Зрительная система. Зрительная сенсорная система, её морфо-функциональная организация

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Значение зрительной сенсорной системы

2. Зрительный анализатор. Строение глаза

3. Рост и развитие глаза

4. Нарушение зрения: близорукость косоглазие, дальнозоркость

5. Влияние освещения на развитие нарушения зрения

6. Правила организации занятий, требующих напряжения зрения

Литература

1. Значен ие зрительной сенсорной системы

Зрение эволюционно приспособлено к восприятию электромагнитных излучений в определенной, весьма узкой части их диапазона (видимый свет). Зрительная система дает мозгу более 90% сенсорной информации. Зрение -- много звеньевой процесс, начинающийся с проекции изображения на сетчатку уникального периферического оптического прибора -- глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.

2. Зрител ьный анализатор. Строение глаза

Глаза -- орган зрения -- можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др. Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

Орган зрения состоит из глазного яблока и вспомогательного аппарата. Вспомогательный аппарат -- это брови, веки и ресницы, слезная железа, слезные канальцы, глазо двигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2--5 движений веками в 1 мин). Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость. Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу. Глазное яблоко располагается в углублении черепа -- глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной -- фиброзной, средней -- сосудистой и внутренней -- сетчатой. Фиброзная оболочка подразделяется на заднюю непрозрачную часть -- белочную оболочку, или склеру, и переднюю прозрачную -- роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой. Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие -- зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света. Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик. Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке -- внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном. Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

Сетчатка (лат. retнna ) -- внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Зри тельный нерв (лат. Nervus opticus ) -- вторая пара черепно-мозговых нервов, по которым зрительные раздражения, воспринятые чувствительными клетками сетчатки, передаются в головной мозг.

Жёлтое пятно (лат. macula lutea ) -- место наибольшей остроты зрения в сетчатке глаза позвоночных животных, в том числе человека. Имеет овальную форму, расположено против зрачка, несколько выше места входа в глаз зрительного нерва. В клетках жёлтого пятна содержится жёлтый пигмент (отсюда название). Кровеносные капилляры имеются лишь в нижней части жёлтого пятна; в средней его части сетчатка сильно истончается, образуя центральную ямку (лат. fovea ), содержащую только фоторецепторы. У большинства животных и человека в центральной ямке имеются лишь колбочковые клетки; у некоторых глубоководных рыб с телескопическими глазами в центральной ямке -- только палочковые клетки. У птиц, отличающихся хорошим зрением, может быть до трёх центральных ямок. У человека диаметр пятна около 5 мм, в центральной ямке колбочки палочкоподобны (самые длинные рецепторы сетчатки). Диаметр свободной от палочковых клеток области 500--550 мкм; колбочковых клеток здесь около 30 с половиной тыс.

Слепое пятно (оптический диск) -- имеющаяся в каждом глазу здорового человека область на сетчатке, которая не чувствительна к свету. Нервные волокна от рецепторов к слепому пятну идут поверх сетчатки и собираются в зрительный нерв, который проходит сквозь сетчатку на другую её сторону и потому в этом месте отсутствуют световые рецепторы

Хруста лик (лат. lens ) -- прозрачное тело, расположенное внутри глазного яблока напротив зрачка; являясь биологической линзой, хрусталик составляет важную часть светопреломляющего аппарата глаза. Хрусталик представляет собой прозрачное двояковыпуклое округлое эластичное образование, циркулярно фиксированное к цилиарному телу. Задняя поверхность хрусталика прилегает к стекловидному телу, спереди от него находятся радужка и передняя и задняя камеры

Зрачо к (устар. зени ца ) -- отверстие в радужной оболочке глаза позвоночных (обычно круглое или щелевидное), через которое в глаз проникают световые лучи.

Рогови ца , роговая оболочка (лат. cornea ) -- передняя наиболее выпуклая прозрачная часть глазного яблока, одна из светопреломляющих сред глаза. Роговица у человека занимает примерно 1/16 площади наружной оболочки глаза. Она имеет вид выпукло-вогнутойлинзы, обращённой вогнутой частью назад. Диаметр роговицы является почти абсолютной константой и составляет 10±0,56 мм, однако вертикальный размер обычно на 0,5--1 мм меньше горизонтального. Толщина роговицы в центральной части 0,52--0,6 мм, по краям -- 1--1,2 мм. Показатель преломления вещества роговицы 1,37, преломляющая сила -- 40 дптр. Радиус кривизны роговицы составляет около 7,8 мм. Диаметр роговицы незначительно увеличивается с момента рождения до 4 лет и с этого возраста является константой. То есть рост размеров глазного яблока опережает возрастное изменение диаметра роговицы. Поэтому y маленьких детей глаза кажутся больше, чем y взрослых.

Радужная оболочка глаза , радужка (лат. iris , из др.-греч. ?сйт «радуга») -- тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре. Расположена за роговицей, между передней и задней камерами глаза, перед хрусталиком. Практически светонепроницаема. Содержит пигментные клетки (у млекопитающих -- меланоциты), круговые мышцы, сужающие зрачок, и радиальные, расширяющие его.

Мышцы глаза выполняют согласованные движения глазных яблок, обеспечивая качественное и объемное зрение. Глазодвигательных мышц у глаза всего шесть, из них четыре прямых и две косых, получивших такое название из-за особенностей хода мышцы в глазнице и прикрепления к глазному яблоку. Работа мышц контролируется тремя черепно-мозговыми нервами: глазодвигательным, отводящим и блоковым. Каждое мышечное волокно этой группы мышц богато снабжено нервными окончаниями, за счет чего обеспечивается особая четкость и точность в движениях. Благодаря глазодвигательным мышцам возможны многочисленные варианты движения глазных яблок, как однонаправленные: вверх, вправо и так далее; так и разнонаправленные, например, сведение глаз при работе на близком расстоянии. Суть таких движений состоит в том, чтобы за счет слаженной работы мышц одинаковое изображение предметов попадало на одинаковые участки сетчатки - макулярную область, обеспечивая хорошее зрение и ощущение глубины пространства.

Стекловидное тело -- самое объемное образование глаза, составляющее 55 % его внутреннего содержимого. У взрослого человека масса стекловидного тела 4 г, объем 3,5--4 мл. Стекловидное тело имеет шарообразную форму, несколько сплющенную в сагиттальном направлении. Его задняя поверхность прилежит к сетчатке, к которой оно фиксировано лишь у диска зрительного нерва и в области зубчатой линии у плоской части цилиарного тела. Этот участок в форме пояса шириной 2--2,5 мм называют основанием стекловидного тела.

Скле ра (от греч. уклзсьт -- твёрдый) -- белковая оболочка -- наружная плотная соединительнотканная оболочка глаза, выполняющая защитную и опорную функции. Образована собранными в пучки коллагеновыми волокнами. Составляет 5/6 фиброзной оболочки глаза. Средняя толщина от 0,3 до 1 миллиметра. Толщина склеры у детей мала настолько, что через неё просвечивает зрительный пигмент, придающий ей голубой оттенок. С возрастом толщина склеры увеличивается. Через венозный синус склеры, образованный множеством мелких полостей в зоне соединения её с роговицей, происходит отток жидкости из передней камеры глаза.

Сосудистая оболочка глаза (увеальный тракт, от лат. uva -- виноград) -- это средняя оболочка глаза, размещенная непосредственно под склерой. Мягкая, пигментированная, богатая сосудами оболочка, основными свойствами которой являются аккомодация, адаптация и питание сетчатки.

Пигментный эпителий сетчатки (англ. retinal pigment epithelium ; RPE ) -- один из десяти слоев сетчаткипозвоночных. Представляет собой слой пигментированных эпителиальных клеток, который находится вне нервной части сетчатки (pars nervosa); он обеспечивает питательными веществами фоторецепторы и плотно связан с нижележащей сосудистой оболочкой и слабо -- с фотосенсорным слоем (находится над ним). Пигментный эпителий сетчатки собственно и представляет собой пигментную часть сетчатки

Восприятие зрительных раздражений . Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно. В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) -- в зрительную зону коры больших полушарий, расположенную в затылочной области. Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

3. Рост и развитие глаза

Глаз человека растет приблизительно до 20--21 года, достигая при эмметропии диаметра в среднем 24 мм в сагиттальной плоскости. Глазное яблоко новорожденного и в течение первых лет жизни относительно велико по отношению ко всему телу. Наиболее интенсивный рост глазного яблока отмечается в течение первого года жизни ребенка. К двум годам глазное яблоко увеличивается приблизительно на 40 %, а к 20--21 году -- в 1,5 раза по сравнению с новорожденным. У новорожденного глаз весит 2,3 г, а у взрослого человека он тяжелее более чем в 3 раза -- 7,5 г.

Таким образом, у новорожденного масса обоих глаз по отношению к массе тела составляет 0,24 %, а у взрослого человека только 0,02 %. Затем рост глазного яблока несколько замедляется, приблизительно с 12--14-летнего возраста вновь происходит его интенсивный рост вплоть до 20--21 года Передняя камера глаза новорожденного мелкая и в норме составляет не более 2 мм, достигая глубины 3 мм, как у взрослого человека в первые месяцы жизни с началом активного функционирования сосудистой оболочки.. У новорожденного хрусталик почти шаровидной формы, очень мягкой консистенции, прозрачный и бесцветный. В течение всей жизни растут и добавляются новые хрусталиковые волокна, заключенные в замкнутом пространстве хрусталиковой сумки (капсулы). Это приводит к постепенному увеличению относительной плотности хрусталика, его массы и объема. Относительная плотность хрусталика в 20-летнем возрасте составляет 1,034, в 50 лет -- 1,072, в 90 лет -- 1,113. У взрослых экваториальный диаметр хрусталика достигает 9--10 мм, сагиттальный размер -- 3,7--5,0 мм. Толщина передней капсулы равна 11-15 мкм, задней -- 4--5 мкм. Внутренняя поверхность передней капсулы содержит однослойный, прозрачный кубический эпителий, задняя капсула эпителия лишена. Интенсивность желтоватого оттенка хрусталика с возрастом увеличивается. К 40--45-летнему возрасту ядро хрусталика становится плотным, он утрачивает свою эластичность. К этому времени происходит значительное ослабление аккомодации и возникают явления пресбиопии. К 60-летнему возрасту способность к аккомодации утрачивается почти полностью из-за выраженного склероза ядра хрусталика -- факосклероза. В этот период жизни отмечается и утолщение передней капсулы хрусталика до 17 мкм, а в парацентральной зоне -- до 25 мкм. Экваториальная (герментативная) зона существенных изменений в ее толщине в связи с возрастом не претерпевает

Новые сообщения

Расстройства аккомодации у лиц пожилого возраста чаще всего обусловлены возрастными изменениями хрусталика: его размера, массы, цвета, формы и, главное, консистенции, которые связаны в основном с особенностями его роста и биохимическими сдвигами. Постепенным уменьшением эластичности хрусталика обусловлено возрастное физиологическое ослабление объема абсолютной аккомодации, установленное F. С. Donders в 1866 г. Согласно его данным при эмметропии ближайшая точка ясного зрения с возрастом постепенно удаляется от глаза, что приводит к уменьшению объема аккомодации. В возрасте 65--70 лет ближайшая и дальнейшая точки ясного зрения совмещаются. Это означает, что аккомодационная способность глаза полностью утрачивается. Ослабление аккомодации в старческом возрасте пытаются объяснить не только уплотнением хрусталика, но и другими причинами: дегенеративными изменениями циниовой связки и уменьшением сократительной способности цилиарпой мышцы. Установлено, что с возрастом в цилиарной мышце действительно происходят изменения, способные привести к уменьшению ее силы. Отчетливые признаки инволюционной дистрофии цилиарной мышцы появляются уже в возрасте 35--40 лет. Суть дистрофических изменений в этой мышце, которые медленно нарастают, состоит в прекращении образования мышечных волокон, замещении их соединительной тканью и жировой дегенерации. Постепенно характер строения мышцы нарушается. Несмотря па эти существенные изменения цилиарной мышцы, ее сократительная способность благодаря приспособительно-компенсаторным механизмам в значительной мере сохраняется, хотя и ослабевает. Относительная недостаточность цилиарной мышцы усугубляется также тем, что вследствие уменьшения эластичности хрусталика для обеспечения той же степени его кривизны мышце приходится сильнее напрягаться. Не исключена возможность и вторичных атрофических изменений в цилиарной мышце из-за ее недостаточной активности в старческом возрасте. Таким образом, ослабление сократительной способности цилиарной мышцы играет определенную роль в возрастном уменьшении объема аккомодации. Однако основными причинами этого, несомненно, являются уплотнение вещества хрусталика и уменьшение его эластичности. В основе развития пресбиопии лежит процесс уменьшения объема аккомодации, который происходит на протяжении всей жизни. Пресбиопия проявляется только в пожилом возрасте, когда удаление ближайшей точки ясного зрения от глаза уже бывает значительным и эта точка приближается к среднему рабочему расстоянию (приблизительно 33 см). У лиц с эмметропией пресбиопия обычно начинает проявляться в возрасте 40--45 лет. В этот период ближайшая точка ясного зрения отодвигается от глаз примерно па 23--31 см, т. е. приближается к среднему рабочему расстоянию (33 см). Для четкого распознавания объектов на этом расстоянии требуется напряжение аккомодации, приблизительно равное 3,0 дптр. Между тем в 45-летнем возрасте средняя величина объема аккомодации составляет всего 3,2 дптр. Следовательно, необходимо затратить почти весь сохраняющийся в этом возрасте объем аккомодации, что вызывает ее чрезмерное напряжение и быстрое утомление. При гиперметропии пресбиопия наступает раньше, при миопии -- позже. Это связано с тем, что у лиц с гиперметропией ближайшая точка ясного видения находится дальше от глаз и удаление ее за пределы среднего рабочего расстояния с возрастом происходит быстрее, чем у лиц с эмметропией. У лиц с миопией, на-оборот, область аккомодации приближена к глазу, напрягать аккомодацию в процессе работы на близком расстоянии приходится только при близорукости менее 3,0 дптр, поэтому симптомы пресбиопии с большим или меньшим запозданием могут возникнуть лишь при миопии слабой степени. При некорригированной близорукости 3,0 дптр и более пресбиопия не проявляется. Основной симптом некорригированной пресбиопии -- затруднения при рассматривании мелких объектов на близком расстоянии. Распознавание последних несколько облегчается, если их отодвинуть на некоторое расстояние от глаз. Однако при значительном удалении объектов зрительной работы их угловые размеры уменьшаются и распознавание вновь ухудшается. Наступающее при этом утомление цилиарной мышцы, обусловленное ее чрезмерным напряжением, может привести к зрительному утомлению. Все, что вызывает хотя бы кратковременное удаление ближайшей точки ясного зрения от глаз и ухудшает различимость объектов зрительной работы, способствует более раннему проявлению пресбиопии и большей выраженности ее симптомов. В связи с этим при прочих равных условиях пресбиопия возникает раньше у лиц, бытовая или профессиональная деятельность которых связана с рассматриванием мелких объектов. Чем меньше контраст объектов с фоном, тем сильнее действует этот фактор. Затруднения при зрительной работе на близком расстоянии у лиц с пресбиопией возрастают при пониженной освещенности вследствие некоторого удаления от глаз ближайшей точки ясного зрения. По той же причине проявления пресбиопии усиливаются при зрительном утомлении. Отмечено также, что при начинающейся катаракте проявления пресбиопии могут возникать несколько позднее или ослабевают, если пресбиопия уже имеет место. С одной стороны, это объясняют некоторым увеличением объема аккомодации вследствие гидратации вещества хрусталика, что препятствует уменьшению его эластичности, с другой -- некоторым сдвигом клинической рефракции в сторону миопии и приближением дальнейшей точки ясного зрения к глазу. Таким образом, улучшение зрения при пресбиопии может служить ранним признаком начинающейся катаракты.

Снижение эластичности хрусталика лишает его возможности изменять радиусы своей кривизны и тем самым менять преломление света, что необходимо для ясного видения. С возрастом в хрусталике изменяются содержание неорганических веществ и концентрация органических. Причины помутнения хрусталика, наблюдающиеся в старческом возрасте, до сих пор не выяснены. Биохимические исследования показали некоторые изменения в его составе. Так, в составе хрусталика обнаружено увеличение нерастворимых белков, липидов и кальция и, наоборот, уменьшение содержания глютатиона и витамина С. Сниженной оказалась и интенсивность окислительно-восстановительных процессов. По мнению некоторых исследователей, в старости хрусталик высыхает, теряет много воды, становится плотнее. Отдельные исследователи считают, что катаракта является результатом процесса старения хрусталика. Она выявляется по молочной окраске зрачка. Катаракта - медленно прогрессирующий процесс. Есть предположение, что возникновение старческой катаракты связано с понижением в организме аскорбиновой кислоты. Некоторые связывают ее появление с атрофией половых желез, нарушением обмена веществ, в результате чего происходят изменения в проницаемости оболочки хрусталика

Согласно наблюдениям исследователей, точки дальнего и ближнего видения глаза в связи с возрастом изменяются. Точка ближнего видения стремительно падает. Поэтому, чтобы лучше рассмотреть предмет, человеку необходимо его отодвигать дальше от себя. В то же время точка дальнего видения до 55 лет остается почти без изменений, хотя впоследствии она довольно быстро снижается. В результате этих смещений в 60-летнем возрасте точки ближнего и дальнего видения почти совпадают и к этому времени глаза становятся в большинстве случаев дальнозоркими. Однако исследование долгожителей Абхазии показало, что некоторые из них, несмотря на очень почетный возраст, обладали еще аккомодационной способностью.

Влияние возраста отражается и на других функциональных особенностях глаза. Так, выявлено изменение чувствительности глаза к световым и электрическим воздействиям. Особенно падает с возрастом световая чувствительность глаза. Изменяется с возрастом и цветовая его чувствительность. При этом чувствительность глаза к отдельным цветам снижается неравномерно: к одному цвету быстрее, к другому медленнее. Наиболее высокая чувствительность к цветовому зрению наблюдается в возрасте 27-30 лет, затем происходит ее постепенное снижение. Особенно резко падает чувствительность к синему и красному цвету к 80-летнему возрасту.

Возрастные изменения световой чувствительности глаза (по Лазареву)

Одним из показателей функциональной полноценности глаза является его чувствительность к электрическим воздействиям. Для определения чувствительности один электрод слабого тока прикладывается к закрытому глазу, а другой к виску. При замыкании и размыкании тока у испытуемого в глазу будет появляться ощущение белого света "фосфен". Исследования показали, что в начале онтогенеза наблюдается повышение возбудимости глаза к электрическим раздражениям, а в позднем возрасте ее резкое падение.

Предполагают, что такое снижение возбудимости происходит не только за счет изменений в периферическом отделе, но и за счет изменений коркового отдела анализатора, т. е. возбудимость зрительного анализатора зависит от общего состояния тканей мозга.

С возрастом изменяется и глазное дно. Конфигурация соска зрительного нерва теряет свою четкость. Слабо заметны очертания артерий, вен, желтого пятна. Изменяется и окраска глазного дна. Оно становится заметно бледнее, на бледном фоне нередко выделяются желтоватые бляшки, зерна пигмента. Артерии сетчатки часто расширены и имеют неравномерный калибр, в местах артериовенозных перекрестов они могут закрывать собою вены. Некоторые исследователи полагают, что поражение сетчатки, которое наблюдается в старческом возрасте, нужно отнести за счет сосудистых расстройств. Ограничение поля зрения у стариков в свою очередь объясняют поражением периферических частей сетчатки.

Некоторые исследователи считают, что большинство поражений глаза в старческом возрасте не является следствием процесса старения. Прямой зависимости между дряхлостью и выраженностью старческих изменений в органах зрения не наблюдается.

Влияние возраста на цветовую чувствительность глаза (по Смиту)

4. Нарушение зрения: близорукость , косоглазие, дальнозоркость

Близорукость

Близорукость (миопия) -- заболевание, при котором человек плохо различает предметы, расположенные на дальнем расстоянии. При близорукости изображение приходится не на определенную область сетчатки, а расположено в плоскости перед ней. Поэтому оно воспринимается нами как нечеткое. Происходит это чаще всего из-за несоответствия силы оптической системы глаза и его длины. Обычно при близорукости размер глазного яблока увеличен (осевая близорукость), хотя она может возникнуть и как результат чрезмерной силы преломляющего аппарата (рефракционная миопия). Чем больше несоответствие, тем сильнее близорукость разделяют миопию на:

слабую (до 3,0 диоптрий включительно);

среднюю (от 3,25 до 6,0 диоптрий);

высокую (более 6,0 диоптрий). Высокая миопия может достигать весьма значительных величин: 15, 20, и даже 30 диоптрий.

Близорукие люди нуждаются в очках для дали, а многие и для близи, когда миопия превышает 6-8 и более диоптрий. Но очки, увы, не всегда достаточно хорошо корректируют зрение. Обычно близорукость сопровождается увеличением длины глазного яблока, что приводит к растяжению сетчатки. Чем сильнее степень близорукости, тем выше вероятность возникновения проблем, связанных с сетчаткой глаза -- дистрофия, микро разрывы. Например, во время родов сетчатка с дистрофическими изменениями у беременной женщины из-за физического перенапряжения во время потуг чрезмерно растягивается и может произойти ее отслоение, что в крайнем случае может привести к полной потере зрения. Поэтому во время беременности женщинам, особенно имеющим близорукость, рекомендуется посетить офтальмолога и, при необходимости, провести процедуру периферической профилактической лазерной коагуляции (ППЛК) сетчатки . Она направлена на укрепление периферической зоны сетчатки, чтобы предупредить отслоение сетчатки. Анатомическая предрасположенность к близорукости может передаваться по наследству, также близорукость может быть приобретенной. Иногда миопия начинает прогрессировать, и человек постепенно, с увеличением диоптрий, теряет способность самостоятельно ориентироваться в пространстве. Задача любой коррекции близорукости -- ослабить силу преломляющего аппарата глаза так, чтобы изображение попадало на определенную область сетчатки (то есть вернулось к норме). Близорукость корректируется с помощью очков и контактных линз, но возможно и кардинальное решение проблемы.

Основные методы лечения близорукости

Л азерная коррекция зрения -- в результате воздействия на слои роговицы лучом лазера, ей придается форма «естественной линзы» с индивидуальными для каждого пациента параметрами. На сегодняшний день наиболее распространены несколько методик лазерной коррекции зрения: фрк, ласик, ласек, эпи-ласик, супер-ласик, фемтоласик (интра-ласик). В ходе лазерной коррекции происходит воздействие на роговицу. Ее форма изменяется и за счет этого изображение начинает фокусироваться на сетчатке, как и должно быть. Высокий уровень безопасности и современные эксимер-лазерные установки последнего поколения сделали процедуру коррекции простой и доступной.

И мплантация факичных линз используется, если естественная аккомодация еще не утрачена. В ходе лечения природный хрусталик человека остается на месте, а специальную линзу имплантируют в заднюю или переднюю камеру глаза. Чаще всего используются заднее камерные линзы, которые имплантируются за радужкой перед хрусталиком и не требуют дополнительной фиксации.

Дальнозоркость

Дальнозоркость (гиперметропия) -- вид рефракции глаза, при котором изображение предмета фокусируется не на определенной области сетчатки, а в плоскости за ней. Такое состояние зрительной системы приводит к нечеткости изображения, которое воспринимает сетчатка. Человеку становится сложно читать мелкий шрифт, особенно при плохом освещении, и выполнять любую ручную работу. Часто и вдаль люди с дальнозоркостью видят плохо, изображение становится размытым.

Выделяют три степени дальнозоркости:

слабую -- до +1,0 диоптрии. В этом случае человек обычно видит и вдаль, и вблизи, но возможны жалобы на быструю утомляемость, головную боль, головокружение;

среднюю -- до +5,0 диоптрий; зрение вдаль остается хорошим, а вблизи затруднено;

высокую -- свыше +5,0 диоптрий; плохое зрение и вдаль, и вблизи, так как даже далеко расположенных предметов.

Основные способы лечения дальнозоркости

· лазерная коррекция зрения;

· рефракционная замена хрусталика (ленсэктомия);

· имплантация факичных линз.

Практически у всех людей старше 50 лет развивается возрастная дальнозоркость (пресбиопия). При пресбиопии хрусталик глаза постепенно уплотняется, проявляется слабость ресничной мышцы, уменьшаются резервы аккомодационной способности глаза. Все это в результате ведет к ухудшению зрения вблизи. Пресбиопия корректируется с помощью очков для работы на близком расстоянии, контактных линз или заменой утратившего свою эластичность хрусталика на интраокулярную линзу, мультифокальную или аккомодирующую. В последнем случае операция проводится в режиме «одного дня», в течение 15-20 минут, под местной анестезией через самогерметизирующийся микроразрез размером1,6 мм.

Косоглазие.

Косоглазие - постоянное или периодическое отклонение зрительной оси глаза от точки фиксации, что приводит к нарушению бинокулярного зрения. Косоглазие проявляется внешним дефектом - отклонением глаза/глаз к носу или виску, вверх или вниз. Кроме этого у пациента с косоглазием могут отмечаться двоение в глазах, головокружения и головные боли, снижение зрения, амблиопия. Диагностика косоглазия включает офтальмологическое обследование (проверку остроты зрения, биомикроскопию, периметрию, офтальмоскопию, скиаскопию, рефрактометрию, биометрические исследования глаза и др.), неврологическое обследование. Лечение косоглазия проводится с помощью очковой или контактной коррекции, аппаратных процедур, плеоптических, ортоптических и диплоптических методик, хирургической коррекции.

Косоглазие является не только косметическим дефектом: это заболевание приводит к нарушению работы практически всех отделов зрительного анализатора и может сопровождаться рядом зрительных расстройств. При косоглазии отклонение положения одного или обоих глаз от центральной оси приводит к тому, что зрительные оси не перекрещиваются на фиксируемом предмете. В этом случае в зрительных центрах коры головного мозга не происходит слияния раздельно воспринимаемых левым и правым глазом монокулярных изображений в единый зрительный образ, а возникает двойное изображение объекта. Для защиты от двоения ЦНС подавляет сигналы, получаемые от косящего глаза, что с течением времени приводит к амблиопии - функциональному понижению зрения, при котором косящий глаз почти или совсем не задействуется в зрительном процессе. При отсутствии лечения косоглазия развитие амблиопии и снижение зрения происходит примерно у 50 % детей.

Классификация косоглазия

По срокам возникновения различают косоглазие врожденное (инфантильное - имеется с рождения или развивается в первые 6 мес.) иприобретенное (обычно развивается до 3-х лет). По признаку стабильности отклонения глаза выделяют периодическое (преходящее) и постоянное косоглазие. зрительный глаз косоглазие близорукость

С учетом вовлеченности глаз косоглазие может быть односторонним (монолатеральным ) и перемежающимся (альтернирующим ) - в последнем случае попеременно косит то один, то другой глаз.

По степени выраженности различают косоглазие скрытое (гетерофорию), компенсированное (выявляется только при офтальмологическом обследовании), субкомпенсированное (возникает только при ослаблении контроля) и декомпенсированное (не поддается контролю).

В зависимости от того направления, куда отклоняется косящий глаз, выделяют горизонтальное , вертикальное и смешанное косоглазие. Горизонтальное косоглазие может быть сходящимся (эзотропия, конвергирующее косоглазие) - в этом случае косящий глаз отклонен к переносице; и расходящимся (экзотропия, дивергирующее косоглазие) - косящий глаз отклонен к виску. В вертикальном косоглазии также выделяют две формы со смещением глаза кверху (гипертропия, суправергирующее косоглазие) и книзу (гипотропия, инфравергирующее косоглазие). В некоторых случаях встречается циклотропия - торзионная гетеротропия, при которой вертикальный меридиан наклонен в сторону виска (эксциклотропия) или в сторону носа (инциклотропия).

С точки зрения причин возникновения выделяют содружественное и паралитическое несодружественное косоглазие. В 70-80% случаев содружественное косоглазие бывает сходящимся, в 15-20% - расходящимся. Торзионные и вертикальные отклонения, как правило, встречаются при паралитическом косоглазии.

При содружественном косоглазии движения глазных яблок в различных направлениях сохранены в полном объеме, отсутствует диплопия, имеется нарушение бинокулярного зрения. Содружественное косоглазие может быть аккомодационным, частично-аккомодационным, неаккомодационным.

Аккомодационное содружественное косоглазие чаще развивается в возрасте 2,5-3 лет в связи с наличием высоких и средних степеней дальнозоркости, близорукости, астигматизма. В этом случае применение корригирующих очков или контактных линз, а также аппаратного лечения будет способствовать восстановлению симметричного положения глаз.

Признаки частично-аккомодационного и неаккомодационного косоглазия появляются у детей 1-го и 2-го года жизни. При данных формах содружественного косоглазия аномалия рефракции является далеко не единственной причиной гетеротропии, поэтому для восстановления положения глазных яблок требуется проведение хирургического лечения.

Развитие паралитического косоглазия связано с повреждением или параличом глазодвигательных мышц вследствие патологических процессов в самих мышцах, нервах или головном мозге. При паралитическом косоглазии ограничена подвижность отклоненного глаза в сторону пораженной мышцы, возникает диплопия и нарушение бинокулярного зрения.

Лечение косоглазия

При содружественном косоглазии главной целью лечения служит восстановление бинокулярного зрения, при котором устраняется асимметрия положения глаз и нормализуются зрительные функции. Мероприятия могут включать оптическую коррекцию, плеоптико-ортоптическое лечение, хирургическую коррекцию косоглазия, пред- и послеоперационное ортоптодиплоптическое лечение.

В ходе оптической коррекции косоглазия преследуется цель восстановления остроты зрения, а также нормализации соотношения аккомодации и конвергенции. С этой целью производится побор очков или контактных линз. При аккомодационном косоглазии этого бывает достаточно для устранения гетеротропии и восстановления бинокулярного зрения. Между тем, очковая или контактная коррекция аметропии необходима при любой форме косоглазия.

Плеоптическое лечение показано при амблиопии для усиления зрительной нагрузки на косящий глаз. С этой целью может назначаться окклюзия (выключение из процесса зрения) фиксирующего глаза, использоваться пенализация, назначаться аппаратная стимуляция амблиопичного глаза (Амблиокор, Амблиопанорама, программно-компьютерное лечение, тренировка аккомодации,электроокулостимуляция, лазерстимуляция, магнитостимуляция, фотостимуляция, вакуумный офтальмологический массаж). Ортоптический этап лечения косоглазия направлен на восстановление согласованной бинокулярной деятельности обоих глаз. С этой целью используются синоптические аппараты (Синоптофор), компьютерные программы.

На заключительном этапе лечения косоглазия проводится диплоптическое лечение, направленное выработку бинокулярного зрения в естественных условиях (тренировки с линзами Баголини, призмами); назначается гимнастика для улучшения подвижности глаз, тренировки на конвергенцтренере.

Хирургическое лечение косоглазия может предприниматься, если эффект от консервативной терапии отсутствует в течение 1-1,5 лет. Оперативную коррекцию косоглазия оптимально проводить в возрасте 3-5 лет. В офтальмологии хирургическое уменьшение или устранение угла косоглазия часто проводится поэтапно. Для коррекции косоглазия применяются операции двух типов: ослабляющие и усиливающие функцию глазодвигательных мышц. Ослабление мышечной регуляции достигается с помощью пересадки (рецессии) мышцы либо пересечения сухожилия; усиления действия мышцы добиваются путем ее резекции (укорочения).

До и после операции по коррекции косоглазия показано ортоптическое и диплоптическое лечение для ликвидации остаточной девиации. Успешность хирургической коррекции косоглазия составляет 80-90%. Осложнениями хирургического вмешательства могут являться гиперкоррек-ция и недостаточная коррекция косогла-зия; в редких случаях - инфек-ции, кровотечение, потеря зрения.

Критериями излечения косоглазия служат симметричность положения глаз, устойчивость бинокулярного зрения, высокая острота зрения.

Прогноз и профилактика косоглазия

Лечение косоглазия необходимо начинать, как можно раньше, чтобы к началу школьного обучения ребенок был в достаточной степени реабилитирован в отношении зрительных функций. Практически во всех случаях при косоглазии требуется упорное, последовательное и длительное комплексное лечение. Поздно начатая и неадекватная коррекция косоглазия может привести к необратимому снижению зрения.

Наиболее успешно поддается коррекции содружественное аккомодационное косоглазие; при поздно выявленном паралитическом косоглазии прогноз восстановления полноценной зрительной функции неблагоприятный.

Профилактика косоглазия требует регулярных осмотров детей офтальмологом, своевременной оптической коррекции аметропий, соблюдения требований гигиены зрения, дозированности зрительных нагрузок. Необходимо раннее выявление и лечение любых заболеваний глаз, инфекций, профилактика травм черепа. В процессе беременности следует избегать неблагоприятных воздействий на плод.

5. Влияние освещения на развитие нарушения зрения

Самый лучший свет для зрения - разумеется, естественный солнечный. Но и тут есть свои нюансы: так, смотреть на яркое солнце без темных очков не рекомендуется, а долгое пребывание на палящем солнце без защиты глаз может привести к нарушению зрения и способствовать развитию различных заболеваний глаз. Наиболее здоровый вариант - это чуть рассеянный дневной белый свет . Но даже днем далеко не всегда такого света достаточно: во-первых, если вы находитесь в помещении, степень освещенности в течение дня меняется из-за перемещения солнца относительно вашей стороны здания; во-вторых, в зимний период (захватывая позднюю осень и раннюю весну) свет в наших широтах вообще слишком тусклый для полноценного освещения. Поэтому в дневное время естественный свет часто используется лишь как фоновый, который обязательно нужно дополнять местным искусственным освещением. Тут мы приближаемся к главному вопросу: какое искусственное освещение наиболее полезно для зрения?

Лампы накаливания или люминисцентные

Как и следовало ожидать, люди еще не изобрели идеального искусственного освещения. Чаще всего споры о пользе/вреде для зрения касаются выбора между традиционными лампами накаливания и люминисцентными лампами дневного света, - и в этих спорах нет победителей. Все дело в том, что в чем-то лампы накаливания превосходят люминисцентные лампы - и наоборот; обе технологии не дают идеального эффекта. Главное достоинство ламп накаливания состоит в том, что они не мерцают, а значит, не дают нагрузки на глаза. Свет таких ламп распространяется равномерно и плавно, пульсация полностью отсутствует. Недостатком ламп накаливания является низкая экономичность и экологичность, а также желтый оттенок и слабая интенсивность света. Главным достоинством ламп дневного света можно назвать белый свет высокой интенсивности, подходящий для освещения больших помещений, офисов, учебных классов и т.д., главным недостатком - мерцание, пусть и незаметное для невооруженного глаза. Лампы дневного света старого образца мерцали совершенно очевидно - и это было заметно, теперь такой проблемы нет, но мерцание все равно присутствует и теоретически может негативно влиять на ваше зрение, хотя убедительных доказательств этого пока не получено.

Что касается оттенка света , то в последнее время разгорелась настоящая дискуссия о том, какой именно свет более предпочтителен для зрения, - совершенно белый или желтый. Считается, что белый свет более эргономичен, он повторяет оттенок дневного света, поэтому для глаз полезнее. С другой стороны, существует противоположное мнение, которое состоит в том, что в белом дневном свете присутствуют естественный желтый оттенок, который отсутствует в люминисцентных лампах. Поэтому от чересчур белого света глаза устают, а человек чувствует себя некомфортно. Окончательной ясности по этому вопросу пока нет, а специалисты советуют пользоваться светом того оттенка, который комфортен лично для вас. Совершенно определенно вредными для глаз являются лишь холодные оттенки света - особенно синий.

Интенсивность освещения

Слишком тусклое освещение портит зрение и заставляет вас засыпать на ходу, слишком яркое освещение утомляет (распространенный симптом - головная боль из-за перенапряжения глазных мышц). Оптимальный вариант - умеренно-интенсивное освещение, при котором вам все прекрасно видно, но глазам все еще комфортно. Для достижения такого эффекта можно воспользоваться несложным приемом - сочетать общий и местный источник света . Общий свет должен быть рассеянным, ненавязчивым, местный свет должен быть на 2-3 порядка интенсивнее общего. Очень желательно, чтобы местный свет был регулируемым и направленным. При общем свете вы можете общаться, отдыхать, заниматься домашними делами или работой, не напрягающей зрение. Если же ваша деятельность требует вовлечения глаз, зрения, вы можете включить местное освещение, подобрать интенсивность (для чтения - одна, для работы за компьютером - другая и т.д.).

Очень вредны для зрения выразительные световые блики ; именно поэтому специалисты по освещению часто критикуют интерьерную моду на глянцевые поверхности, стекло и зеркала: такие элементы как раз и дают заметные блики. Блики отвлекают внимание, напрягают зрение, мешают фокусироваться на выбранном объекте. Поэтому очень желательно, чтобы поверхности в помещении были светлыми, но матовыми: такие поверхности отражают свет, но не создают бликов.

В целом, наиболее полезным для зрения вариантом является комбинирование различных методов освещения - вплоть до того, чтобы вы иногда давали отдых глазам, освещая комнату, например, свечой или открытым огнем камина. Используйте интенсивный свет только в том случае, если это необходимо для работы или чтения, в остальных случаях предпочитайте рассеянный общий свет естественного желтоватого оттенка. Помните, что лампы изначально расчитаны на применение в светильниках, поэтому очень желательно наличие плафона или абажура как минимум из матового стекла. Освещайте свое жилое и рабочее пространство с умом: в некоторых случаях уместнее всего слабая подсветка, в других требуется четко направленный яркий свет, а иногда достаточно и маломощной лампочки под плотным абажуром.

6. Правила организации занятий, требующих напряжения зрения

Требования к освещению для сохранения зрения

Организация занятий, требующих напряжения зрения.

Чрезмерное напряжение зрения, если оно часто повторяется, способствует развитию близорукости, а нередко и косоглазия. Поэтому необходимо большое внимание уделять организации такой обстановки, которая облегчает функцию органов зрения. Глаза напрягаются при недостаточном освещении, а также при сильной аккомодации. Поэтому надо следить за освещением помещений, в которых занимаются дошкольники.

На занятиях, связанных с длительным напряжением глазных мышц (рисование, лепка, вышивание), время от времени надо отвлекать детей от работы каким-либо замечанием или показом наглядных пособий, чтобы переключить зрение с близкого расстояния на далекое и дать отдых ресничной мышце.

Особое внимание надо обращать на правильную с гигиенической точки зрения организацию просмотра диапозитивных фильмов и телевизионных передач. Количество кадров в диапозитивном фильме не должно превышать для младших групп детского сада 25--30, средних 35--40 и старших 45--50. Детям 3--5 лет рекомендуется смотреть не более одного фильма (15--20 минут), а старшим (6--7 лет) -- два фильма, если общая их продолжительность не превышает 20--25 минут.

Экран располагают на уровне глаз дошкольников, сидящих на стуле. Так как яркость освещения экрана зависит от срока службы лампы в фильмоскопе, то надо следить, чтобы этот срок не превышал 20-- 25 часов, т. е. 40--60 сеансов. Расстояние первого ряда стульев от экрана надо делать равным двойной ширине экрана Между рядами стульев должно быть не менее 50 см, а последний ряд стульев располагают не далее 4 л» от экрана.

Смотреть телевизионные передачи следует не чаще двух раз в неделю. Телевизор надо установить на столике высотой 1--1,2 м над полом и по испытательной таблице получить хорошее качество изображения. Первый ряд стульев должен быть не ближе 2, а последний не дальше 5 м от экрана; в промежутке устанавливаются еще 5 рядов по 4--5 стульев. Продолжительность телевизионной передачи для детей 3--4 лет должна быть не более 10--15, а для детей 5--7 лет -- не более 25--30 минут.

Освещение. При хорошем освещении все функции организма протекают более интенсивно, улучшается настроение, повышается активность, работоспособность ребенка. Наилучшим считается естественное дневное освещение. Для большей освещенности окна игровых и групповых комнат обычно смотрят на/юг, юго-восток или юго-запад. Свет не должны заслонять ни противоположные здания, ни высокие деревья.

Чем больше площадь застекленной поверхности окон, тем светлее в комнате. Минимально допустимой нормой считается такая площадь, при которой в ясный день на самом отдаленном от окна месте освещенность равна 100 люксам.

Отсюда следует, что, чем больше площадь помещения, тем больше должна быть световая поверхность окон. Отношение площади остекленной поверхности окон к площади пола называется световым коэффициентом. Для игровых и групповых помещений в городах принята норма светового коэффициента, равная 1:4-- 1:5; в сельской местности, где здания, как правило, строят на открытых со всех сторон площадках, световой коэффициент допускается равным 1:5--1:6. Световой коэффициент для остальных помещений должен быть не менее 1: 8.

Чем дальше место от окна, тем хуже его освещенность естественным светом. Для достаточной освещенности глубина помещения не должна превышать двойное расстояние от пола до верхнего края окна. Если глубина помещения равна 6 м, то верхний край окна должен быть на расстоянии 3 м от пола.

Ни цветы, которые могут поглощать до 30% света, ни посторонние предметы, ни шторы не должны мешать прохождению света в помещение, где находятся дети. В игровых и групповых комнатах допустимы только узкие занавески из светлой, хорошо стирающейся ткани, которые располагаются на кольцах по краям окон и применяются в тех случаях, когда необходимо ограничить прохождение в помещение прямых солнечных лучей. Матовые и замазанные мелом оконные стекла в детских учреждениях не допускаются. Необходимо заботиться, чтобы стекла были гладкие, высокого качества.

Для лучшего освещения детских помещений стены и мебель окрашивают в светлые тона, отражающие наибольшее количество света. Нижнюю часть стен (1,5-- J,8 м от пола), подвергающуюся большому загрязнению, окрашивают светлыми масляными красками, устойчивыми к влиянию горячей воды, мыла и дезинфицирующих растворов. Остальную часть стен покрывают клеевой краской, а потолки помещений белят.

Для искусственного освещения обычно пользуются электричеством. Достаточное освещение групповых комнат площадью в 62 кв. м дают 8 ламп мощностью 300 ватт каждая, подвешенных в два ряда (по 4 лампы в ряду) на уровне 2,8--3 м от пола. В спальнях площадью в 70 кв. м надо иметь 8 ламп по 150 ватт каждая. Кроме " того, в спальнях и примыкающих к ним коридорах необходимо дополнительное ночное освещение с помощью ламп синего цвета. Лампы должны быть помещены в арматуру, смягчающую их яркость и дающую рассеянный свет.. Установлено, что -прямой, не огражденный арматурой свет снижает работоспособность, сильно слепит глаза, вызывает резкие тени. Так, при прямом освещении тень от туловища понижает освещенность рабочего места на 50%, а от руки даже на 80%.

Значительное преимущество перед обычным электрическим освещением имеет освещение так называемым «дневным светом» -- люминесцентными источниками света. Люминесцентные лампы дают высокую световую отдачу, позволяющую значительно увеличить норму освещенности. Их спектр в своей видимой части близок к спектру естественного света; кроме того, они дают рассеянный свет, не создающий резких теней. Потребление электроэнергии при люминесцентном освещении почти в три раза меньше, чем при электрическом той же интенсивности.

Естественное и искусственное освещение не достигает цели, если отсутствует надлежащий уход за источниками света и помещениями, в которых они находятся. Так, например, замерзшее стекло поглощает до 80% световых лучей, грязь может снижать прохождение света на 25% и больше. Значительно снижается мощность электрических ламп, по мере их эксплуатации. Поэтому необходим систематический уход как за стеклами окон и арматурой, так и за, самим помещением, его стенами и потолком. Надо следить также за своевременной сменой устаревших ламп.

Литература

1. А.П. Кабанов, А.П. Чабовская. Анатомия, физиология и гигиена детей дошкольного возраста.

2. Н.Н. Леонтьева, К.В. Маринова. Анатомия и физиология детского организма.Ч.1,2.М., «Просвещение», 2000

...

Подобные документы

    Рефракция глаза как процесс преломления световых лучей в оптической системе органа зрения. Ее виды (физическая и клиническая) и способы обозначения. Методы определения степени близорукости и дальнозоркости. Коррекция миопии, гиперметропии и астигматизма.

    реферат , добавлен 05.04.2015

    Физиология и строение глаза. Структура сетчатки глаза. Схема фоторецепции при поглощении глазами света. Зрительные функции(филогенез). Световая чувствительность глаза. Дневное, сумеречное и ночное зрение. Виды адаптации, динамика остроты зрения.

    презентация , добавлен 25.05.2015

    Особенности устройства зрения у человека. Свойства и функции анализаторов. Строение зрительного анализатора. Строение и функции глаза. Развитие зрительного анализатора в онтогенезе. Нарушения зрения: близорукость и дальнозоркость, косоглазие, дальтонизм.

    презентация , добавлен 15.02.2012

    Структура зрительной сенсорной системы: сетчатка; зрительные нервы, тракты; перекрест; лучистость; верхнее двухолмие, латеральные коленчатые тела, таламус; зрительная зона коры. Орган зрения. Теории цветового зрения. Коррекция аномалий рефракции глаза.

    реферат , добавлен 18.06.2014

    Принцип строения зрительного анализатора. Центры головного мозга, анализирующие восприятие. Молекулярные механизмы зрения. Са и зрительный каскад. Некоторые нарушения зрения. Близорукость. Дальнозоркость. Астигматизм. Косоглазие. Дальтонизм.

    реферат , добавлен 17.05.2004

    Методика занятий при миопии. Укрепление мышечной системы глаза. Симптомы дальнозоркости и близорукости. Нарушение формы хрусталика или роговицы. Комплекс упражнений для улучшения зрения. Гимнастика для усталых глаз. Упражнения для мышц шеи и спины.

    реферат , добавлен 04.12.2010

    Строение глаза, методики сохранения зрения. Влияние работы на компьютере на глаза. Специальные процедуры для улучшения зрения. Комплекс упражнений из йоги. Показания к применению ЛФК при миопии. Физкультура при слабой и высокой степени близорукости.

    реферат , добавлен 08.03.2011

    Строение органа зрения. Вспомогательные органы, сосуды и нервы глаза. Показатели остроты зрения, ее определение с использованием таблицы Головина-Сивцева. Исследование состояния зрительного анализатора школьников. Факторы, влияющие на ухудшение зрения.

    курсовая работа , добавлен 25.01.2013

    Снижение зрения, затуманивание, периодическое покалывание в глазу. Определение остроты зрения. Разность утреннего и вечернего давления. Обширная глаукомная экскавация. Сдвиг сосудистого пучка. Сужение полей зрения. Начальное помутнение хрусталика.

    история болезни , добавлен 06.07.2011

    Ознакомление с основными причинами нарушения зрения; описание группы риска. Изучение проявлений оптической нейропатии, внутричерепной гипертензии, амблиопии, амавроза и других заболеваний глаза. Рассмотрение глобальных мер по предупреждению слепоты.

Зрительная сенсорная система (зрительный анализатор) состоит из глазного яблока, проводящего пути и корковой зрительной зоны. Функции: восприятие и кодирование сенсорной зрительной информации, получение зрительного образа.

Орган зрения играет важную роль в познании человеком окружающего мира: до 90% информации мы получаем с помощью зрения. Глаз состоит из глазного яблока и вспомогательного аппарата. Глазное яблоко находится в глазнице, костные стенки которой выполняют защитную роль. Жировая клетчатка глазницы с сосудами и нервами служит своеобразным амортизатором.

Вспомогательный аппарат глаза состоит из защитных приспособлений, слёзного и двигательного аппаратов.

Защитные образования - брови, ресницы и веки. Веки (верхние и нижние) - соединительнотканные пластинки хрящевой плотности - снаружи покрыты кожей, изнутри конъюнктивой, состоящей из соединительной ткани и многослойного эпителия (воспаление конъюнктивы - конъюнктивит).

Слёзный аппарат состоит из слёзной железы и выводящих путей. Слёзная железа занимает ямку в верхнем углу латеральной стенки глазницы. Слеза содержит бактерицидное вещество лизоцим. Она омывает, увлажняет роговицу, затем стекает к медиальному углу глаза, где собирается в слезный мешок и оттуда по носослезному каналу попадает в нижний носовой ход.

Двигательный аппарат составляют произвольные мышцы глаза: четыре прямых и две косых. Прямые мышцы поворачивают глазное яблоко, косые - вращают его. При нарушениях функций мышц возникает косоглазие.

Строение оболочек глазного яблока

Глазное яблоко имеет форму сплюснутого в переднезаднем направлении шара диаметром 23,5 мм и состоит из трёх оболочек и ядра (рис.1).

Фиброзная (белочная) оболочка - самая поверхностная и плотная, играет опорно-защитную роль. Передний, меньший отдел фиброзной оболочки называют роговицей, задний - склерой.

Роговица- это тонкая прозрачная пластинка в форме часового стекла, лишена кровеносных сосудов, но содержит множество болевых рецепторов. Основные свойства роговицы - прозрачность, зеркальность и сферичность. Роговица - главная линза глаза, через неё в глаз проникает свет. Роговичный рефлекс- безусловный защитный рефлекс, который проявляется в зажмуривании глаз и слезотечении при легчайшем прикосновении к роговице. Воспаление роговицы - кератит.

Склера - соединительнотканная капсула глаза, внешне похожая на варёный яичный белок, которая защищает внутреннее ядро глаза.

Сосудистая оболочка содержит множество кровеносных сосудов, питающих сетчатку и выделяющих водянистую влагу. В ней различают три отдела: передний - радужная оболочка; средний - ресничное тело; задний - собственно сосудистая оболочка.

Радужная оболочка- это ободок, в центре которого находится отверстие - зрачок.Радужная оболочка содержит пигмент меланин, количество которого (наряду с сосудами) определяет цвет глаз. Состоит радужка из рыхлой соединительной ткани и двух гладких мышц: расширяющей и суживающей зрачок. Воспаление радужной оболочки - ирит.

Рис.1. Горизонтальный разрез глазного яблока (схема). 1 - конъюнктива; 2 - роговица; 3 - радужная оболочка; 4 - хрусталик; 5 - ресничное тело; 6 - связка, при помощи которой хрусталик прикреплен к ресничному телу; 7 - передняя камера глаза; 8 - задняя камера глаза; 9, 10 - мышца глазного яблока; 11 - склера; 12 - собственно сосудистая оболочка; 13 - сетчатая оболочка; 14 - желтое пятно; 15 - диск зрительного нерва; 16 - зрительный нерв; 17 - стекловидное тело.

Ресничное тело - утолщённая часть сосудистой оболочки, расположенная ободком вокруг хрусталика. Впереди от ресничного тела отходят ресничные отростки, которые вплетаются в капсулу хрусталика. Отростки также называют ресничным пояском или цинновой связкой. Задняя часть ресничного тела продолжается в сосудистую оболочку. Основа ресничного тела представлена рыхлой соединительной тканью с многочисленными кровеносными сосудами и ресничной мышцей, участвующей в аккомодации глаза. Она состоит из непроизвольных мышечных волокон - продольных и круговых.

Собственно сосудистая оболочка - большая часть сосудистой оболочки, наружной поверхностью обращенная к склере, а внутренней - к сетчатке. Состоит из рыхлой соединительной ткани, кровеносных сосудов, содержит пигментные клетки с черным пигментом, поглощающим свет.

Сетчатка - тонкая мягкая пластинка, внутренней поверхностью обращенная к стекловидному телу. Задний, больший отдел сетчатки содержит светочувствительные рецепторы и поэтому называется зрительной частью. Передний, меньший её отдел (прилегающий к ресничному телу) не имеет фоторецепторов и называется слепой частью, состоит из пигментного слоя и эпителиальных клеток. Снаружи сетчатка покрыта пигментным слоем, под которым расположен слой фоторецепторных нейронов с отростками в форме палочек и колбочек. Второй слой нейронов - вставочные нейроны, третий - ганглиозные нейроны, своими аксонами образующие зрительный нерв.

Место отхождения зрительного нерва - диск (сосок) зрительного нерва - имеет форму овального возвышения диаметром 1,7 мм. Здесь отсутствуют фоторецепторы, поэтому другое название диска -слепое пятно. Латеральнее диска на сетчатке расположено жёлтое пятно с центральной ямкой, содержащее большое количество колбочек - место наилучшего видения. По направлению к периферии сетчатки количество колбочек уменьшается, а палочек - возрастает. По периферии сетчатки расположены только колбочки. Воспаление сетчатки - ретинит.

Зрительная система (зрительный анализатор) представляет собой совокупность защитных, оптических, рецепторных и нервных струк­тур, воспринимающих и анализирующих световые раздражители. В физическом смысле свет - это электромагнитное излучение с раз­личными длинами волн - от коротких (красная область спектра) до длинных (синяя область спектра).

Способность видеть объекты связана с отражением света от их поверхности. Цвет зависит от того, какую часть спектра поглощает

или отражает предмет. Главные характеристики светового стиму­ ла - его частота и интенсивность. Частота (неличина, обратная длине волны) определяет окраску света, интенсивность - яркость. Диапазон интенсивностей, воспринимаемых глазомчеловека - ог­ромен - порядка 10 16 . Через зрительную систему человек получает более 80% информации о внешнем мире.

Основные показатели зрения. Зрение характеризуют следующие показатели: 1) диапазон воспринимаемых частот или длин волн света; 2) диапазон интенсивностей световых волн от порога воспри­ятия до болевого порога; 3) пространственная разрешающая способ­ность - острота зрения; 4) временная разрешающая способность - время суммации и критическая частота мельканий; 5) порог чув­ствительности и адаптация; 6) способность к восприятию цветов; 7) стереоскопия - восприятие глубины.

Психофизические характеристики света. Психофизические экви­валенты частоты и интенсивности света представлены в таблицах 16.2 и 16.3.

Таблица 16.2. Психофизические эквиваленты частоты света

Частота - длина волны, нм

Психологический коррелят

Таблица 16.3 Психофизические эквиваленты интенсивности света

Интенсивность, дБ

Психологический коррелят

Болевой порог Солнечный свет

Белая бумага при спою настольной лампы

Экран телевизора

Наименьшее освещение, при котором

различимы цвета

Пороговая освещенность для темно-адаптированного глаза

95

Для характеристики восприятия света важны три качества: тон, насыщенность и яркость. Тон соответствует цвету и меняется с изменением длины волны света. Насыщенность означает количество монохроматического света, добавление которого к белому свету обес­печивает получение ощущения, соответствующего длине волны до­бавленного монохроматического света, содержащего только одну частоту (или длину волны). Яркость света связана с его интенсив­ностью. Диапазон интенсивностей света от порога восприятия до величин, вызывающих болевые ощущения, огромен - 160 дБ. Вос­принимаемая человеком яркость объекта зависит не только от ин­тенсивности, но и от окружающего его фона. Если фигура {зри­тельный стимул) и фон освещены одинаково, то есть между ними нет контраста, яркость фигур возрастает с увеличением физической интенсивности освещения. Если контраст между фигурой и фоном увеличивается, яркость воспринимаемой фигуры уменьшается с уве­личением освещенности.

Пространственная разрешающая способность - острота зрения - минимальное различимое глазом угловое расстояние между двумя объектами (точками). Острота определяется с помощью специальных таблиц из букв и колец и измеряется величиной I/a, где а - угол, соответствующий минимальному расстоянию между двумя соседними точками разрыва в кольце. Острота зрения зависит от общей осве­щенности окружающих предметов. При дневном свете она макси­мальна, в сумерках и в темноте острота зрения падает.

Временные характеристики зрения описываются двумя основными показателями - временем суммации и критической частотой мель­ каний.

Зрительная система обладает определенной инерционностью: после включения стимула необходимо время для появления зрительной реакции (оно включает время, требующееся для развития химичес­ких процессов в рецепторах). Исчезает зрительное впечатление не сразу, а лишь через некоторое время после прекращения действия на глаз света или изображения, поскольку для восстановления зри­тельного пигмента сетчатке глаза также требуется время. Существует эквивалентность между интенсивностью и длительностью действия света на глаз. Чем короче зрительный стимул, тем большую интен­сивность он должен иметь, чтобы вызывать зрительное ощущение. Таким образом, для возникновения зрительного ощущения имеет значение суммарное количество световой энергии. Эта связь между длительностью и интенсивностью сохраняется лишь при коротких длительностях стимулов - до 20 мс. Для более длительных сигналов (от 20 мс до 250 мс) полная компенсация пороговой интенсивности (яркости) за счет длительности уже не наблюдается. Всякая зависи­мость между способностью к обнаружению света и его длительнос­тью исчезает после того, как продолжительность стимула достигает 250 мс, а при больших длительностях решающей становится интен­сивность. Зависимость пороговой интенсивности света от длитель­ности его воздействия называется временной суммацией. Этот пока­затель используется для оценки функции зрительной системы.

Зрительная система сохраняет следы светового раздражения в течение 150-250 мс после его включения. Это свидетельствует о том, что глаз воспринимает прерывистый свет, как непрерывный, при определенных интервалах между вспышками. Частота вспышек, при которой ряд последовательных вспышек воспринимается как непрерывный свет, называется критической частотой мельканий. Этот показатель неразрывно связан с временной суммацией: процесс суммации обеспечивает плавное слияние последовательных изобра­жений в непрерывный поток зрительных впечатлений. Чем выше интенсивность световых вспышек, тем выше критическая частота мельканий. Критическая частота мельканий пи средней интенсив­ности света составляет 16-20 в 1 с.

Порог световой чувствительности - это наименьшая интенсив­ность света, которую человек способен увидеть. Она составляет 10 -10 - 10 -11 эрг/с. В реальных условиях на величину порога суще­ственно влияет процесс адаптации - изменения чувствительности зрительной системы а зависимости от исходной освещенности. При низкой интенсивности света в окружающей среде развивается тем- новая адаптация зрительной системы. По мере развития темновой адаптации чувствительность зрения возрастает. Длительность полной темновой адаптации составляет 30 мин. При увеличении освещен­ности окружающей среды происходит световая адаптация, которая завершается за 15-60 с. Различия темновой и световой адаптации связаны со скоростью химических процессов распада и синтеза пигментов сетчатки.

Восприятие света зависит от длины волны света, попадающего в глаз. Однако, такое утверждение справедливо лишь для монохрома­тических лучей, то есть лучей с одной длиной волны. Белый свет содержит все длины световых волн. Существует три основных цвета: красный - 700 нм, зеленый - 546 нм и синий - 435 нм. В результате смешивания основных цветов можно получить любой цвет. Объясняют цветовое зрение на основе предположения о существо­вании в сетчатке глаза фоторецепторов трех различных типов, чув­ствительных к различных длинам волн света, соответствующих ос­новным частотам спектра (синий, зеленый, красный).

Нарушение восприятия цвета называется цветовой слепотой, или дальтонизмом, по имени Дальтона, который впервые описал этот дефект зрения на основе собственного опыта. Дальтонизмом стра­дают, в основном, мужчины (около 10%) в связи с отсутствием определенного гена в Х-хромосоме. Известны три типа нарушений светового зрения: протанопия - отсутствие чувствительности к крас­ному цвету, дейтеранопия - отсутствие чувствительности к зелено­му цвету и тританопия - отсутствие чувствительности к синему цвету. Полная цветовая слепота - монохроматия - встречается ис­ключительно редко.

Бинокулярное зрение - участие обоих глаз в формировании зри­тельного образа - создается за счет объединения двух монокуляр­ных изображений объектов, усиливая впечатление пространственной глубины. Поскольку глаза расположены в разных "точках" головы

справа и слева, то в изображениях, фиксируемых разными глазами, имеются небольшие геометрические различия (диспарантность), ко­торые тем больше, чем ближе находится рассматриваемый объект. Диспарантность двух изображений лежит в основе стереоскопии, то есть восприятия глубины. Когда голова человека находится в нормальном положении, возникают отклонения от точно соответ­ствующих проекций изображений в правом и левом глазах, так называемая диспарантность рецептивных полей. Она уменьшается с увеличением расстояния между глазами и объектом. Поэтому на больших расстояниях между стимулом и глазом глубина изображения не воспринимается.

Периферический отдел зрительной системы. Снаружи глаз виден как сферическое образование, прикрытое верхним и нижним веком и состоящее из склеры, коньюктивы, роговицы, радужной оболочки. Склера представляет собой соединительную ткань белого цвета, окру­жающую глазное яблоко. Коньюктива - прозрачная ткань, снабжен­ная кровеносными сосудами, которая на переднем полюсе глаза со­единяется с роговицей. Роговица является прозрачным защитным на­ружным образованием, кривизна поверхности которого определяет особенности преломления света. Так, при неправильной кривизне роговицы возникает искажение зрительных изображений, называемое астигматизмом. Позади роговицы находится радужная оболочка, цвет которой зависит от пигментации составляющих ее клеток и их рас­пределения. Между роговицей и радужной оболочкой находится пе­редняя камера глаза, наполненная жидкостью - "водянистой влагой". В центре радужной оболочки находится зрачок круглой формы, про­пускающий внутрь глаза свет после его прохождения через роговицу.

Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мыш­ца, суживающая зрачок - сфинктер - иннервируется парасимпати­ческим волокнами, мышца, расширяющая зрачок - дилататор - иннервируется симпатическими волокнами. Изменения диаметра зрач­ка меняют интенсивность светового раздражения незначительно - всего в 16- 17 раз (если учитывать, что диапазон интенсивности света изменяется в 16 млрд. раз). Реакция расширения зрачка до макси­мального диаметра - 7,5 мм - очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм до­стигается быстрее - всего за 5 секунд. Это значит, что основная функция зрачка состоит не в регуляции интенсивности света вообще, а в том, чтобы пропускать лишь тот свет, который попадает на центральную часть хрусталика, где фокусировка наиболее точная. Су­жение зрачка направлено на сохранение наиболее возможной при данных условиях освещенности глубины резкости.

Роговица и коньюктива покрыты тонкой пленкой слезной жид­ кости, секретируемой в слезных железах, расположенных в височ­ной части глазницы, над глазным яблоком. Слезы защищают рого­вицу и коньюктиву от высыхания.

98

Позади радужной оболочки расположены задняя камера глаза и хрусталик. Хрусталик - двояковыпуклая линза, расположенная в сумке, волокна которой соединены с ресничными мышцами и на­ружным сосудистым слоем сетчатки. Хрусталик может становится более плоским или более выпуклым в зависимости от расстояния между глазом и объектом. Изменение кривизны хрусталика называ­ется аккомодацией. Внутри глаза, позади хрусталика, находится стекловидное тело. Оно представляет собой коллоидный раствор ги-алуроновой кислоты во внеклеточной жидкости.

Рис. 16.11. Горизонтальный срез правого глаза.


Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка рас­положена слишком близко к хрусталику и фокусировка хороша толь­ко при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия). Близорукость и дальнозоркость кор­ректируются очками с вогнутыми и выпуклыми линзами соответ­ственно. Астигматизм (результат неравномерной кривизны рогови­цы) плохо корректируется даже сложными линзами. Для его ис­правления более пригодны контактные линзы, которые, плавая в слезной жидкости над роговицей, компенсируют ее отклонения от правильной формы. Итак, оптическая система глаз обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Ди­ оптрический аппарат, состоящий из системы линз, передает на сетчатку резко уменьшенное изображение предметов (рис. 16.11).

99

Сетчатка - с нейроанатомической точки зрения - высокоорга­низованная слоистая структура, объединяющая рецепторы и нейроны (рис. 16.12). Фоторецепторные клетки - палочки и колбочки - рас­положены в пигментном слое, наиболее удаленном от хрусталика.

Рис.16.12. Строение сетчатки глаза.

Вверху - падающий свет; 1 - волокна зрительного нерва;

2 - ганглиозные клетки; 3 - внутренний синаптический слой;

4 - амакриновые клетки; 5 - биполярные клетки;

6 - горизонтальные клетки; 7 - наружный синаптический слой,

8 - ядра рецепторов; 9 - рецепторы;

10 - пигментный слой эпителиальных клеток.

Они повернуты от пучка падающего света таким образом, что их светочувствительные концы спрятаны в промежутках между сильно пигментированными эпителиальными клетками. Эпителиальные пиг­ментные клетки участвуют в метаболизме фоторецепторов и синтезе зрительных пигментов. Все нервные волокна, выходящие из сетчат­ки, лежат в виде переплетенного пучка на пути света, создавая препятствие на пути его попадания в рецепторы. Кроме того, в том месте, где они выходят их сетчатки по направлению к мозгу, от­сутствуют светочувствительные элементы - это так называемое сле­ пое пятно. Свет, попадающий на сетчатку в области слепого пятна не воспринимается элементами сетчатки, поэтому остается "дефект" изображения, проецируемого на сетчатку. Однако, наличие слепого пятна не сказывается на целостности зрительного восприятия. Этот эффект или, точнее, дефект слепого пятна компенсируют высшие зрительные центры.

Палочки и колбочки отличаются как структурно, так и функци­онально. Зрительный пигмент (пурпур - родопсин) - содержится только в палочках. В колбочках находятся другие зрительные пиг­менты - иодопсин, хлоролаб, эритлаб, необходимые для цветового зрения. Палочка в 500 раз более чувствительна к свету, чем кол­бочка, но не реагирует на свет с разной длиной волны, т.е. она не цветочувствительна. Зрительные пигменты расположены в наружном сегменты палочек и колбочек. Во внутреннем сегменте находится ядро и митохондрии, принимающие участие в энергетических про­цессах при действии света.

В глазу человека около 6 млн. колбочек и 120 млн. палочек - всего около 130 млн. фоторецепторов. Плотность колбочек наиболее высока в центре сетчатки и падает к периферии. В центре сетчатки, в небольшом ее участке, находятся только колбочки. Этот участок называется центральной ямкой. Здесь плотность колбочек равна 150 тысячам на 1 квадратный миллиметр, поэтому в области централь­ной ямки острота зрения максимальна. Палочек в центре сетчатки очень мало, их больше на периферии сетчатки, но острота "пери­ферического" зрения при хорошей освещенности невелика. В усло­виях сумеречного освещения преобладает периферическое зрение, а острота зрения в области центральной ямки падает. Таким образом, колбочки функционируют при ярком свете и выполняют функцию восприятия цвета, палочки воспринимают свет и обеспечивают зри­тельное восприятие при слабой освещенности.

Первичный процесс зрительной рецепции - фотохимическая реак­ ция. Фотоны поглощаются молекулами зрительных пигментов. Каждая молекула пигмента поглощает один фотон (квант света) и переходит на более высокий энергетический уровень. Поглощение кванта света в фоторецепторе запускает многоступенчатый процесс распада молекул пигмента. Родопсин - зрительный пигмент палочек - состоит из белка (опсина) и ретиналя (альдегида витамина А 1). При распаде родопсина образуются опсин и витамин А 1 Иодопсин - основной пигмент кол­бочек - также состоит из опсина и ретиналя. Фотохимические про­цессы в палочках и колбочках сходны. Родопсин и иодопсин имеют

разные спектры поглощения: максимум спектра поглощения родопси­на - 500 нм (зелено-голубая часть), максимум спектра иодопсина - 570 нм (желтая часть). Каждая палочка в сетчатке человека содержит один пигмент, каждая колбочка - три разных пигмента, максимумы поглощения которых составляют примерно 425, 435 и 570 нм. Восста­новление пигментов осуществляется в темноте в результате цепи хи­мических реакций (ресинтез), протекающих с поглощением энергии. Ретиналь ресинтезируется на основе цис-изомера витамина А, поэ­тому при недостатке витамина А, в организме возникает недостаточ­ность сумеречного зрения. Если освещение постоянно и равномерно, то фотохимический распад пигментов находится в равновесии с их ресинтезом. Этот фотохимический процесс обеспечивает светотемно-вую адаптацию.

При освещении фоторецептора возникает увеличение элетроотри-цательности потенциала внутри клетки по отношению к внеклеточ­ному пространству. Это приводит к уменьшению транс мембранного тока в рецепторах. Таким образом, на свет в фоторецепторах воз­никает гиперполяризационный ответ. Гиперполяризация отличает зрительные рецепторы от других рецепторов, например, слуховых и вестибулярных, где возбуждение связано с деполяризацией мембра­ны. Амплитуда рецепторного зрительного потенциала увеличивается при увеличении интенсивности света (освещенности, относительно предыдущего состояния адаптации). Амплитуда рецепторного потен­циала зависит также от длины волны света, максимум ответа па­лочек проявляется при длине волны максимального поглощения родопсина - 500 нм, колбочек - 560-570 нм.

Палочки и колбочки соединены с биполярными нейронами сет­чатки, которые, в свою очередь, образуют с ганглиозными клетками синапсы, выделяющие ацетилхолин. Аксоны ганглиозных клеток сетчатки в составе зрительного нерва идут к различным мозговым структурам. Около 130 млн. фоторецепторов связаны с 1,3 млн., волокон зрительного нерва, что свидетельствует о конвергенции зрительных структур и сигналов. Только в центральной ямке каждая колбочка связана с одной биполярной клеткой, а она, в свою оче­редь, --с одной ганглиозной. К периферии от центральной ямки на одной биполярной клетке конвергируют множество палочек и не­сколько колбочек, а на ганглиозной - множество биполярных. Поэтому функционально такая система обеспечивает переработку первичного сигнала, повышающую вероятность его обнаружения за счет широкой конвергенции связей от периферических рецепторов к ганглиозной клетке, посылающей сигналы в мозг (рис. 16.13).

Два типа тормозных нейронов - горизонтальные и амакриновые клетки - расположены в том же слое, где находятся биполярные нейроны, ограничивают распространение зрительного возбуждения внутри сетчатки. Горизонтальные и амакриновые клетки связаны с биполярными и ганглиозными горизонтальными связями, обеспечи­вающими латеральное торможение между соседними клеточными элементами сетчатки: горизонтальные - между биполярными, ама­криновые - между ганглиозными.

Рис. 16.13. Организация концентрических рецептивных полей биполярных и ганглиозных клеток сетчатки (слева) и схема изменений потенциала, построенная на основе внутриклеточных записей (справа).

Ганглиозные клетки сетчатки при слабой освещенности дают не­прерывную импульсацию. При усилении освещенности половина клеток усиливает импульсацию, половина - ослабляет. Следователь­но, первые являются детекторами яркости, вторые - детекторами темноты. Все ганглиозные клетки сетчатки имеют круглые рецеп­тивные поля в отличие от неправильных нессиметричных рецептив­ных полей слуховых и соматических нейронов. Оптимальным сти­мулом для ганглиозных клеток служит либо светлое пятно, окру­женное темным поясом, либо темное пятно, окруженное ярким поясом. Многие ганглиозные клетки реагируют только на изменение освещения, но не реагируют на постоянный свет. Схематическое изображение рецептивных полей и реакций нейронов сетчатки по­казано на рис. 16.13.

Каждая ганглиозная клетка имеет свое рецептивное поле, т.е. ограниченный участок сетчатки, фоторецепторы которого связаны с данной клеткой. Реакция такой клетки на свет вне ее рецептивного поля отсутствует. Ганглиозные клетки функционально различны, их разделяют на два типа: 1) нейроны, которые возбуждаются светом, падающим на центр рецептивного поля, но затормаживаются, если свет падает на его периферию; 2) нейроны, которые затормажива­ются светом в центре рецептивного поля и возбуждаются при дей­ствии света на его края. Одновременная реакция нейронов первого и второго типов лежит в основе появления одновременного кон­ траста за счет подчеркивания края изображения их антагонисти­ческими рецептивными полями.

Размеры рецептивных полей, равно как и их функциональные свойства, зависят от расположения фоторецепторов данного поля на сетчатке относительно центральной ямки (эксцентриситет). Вели­чина рецептивных полей растет от области центральной ямки к периферии сетчатки. Это является следствием структурной органи-

зации связей элементов сетчатки. Так, в середине сетчатки, в об­ласти центральной ямки, где плотность колбочек максимальная, одна колбочка через отдельную биполярную клетку соединяется с отдель­ной ганглиозной клеткой. Таким образом, рецептивные поля ган-глиозных клеток, связанные с центром сетчатки очень узкие и не перекрываются. На периферии, где, в основном, находятся палочки, отмечаются широкие рецептивные поля: множество рецепторов свя­зано с одной ганглиозной клеткой.

Функционально острота зрения зависит и от свойств рецептивных полей: острота зрения - возможность различения двух соседних точек - максимальна для узких рецептивных полей центральной ямки. В то же время слабые сигналы с периферии сетчатки выде­ляются зрением, благодаря взаимодействию широких перекрыва­ющихся рецептивных полей за счет пространственной суммации раздражителей.

При освещении сетчатка генерирует электрические потенциалы, которые называют электроретинограммой. Эта суммарная электри­ческая реакция отражает процессы возбуждения различных нервных структур: а-волна возникает во внутренних сегментах фоторецепто­ров, в-волна является результатом возбуждения биполярных и ама-криновых клеток сетчатки, с-волна связана с пигментным эпители­ем, д-волна, является реакций горизонтальных клеток сетчатки на выключение света. Таким образом, волны электроретинограммы имеют своим источником все клеточные элементы сетчатки, кроме ганглиозных.

В сетчатке обнаружены клетки, для которых наиболее эффективны цвета-антагонисты красный и зеленый, а также клетки, для которых пару антагонистов составляют желтый и синий или зеленый и си­ний. Объяснение антагонистического действия цветов на ганглиоз-ные клетки состоит в том, что из трех типов колбочек два всегда связаны с одним нейроном, а часть колбочек имеет возбудительные синапсы, другая часть - тормозные.

Сетчатку, по сложности организации, часто рассматривают как часть мозга, расположенную на периферии. Здесь с фоторецептора­ми связаны несколько слоев нейронов, формирующих афферентный поток, который идет к подкорковым и корковым центрам зритель­ной системы. Горизонтальные и биполярные клетки сетчатки не генерируют потенциалов действия, основной формой их активности являются градуальные гиперполяризации и деполяризации. Гангли-озные клетки генерируют потенциалы действия, которые проводятся по их длинным аксонам, составляющим зрительный нерв.

Зрительный нерв содержит около 800 тысяч волокон ганглиозных клеток сетчатки. Зрительные нервы обоих глаз перекрещиваются в области основания черепа, где около полумиллиона волокон зри­тельного нерва переходят на противоположную сторону. Остальные 300 тысяч волокон вместе с перекрещенными аксонами второго зрительного нерва образуют зрительный тракт.

Нервные волокна зрительного тракта подходят к четырем структу­рам мозга: (1) ядрам верхних бугров четверохолмия - средний мозг,

(2) ядрам латерального коленчатого тела - таламус, (3) супрахиаз-мальным ядрам гипоталамуса и (4) к глазодвигательным нервам.

Ядра верхних бугров четверохолмия и латерального коленчатого тела являются конечными пунктами двух параллельных путей от ганглиозных клеток сетчатки: одна ветвь аксона ганглиозной клетки идет в латеральное коленчатое тело, другая - в верхнее двухолмие. Обе ветви сохраняют упорядоченную проекцию сетчатки. От перед­него двухолмия после переключения сигналы идут к крупному ядру таламуса - подушке.

Аксоны клеток латерального коленчатого тела, проходящие в со­ставе зрительной радиации, проецируются к клеткам первичной зрительной коры (поле 17 или стриарная кора). Проекция зритель­ной ямки сетчатки - зоны максимальной остроты зрения - в 35 раз больше проекции участка такого же размера на периферии сет­чатки. Клетки поля 17 (стриарной коры) связаны с полями 18 и 19 (престриарная кора), так называемыми вторичными зрительными зонами. От этих зон идут проекции к подушке таламуса, куда по­ступает информация от верхних бугров четверохолмия. Кроме того, зрительные пути прослеживаются к лобной коре, они примыкают к ассоциативной коре.

Клетки латерального коленчатого тела, получающие основную афферентацию от сетчатки, имеют простые концентрические рецеп­тивные поля, как и ганглиозные клетки. Здесь проявляется бино­кулярное взаимодействие: волокна от обоих глаз распределены то­пографически правильно, послойно. В то же время небольшая часть клеток латерального коленчатого тела активируется от обоих зри­тельных нервов.

Рис. 16.14. Концентрические рецептивные поля в сетчатке и подкорковых зрительных центрах (А), прямоугольные и сложные рецептивные поля в зрительной коре (Б).


Нейроны зрительной коры уже имеют не концентрические, а почти прямоугольные зрительные поля, некоторые из нейронов ре­агируют на определенную ориентацию (наклон) полосы - светлой или темной (рис. 16.14).

В зрительной коре существуют два функционально различных типа клеток: простые и сложные. Простые клетки имеют рецептивное поле, состоящее из возбудительной и тормозной зоны, которые можно предсказать на основе исследования реакции клетки на ма­ленькое световое пятно. Структуру рецептивного поля сложной клетки невозможно установить сканированием светового пятнышка. Они служат "детекторами" угла, наклона или движения линий в поле зрения. В коре уже совершенно отчетлива бинокулярная кон­вергенция: в одной точке представлены симметричные поля зре­ния - справа и слева.

Близко расположенные клетки зрительной коры "видят" только небольшую часть поля зрения. Лежащие друг под другом нейроны одной колонки коры реагируют на один и тот же стимул, опти­мальный по ориентации, наклону и направлению движения. В од­ной колонке могут располагаться как простые, так и сложные клет­ки. Простые клетки найдены в III и IV слоях, где заканчиваются таламические волокна. Сложные клетки расположены в более по­верхностных слоях коры 17 поля. В полях 18 и 19 зрительной коры простые клетки являются исключением, здесь расположены сложные и сверхсложные клетки. Последние реагируют, например, только на стимулы определенной ширины, длины и ориентации.

Итак, от уровня к уровню зрительной системы происходит ус­ложнение рецептивных полей нейронов. Все рецептивные поля ор­ганизованы в виде возбудительных и тормозных зон. Концентричес­кие рецептивные поля, характерные для сетчатки и латерального коленчатого тела, уже не встречаются в коре. В зрительной системе, как и в других сенсорных системах, чем выше синаптический уро­вень, тем строже ограничены функции отдельных нейронов - де­текторов свойств.

Для успешной работы системы распознавания зрительных образов очень важны движения глаз. Известно, что глаз человека приводится в движение шестью наружными мышцами. Относительно координат головы глаза двигаются горизонтально, вертикально и вокруг своей оси. Если оба глаза двигаются в одном направлении, такие движе­ния называются содружественными. При переводе взгляда с ближ­ней точки на дальнюю осуществляются дивергентные движения. При наклоне головы в сторону наблюдаются небольшие вращательные движения глаз.

При взгляде на любой предмет глаза двигаются от одной точки фиксации к другой быстрыми скачками - саккадами. Длительность саккад от 10 до 80 мс, длительность периодов фиксации 150-300 мс. Медленные движения глаз реализуются при слежении за движущи­мися объектами - следящие движения.

Движения глаз управляются центрами, которые находятся в об­ласти ретикулярной формации мозга и среднего мозга, в верхних буграх четверохолмия и в претектальной области. Все эти подкор­ковые центры координируются сигналами из зрительной, теменной и лобной коры, ответственными за программирование движений тела и оценки его положения в пространстве. Для наиболее тонкой ре-

гуляции глазодвигательных функций весьма существенны влияния мозжечка, сравнивающего тонический и фазный компоненты движе­ния при ориентации в пространстве.

В процессе зрительного восприятия, особенно при слежении за движущимся объектом, возникает оптический нистагм, вызываемый движущимися оптическими стимулами и состоящий из чередования саккад и медленных следящих движений. Движения глаз имеют огромное значение для восприятия: при неподвижном глазном яб­локе восприятие изображения пропадает в связи с разложением пигмента и адаптацией фоторецепторов.

Координированные движения глаз обеспечивают объединение ин­формации, идущей от обоих глаз в центры мозга. Особое значение для восприятия и координации движений играют нейроны переднего двухолмия. Они организованы в колонки, которые воспринимают сигналы, поступающие от одних и тех же участков полей зрения: активность нейронов этого отдела мозга, на которых конвергирует импульсация от правого и левого глаза, является пусковым меха­низмом для глазодвигательных нейронов. В коре обнаружены также колонки, связанные не только со зрительным восприятием, но и с сенсомоторной интеграцией. На высших уровнях зрительной систе­мы параллельно функционируют две системы анализа: одна опреде­ляет место предмета в пространстве, другая описывает его признаки. Конечные результаты параллельных процессов интегрируются и воз­никает законченный зрительный образ внешнего предметного мира.

Основные понятия и ключевые термины: ЗРИТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА. ГЛАЗ ЧЕЛОВЕКА.

Вспомните! Что такое сенсорные системы?

Подумайте!

Человеческий глаз - один из самых сложных органов чувств, который получает световую информацию, а затем передаёт её в мозг. Эта информация и является основой для формирования зрительных ощущений. А какой свет воспринимает глаз человека?

Какое значение имеет зрительная сенсорная система для человека?

ЗРИТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА -

это функциональная система анатомических образований, которая специализируется на восприятии световых раздражений и формировании зрительных ощущений. Человеческий глаз (лат. oculus) способен воспринимать только видимый свет из спектра электромагнитного излучения в диапазоне волн от 380 до 770 нм.

С помощью зрительной сенсорной системы человек получает более 90 % информации об окружающей среде. Это в 30 раз больше информации, воспринимаемой слухом. У человека, по сравнению с другими животными, зрительная система более совершенна. Благодаря развитой зрительной зоне коры полушарий человек может учиться лучше воспринимать зрительную информацию, накапливать её и запоминать для применения в будущем.

Таблица 28. ОТДЕЛЫ ЗРИТЕЛЬНОЙ СЕНСОРНОЙ СИСТЕМЫ

Характеристика

Перифериче

Преобразование света в нервные импульсы осуществляют фоторецепторы (палочки и колбочки), расположенные в сетчатке глаза. Эти клетки содержат зрительные пигменты, которые воспринимают и преобразуют свет

Проводнико

Проведение импульсов осуществляют правый и левый зрительные нервы, волокна которых перекрещиваются перед входом в мозг

Центральный

Обработка зрительной информации происходит в следующих зонах: а) в подкорковых центрах таламуса (зрительные бугры промежуточного мозга) и среднего мозга; б) зрительной зоне затылочной доли коры полушарий

Из различных признаков и свойств предметов окружающего мира с помощью зрительной сенсорной системы отображаются цвет, форма,

размеры предметов и определяются расстояние, расположение, объёмность предметов. Большую роль играет система в формировании зрительных ощущений и эмоций. Именно эти проявления вызывают у человека яркие и глубокие эмоции, когда она любуется красотой природы или произведением искусства. Зрительная система участвует почти во всех видах человеческой деятельности. С помощью зрения формируется речь человека и обеспечивается общение.

Итак, основной функцией зрительной сенсорной системы является познавательная, благодаря которой человек получает наибольшую часть информации об окружающем мире.

Как функции глаза взаимосвязаны с его строением?

ГЛАЗ ЧЕЛОВЕКА - орган чувств, который обеспечивает зрение. Это чувствительное образование имеет шарообразную форму, что способствует его движениям в пределах глазницы черепа (орбиты). Состоит орган зрения человека из двух частей: глазного яблока и вспомогательного аппарата. Глаз человека является периферической частью зрительной сенсорной системы и содержит внутри зрительные рецепторы (фоторецепторы). Эти клетки называются палочками и колбочками, их много, они живые и нуждаются в защите и питании. Кроме того, глаз осуществляет проведение световых лучей к внутренней оболочке глаза - сетчатке, где расположены эти зрительные чувствительные клетки. Важное значение для глаза имеют внешние и внутренние мышцы, выполняющие движения всего глазного яблока, сужение зрачка, изменение кривизны хрусталика.


Таблица 29. СТРОЕНИЕ ГЛАЗА ЧЕЛОВЕКА

Глазное яблоко

Вспомогательный

Оболочки

Внутреннее ядро

Веки (верхнее и нижнее) с ресницами Слёзный аппарат Конъюнктива Глазодвигательные мышць

I. Внешняя оболочка: склера, роговица

II. Средняя оболочка: собственно сосудистая оболочка, радужка со зрачком, ресничное тело

III. Сетчатка (имеет жёлтое и слепое пятна)

Хрусталик Влага передней и задней камер глаза Стекловидное тело

Функции: зашита и питание глазного яблока, световосприятие

Функции: питание и светопроводимость

Функции: зашита и движения глаз

Ил. 95. Строение глазного яблока человека: 1 - конъюнктива;

2 - ресничная мышца; 3 - радужка;

4 - роговица; 5 - хрусталик;

6 - передняя камера; 7 - задняя камера; 8 - сосудистая оболочка;

9 - склера; 10 - зрительный нерв;

11 - слепое пятно; 12 - центральная ямка; 13 - жёлтое пятно;

14 - стекловидное тело; 15 - сетчатка

Рассмотрим строение глаза во взаимосвязи с функциями:

Белковая оболочка (склера) - внешняя оболочка с коллагеновыми волокнами, защищает глаз и сохраняет его форму;

Роговица - прозрачная часть белковой оболочки, пропускает и преломляет свет;

Радужная оболочка - передняя часть сосудистой оболочки с пигментом, который определяет цвет глаз;

Зрачок - отверстие в радужке, которое может изменять диаметр с помощью гладких мышц, поэтому регулирует поступление света внутрь глаза;

Ресничное тело - образование сосудистой оболочки, имеющее ресничную мышцу и связки, поэтому может изменять форму хрусталика;

Собственно сосудистая оболочка - оболочка с густой сетью кровеносных сосудов, которая обеспечивает питание глаза;

Сетчатка - внутренняя световоспринимающая оболочка глазного яблока, которая содержит фоторецепторы и превращает световые раздражения в нервные импульсы;

Влага камер - прозрачная жидкость, которая заполняет переднюю и заднюю камеры глаза и обеспечивает питание хрусталика;

Хрусталик - прозрачное эластичное двояковыпуклое образование, которое может изменять свою форму, благодаря чему обеспечивается фокусировка лучей света на сетчатке;

Стекловидное тело - прозрачная студенистая масса, заполняющая глазное яблоко и поддерживающая его форму и внутриглазное давление;

Жёлтое пятно - участок в центре сетчатки, где содержатся преимущественно колбочки, которая считается местом наилучшего видения;

Слепое пятно - место, где зрительный нерв выходит из сетчатки, лишено фоторецепторов и не воспринимает свет.

Как происходит защита глаза?

Глаз обеспечен вспомогательным аппаратом. Защитную функцию выполняют брови и веки с ресницами, а также слёзный аппарат. Он состоит из слёзной железы, расположенной во внешнем углу глаза, слёзного мешка и носослёзного канала. Слёзная жидкость увлажняет поверхность глазного яблока, смывает посторонние частицы и убивает бактерии, попавшие в глаз, поскольку содержит бактерицидное вещество - лизоцим. Внутренняя часть век покрыта соединительнотканной оболочкой - конъюнктивой, которая содержит дополнительные слёзные железы. Благодаря глазодвигательным мышцам глазное яблоко постоянно движется.

Итак, вспомогательный аппарат глаза включает брови, веки с ресницами, слёзный аппарат, конъюнктиву и глазодвигательные мышцы.


ДЕЯТЕЛЬНОСТЬ

Учимся познавать

Лабораторное исследование. ВЫЯВЛЕНИЕ СЛЕПОГО ПЯТНА НА СЕТЧАТКЕ ГЛАЗА

Цель: развивать исследовательские умения и умения объяснять результаты исследования.

Оборудование: карта для демонстрации слепого пятна на сетчатке глаза, плотная бумага.

Ход работы

1. Прикройте левый глаз рукой или плотной бумагой и начните рассматривать карту с рисунком, медленно приближая её к глазу. При этом смотрите только на левое изображение (плюс). На каком расстоянии от глаза исчезает правое изображение круга и почему?

2. То же самое проделайте с прикрытым правым глазом, но начните рассматривать правое изображение круга. На каком расстоянии от глаза исчезает левое изображение плюса и почему?

3. Итог работы.

Самостоятельная работа с иллюстрацией

Сопоставьте названия элементов строения глаза человека с их обозначениями: А - кровеносные сосуды сетчатки; Б - радужная оболочка; Е - верхняя глазодвигательная мышца; И 4 -зрачок; И 2 - ресничная мышца; И 3 - нижняя глазодвигательная мышца; И 4 - сетчатка; З - зрительный нерв; Л - хрусталик; Н - задняя камера глаза; С 1 - склера; С 2 - передняя камера глаза; Ц - стекловидное тело; Я - сосудистая оболочка.

В случае правильного сопоставления в табличке вы получите название термина, которым обозначают повышенную чувствительность организма к воздействию какого-то фактора среды.

РЕЗУЛЬТАТ

Вопросы для самоконтроля

1. Что такое зрительная сенсорная система? 2. Назовите части зрительного анализатора. 3. Что такое глаз человека? 4. Каковы функции глаза? 5. Что образует глазное яблоко? 6. Что такое вспомогательный аппарат глаза?

7. Какое значение имеет зрительная сенсорная система для человека? 8. Какие функции глаза взаимосвязаны с его строением? 9. Как обеспечивается защита глаза?

10. Докажите значение зрительного анализатора для жизнедеятельности организма человека.

Это материал учебника

1. Значение и общий план организации зрительной сенсорной системы

Зрительная сенсорная система – важнейший из органов чувств человека и большинства высших позвоночных животных. Через нее человек получает около 90 % информации о внешней среде. Не случайна пословица «Лучше один раз увидеть, чем сто раз услышать».

Зрительная сенсорная система служит для восприятия и анализа световых раздражений. Глаз человека воспринимает световые лучи лишь в видимой части спектра – в диапазоне от 400 до 800 нм. Видим мы только при наличии света. Отвыкший от света, человек слепнет.

Зрительная сенсорная система состоит из следующих отделов:

1. периферический отдел – это сложный вспомогательный орган – глаз, в котором находятся фоторецепторы и тела первых (биполярных) и вторых (ганглиозных) нейронов;

2. проводниковый отдел – зрительный нерв (вторая пара черепно-мозговых нервов), представляющий собой аксоны нейронов и вторых частично перекрещивающийся в хиазме, передает информацию третьим нейронам, часть которых расположена в переднем двухолмии среднего мозга, другая часть – в ядрах таламуса, так называемых наружных коленчатых телах;

3. корковый отдел – четвертые нейроны находятся в 17-ом поле затылочной области коры больших полушарий. Это поле представляет собой первичное (проекционное) поле, или ядро анализатора, функцией которого является возникновение ощущений. Рядом с ним находится вторичное поле, или периферия анализатора (18-е и 19-е поля), функция которого – опознание и осмысливание зрительных ощущений, что лежит в основе процесса восприятия. Дальнейшая обработка и взаимосвязь зрительной информации с информацией от других сенсорных систем происходит в ассоциативных задних третичных полях коры – нижнетеменных областях.

2. Оптическая система глаза и преломление света (рефракция)

Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительной сенсорной системы решения о наличии в поле зрения того или иного зрительного образа. В связи с необходимостью наводить глаза на рассматриваемый объект, вращая их, природа создала у большинства видов животных шарообразную форму глазного яблока. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько светопроводящих сред – роговицу, влагу передней камеры, хрусталик и стекловидное тело, назначение которых преломлять их и фокусировать в области расположения рецепторов на сетчатке, обеспечивать четкое изображение на ней.

Как вы помните, камера глаза имеет 3 оболочки. Наружная непрозрачная оболочка – склера, переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловливающую цвет глаз. В середине радужки имеется отверстие – зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге. Внутренняя сетчатая оболочка (сетчатка) содержит фоторецепторы глаза (палочки и колбочки) и служит для преобразования световой энергии в нервное возбуждение.

Основными преломляющими средами глаза человека являются роговица и хрусталик, который представляет собой двояковыпуклую линзу. В глазу преломление света проходит по общим законам физики. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т.е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке – фокусе. Такой ход лучей обеспечивает четкое изображение на сетчатке, причем оно получается действительным, уменьшенным и обратным (рис. 26).

Рис. 26. Ход лучей и построение изображений в редуцированном глазу: АВ – предмет; аb – его изображение;

Dd – главная оптическая ось

Аккомодация. Для ясного видения предмета необходимо, чтобы лучи от его точек попадали на поверхность сетчатки, т.е. были здесь сфокусированы. Когда человек смотрит на далекие предметы, их изображение сфокусировано на сетчатке и они видны ясно. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато, т.к. лучи от них собираются за сетчаткой (рис. 27). Видеть одновременно одинаково ясно предметы, удаленные от глаза на разное расстояние, невозможно.

Рис. 27. Ход лучей от близкой и далекой точки: От далекой точки А (параллельные лучи) изображение а получается на сетчатке при ненапряженном аккомодационном аппарате; при этом от близкой точки В изображение в образуется за сетчаткой

Приспособление глаза к четкому видению различно удаленных предметов называется аккомодацией. Этот процесс осуществляется за счет изменения кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от светящейся точки, сходятся на сетчатке. При рассмотрении далеких предметов хрусталик становится плоским, как бы растягиваясь (рис. 28). Механизм аккомодации сводится к сокращению ресничных мышц, которые изменяют выпуклость хрусталика.

Существует две главные аномалии преломления лучей (рефракции) в глазу: близорукость и дальнозоркость. Они обусловлены, как правило, ненормальной длиной глазного яблока. В норме продольная ось глаза соответствует преломляющей силе глаза. Однако у 35 % людей имеются нарушения этого соответствия. В случае врожденной близорукости продольная ось глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке становится расплывчатым (рис. 29). Приобретенная близорукость связана с увеличением кривизны хрусталика, возникающая, в основном, при нарушении гигиены зрения. В дальнозорком глазу, наоборот, продольная ось глаза меньше нормы и фокус располагается за сетчаткой. В результате изображение на сетчатке тоже расплывчато. Приобретенная дальнозоркость возникает у пожилых людей из-за уменьшения выпуклости хрусталика и ухудшения аккомодации. В связи с возникновением старческой дальнозоркости ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7 – 10 лет до 75 см в 60 лет и более).

Рис. 28. Механизм аккомодации (по Г. Гельмгольцу) В левой половине хрусталик (7) уплощен при рассматривании далекого предмета, а справа он стал более выпуклым за счет аккомодационного усилия при рассматривании близкого предмета. 1 – склера; 2 – сосудистая оболочка; 3 – сетчатка; 4 – роговица; 5 – передняя камера; 6 – радужная оболочка; 7 – хрусталик; 8 – стекловидное тело; 9 – ресничная мышца, ресничные отростки и ресничные связки; 10 – центральная ямка; 11 – зрительный нерв

Рис. 29. Схема рефракции в нормальном (а), близоруком (б) и дальнозорком (в) глазу. Оптическая коррекция близорукости (г) и дальнозоркости (д)



3. Фоторецепция

Фоторецепция – это процесс преобразования световых раздражений в нервное возбуждение, а фоторецепторы глаза (палочки и колбочки) – это высокоспециализированные клетки, преобразующие световые раздражения в нервный

импульс. Фоторецепция начинается в наружных сегментах этих клеток, где на специальных дисках расположены молекулы зрительного пигмента (в палочках – родопсин, в колбочках – йодопсин) (рис. 30).

Когда свет падает на фоторецепторы, в них происходит фотохимиче-ская реакция: поглощая квант света (максимум поглощения около 500 нм – сине-зеленая часть спектра), родопсин (зрительный пурпур), который представляет собой сложный светочувствительный белок, распадается и обесцвечивается. Продукты распада изменяют мембранный потенциал фо-торецепторов, в результате чего сначала в рецепторах, а затем в нейронах сетчатки, связанных с ними, генерируются электрические потенциалы, ко-торые передают информацию в головной мозг, где происходит оконча-тельный анализ возбуждения, различение изображений и формирование ощущения. В темноте родопсин снова синтезируется.

В фоторецепторах рецепторный потенциал возникает при гиперпо-ляризации мембраны. Это единственное исключение из правила, когда ре-цепторный потенциал является гиперполяризующим.

На свету происходит гиперполяризация мембран рецепторных кле-ток, а в темноте – их деполяризация, т.е. стимулом для них является тем-нота, а не свет. При этом в соседних клетках происходят обратные измене-ния, что позволяет отделить светлые и темные точки пространства.

Рис. 30. Строение сетчатки

Палочки, рассеянные преимущественно по периферии сетчатки (их около 130 млн), и колбочки, расположенные преимущественно в централь-ной части сетчатки (их около 7 млн), различаются по своим функциям. Па-лочки обладают более высокой чувствительностью, чем колбочки, и явля-ются органами сумеречного зрения. Они обеспечивают черно-белое (бес-цветное) изображение. Колбочки представляют собой органы дневного зре-ния. Они воспринимают яркое освещение и обеспечивают цветное зрение.

У человека существует 3 вида колбочек: воспринимающие преиму-щественно красный, зеленый и сине- фиолетовый цвет. Разная их цвето-вая чувствительность определяется различиями в зрительном пигменте. Комбинации возбуждения этих приемников разных цветов дают ощущения всей гаммы цветовых оттенков, а равномерное возбуждение всех трех ти-пов колбочек – ощущение белого цвета.

Трехсоставную теорию цветового зрения впервые высказал в 1756 г. М. В. Ломоносов. 100 лет спустя ее развил немецкий ученый Г. Гельм-гольц, который не упомянул об открытии Ломоносова.

При нарушении функции колбочек наступает цветовая слепота (дальтонизм), человек перестает различать цвета, в частности, красный и зеленый цвет. Это заболевание отмечается у 8 % мужчин и у 0,5 % жен-щин.

4. Функциональные характеристики зрения

Важными характеристиками органа зрения являются острота и поле зрения.

Остротой зрения называется способность различать отдельные объ-екты. Она измеряется минимальным углом, при котором две точки вос-принимаются как раздельные, – примерно 0,5 угловой минуты. В центре сетчатки колбочки имеют более мелкие размеры и расположены гораздо плотнее, поэтому способность к пространственному различению здесь в 4 – 5 раз выше, чем на периферии сетчатки. Следовательно, центральное зрение отличается более высокой остротой зрения, чем перифериче- ское зрение. Для детального разглядывания предметов человек поворотом головы и глаз перемещает их изображение в центр сетчатки.

Острота зрения зависит не только от густоты рецепторов, но и от четкости изображения на сетчатке, т.е. от преломляющих свойств глаза, от степени аккомодации, от величины зрачка. В водной среде преломляющая сила роговицы снижается, т. к. ее коэффициент преломления близок к ко-

эффициенту преломления воды. В результате под водой острота зрения уменьшается в 200 раз.

Полем зрения называется часть пространства, видимая при непод-вижном положении глаза. Для черно-белых сигналов поле зрения обычно ограничено строением костей черепа и положением глазных яблок в глаз-ницах. Для цветных раздражителей поле зрения меньше, т.к. воспринимаю-щие их колбочки находятся в центральной части сетчатки. Наименьшее по-ле зрения отмечается для зеленого цвета. При утомлении поле зрения уменьшается.

Человек обладает бинокулярным зрением, т.е. зрением двумя гла-зами. Такое зрение имеет преимущество перед монокулярным зрением (одним глазом) в восприятии глубины пространства, особенно на близких расстояниях (менее 100 м). Четкость такого восприятия (глазомер) обеспе-чивается хорошей координацией движения обоих глаз, которые должны точно наводиться на рассматриваемый объект. В этом случае его изобра-жение попадает на идентичные точки сетчатки (одинаково удаленные от центра сетчатки) и человек видит одно изображение. Четкий поворот глазных яблок зависит от работы наружных мышц глаза его глазодви- гательного аппарата (четыре прямые и две косые мышцы), другими сло- вами, от мышечного баланса глаза. Однако идеальный мышечный баланс глаза, или ортофория, имеется лишъ у 40 % людей. Его нарушение воз- можно в результате утомления, действия алкоголя и пр., а также как следствие дисбаланса мышц, что приводит к нечеткости и раздвоению изображения (гетерофория). При небольших нарушениях сбалансирован- ности мышечных усилий наблюдается небольшое скрытое (или физиоло- гическое) косоглазие, которое в бодром состоянии человек компенсирует волевой регуляцией, а при значительных явное косоглазие.

Глазодвигательный аппарат имеет важное значение в восприятии скорости движения, которую человек оценивает либо по скорости переме-щения изображения по сетчатке неподвижного глаза, либо по скорости движения наружных мышц глаза при следящих движениях глаза.

Изображение, которое видит человек двумя глазами, прежде всего определяется его ведущим глазом. Ведущий глаз обладает более высокой остротой зрения, мгновенным и особенно ярким восприятием цвета, более обширным полем зрения, лучшим ощущением глубины пространства. При прицеливании воспринимается лишь то, что входит в поле зрения этого глаза. В целом, восприятие объекта в большей мере обеспечивается веду-щим глазом, а восприятие окружающего фона – неведущим глазом.


Лекция 21 СЛУХОВАЯ СЕНСОРНАЯ СИСТЕМА. ВЕСТИБУЛЯРНАЯ СЕНСОРНАЯ СИСТЕМА

1. Значение и общий план организации слуховой сенсорной системы

Слуховая сенсорная система – второй по значению дистантный анализатор человека. Вся жизнь человека протекает в мире звуков. Слух играет крайне важную роль именно у человека в связи с возникновением членораздельной речи. Слуховая сенсорная система служит для восприятия и анализа звуковых колебаний внешней среды. Деятельность слуховой сенсорной системы имеет также значение и для оценки временных интервалов – темпа и ритма движений.

Слуховая сенсорная система состоит из следующих отделов:

1. периферического (сложный специализированный орган, состоящий из наружного, среднего и внутреннего уха);

2. проводникового (первый нейрон проводникового отдела, находящийся в спиральном узле улитки, получает возбуждение от рецепторов внутреннего уха, отсюда информация поступает по его волокнам, т.е. по слуховому нерву (входящему в 8 пару черепно-мозговых нервов) ко второму нейрону в продолговатом мозге и после перекреста часть волокон идет к третьему нейрону в заднем двухолмии среднего мозга, а часть – к ядрам таламуса (внутреннему коленчатому телу);

3. коркового (четвертый нейрон, который находится в первичном (проекционном) слуховом поле в височной области коры больших полушарий и обеспечивает возникновение ощущения, а более сложная обработка звуковой информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны коры, где интегрируются с другими формами информации).


2. Функции наружного, среднего и внутреннего уха


Звук в ухе проделывает более сложный путь, чем луч света в глазу (рис. 31).

Наковальня

Овальное окно


Базальная мембрана


Овальное окно


Вестибулярная лестница


Средняя лестница

Круглое окно


Тимпаническая лестница


Рис. 31. Наружное, среднее и внутреннее ухо.

Внизу – схема каналов улитки в развернутом виде и движения звуковой волны

Ушная раковина (наружное ухо) – звукоулавливатель. На пути в среднее ухо звук встречает преграду – барабанную перепонку, которая отделяет наружное ухо от среднего. Ударяясь, он колеблет ее, и она повторяет колебания воздушных волн, не искажая их.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную (барабанную) полость, которая через слуховую (евстахиеву) трубу соединяется с полостью носоглотки, а через нее – с ротовой полостью.

и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения. В среднем ухе наблюдается усиление звука. Соединенные друг с другом 3 слуховые косточки – молоточек, наковальня и стремечко – усиливают колебания барабанной перепонки почти в 50 раз и через перепонку овального окна передают эти колебания жидкости, находящейся во внутреннем ухе, – перилимфе. Внутреннее ухо является звуковоспринимающим аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, образующую 2,5 спиральных витка. Улитковый канал разделен двумя перегородками – основной мембраной и вестибулярной мембраной – на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница) (рис. 32).

Благодаря такому соединению среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при резких и сильных изменениях внешнего давления – при погружениях под воду, снижениях или подъемах на высоту, выстрелах, взрывах и пр. Это барофункция уха. Во избежание разрушения барабанной перепонки взрывники приоткрывают рот, чтобы уравновесить с обеих сторон давление на нее. При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки


Рис. 32. Поперечный разрез завитка улитки (а)

с увеличенной частью спирального (Кортиева) органа (б),

очерченной сверху прямоугольником


На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного со­става - эндолимфой.

В среднем канале расположен звуковоспринимающий аппарат - Кортиев орган , в котором находятся механорецепторы звуковых колебаний - волосковые клетки. Эти клетки трансформируют механические колеба­ния в электрические потенциалы, в результате чего возбуждаются волокна слухового нерва.

Улавливание звука и весь процесс слушания двумя ушами - так на­зываемый бинауральный слух - имеет значение для определения направ­ления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0,0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.