, туберкулеза. Кроме этого, повышение уровня может обуславливаться не заболеванием, а, к примеру, регулярным приемом спиртного либо курением.

Особенности переливания крови

Основной из них является специфичность и индивидуальность, которыми обладают антигены эритроцитов. При несовместимости биополимеров реципиента и донора категорически запрещено. В противном случае неизбежны патологические процессы и даже смерть больного. В иммуногенетике для тестирования и исследования эритроцитарных антигенов используются методы К ним, в частности, относят реакции гемолиза, преципитации, агглютинации. Эритроцитарные гены представлены в виде сложных биополимерных макромолекул. Они накапливаются на строме (оболочке) и соединяются с прочими молекулами соединений. Для каждой особи характерен индивидуальный химический состав и собственная структура.