Виды действия гормонов. Понятие о нейрогуморальных отношениях и гормональной регуляции функций. Краткий обзор эндокринных желез

В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин , в нейронах супраоптического ядра – вазопрессин .

Вазопрессин выполняет две функции:

1) усиливает сокращение гладких мышц сосудов (тонус артериол повышается с последующим повышением артериального давления);

2) угнетает образование мочи в почках (антидиуретическое действие). Антидиуретическое действие обеспечивается способностью вазопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения).

Окситоцин (оцитоцин) избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза.

Гипоталамическая регуляция образования гормонов гипофиза

Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза. Существует обратная связь между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает.

Кальцитонин, или тиреокальцитонин, вместе с паратгормоном околощитовидных желез участвует в регуляции кальциевого обмена. Под его влиянием снижается уровень кальция в крови (гипокальциемия). Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается. В почках и кишечнике кальцитонин угнетает реабсорбцию кальция и усиливает обратное всасывание фосфатов. Продукция тиреокальцитонина регулируется уровнем кальция в плазме крови по типу обратной связи. При снижении содержания кальция тормозится выработка тиреокальцитонина, и наоборот.

Околощитовидные (паращитовидные) железы

Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, или паратирин, или паратиреоидный гормон (ПТГ). Паратгормон регулирует обмен кальция в организме и поддерживает его уровень в крови. В костной ткани паратгормон усиливает функцию остеокластов, что приводит к деминерализации кости и повышению содержания кальция в плазме крови (гиперкальциемия). В почках паратгормон усиливает реабсорбцию кальция. В кишечнике повышение реабсорбции кальция происходит благодаря стимулирующему действию паратгормона на синтез кальцитриола – активного метаболита витамина D3. Витамин D3 образуется в неактивном состоянии в коже под воздействием ультрафиолетового излучения. Под влиянием паратгормона происходит его активация в печени и почках. Кальцитриол повышает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия).

Активность околощитовидных желез определяется содержанием кальция в плазме крови. Если в крови концентрация кальция возрастает, то это приводит к снижению секреции паратгормона. Уменьшение уровня кальция в крови вызывает усиление выработки паратгормона.

Удаление околощитовидных желез у животных или их гипофункция у человека приводит к усилению нервно-мышечной возбудимости, что проявляется фибриллярными подергиваниями одиночных мышц, переходящих в спастические сокращения групп мышц, премущественно конечностей, лица и затылка. Животное погибает от тетанических судорог.

Гиперфункция околощитовидных желез приводит к деминерализации костной ткани и развитию остеопороза. Гиперкальциемия усиливает склонность к камнеобразованию в почках, способствует развитию нарушений электрической активности сердца, возникновению язв в желудочно-кишечном тракте в результате повышенных количеств гастрина и НСl в желудке, образование которых стимулируют ионы кальция.

Надпочечники

Надпочечники являются парными железами. Это эндокринный орган, который имеет жизненно важное значение. В надпочечниках выделяют два слоя – корковый и мозговой. Корковый слой имеет мезодермальное происхождение, мозговой слой развивается из зачатка симпатического ганглия.

Гормоны коры надпочечников

В коре надпочечников выделяют 3 зоны: наружную – клубочковую, среднюю – пучковую и внутреннюю – сетчатую. В клубочковой зоне продуцируются в основном минералокортикоиды, в пучковой – глюкокортикоиды, в сетчатой – половые гормоны преимущественно андрогены). По химическому строению гормоны коры надпочечников являются стероидами. Механизм действия всех стероидных гормонов заключается в прямом влиянии на генетический аппарат ядра клеток, стимуляции синтеза соответствующих РНК, активации синтеза транспортирующих катионы белков и ферментов, а также повышении проницаемости мембран для аминокислот.

Минералокортикоиды.

К этой группе относятся альдостерон, дезоксикортикостерон, 18-оксикортикостерон, 18-оксидезоксикортикостерон. Эти гормоны участвуют в регуляции минерального обмена. Основным представителем минералокортикоидов является альдостерон. Альдостерон усиливает реабсорбцию ионов натрия и хлора в дистальных почечных канальцах и уменьшает обратное всасывание ионов калия. В результате этого уменьшается выделение натрия с мочой и увеличивается выведение калия. В процессе реабсорбции натрия пассивно возрастает и реабсорбция воды. За счет задержки воды в организме увеличивается объем циркулирующей крови, повышается уровень артериального давления, уменьшается диурез. Аналогичное влияние на обмен натрия и калия альдостерон оказывает в слюнных и потовых железах.

Альдостерон способствует развитию воспалительной реакции. Его провоспалительное действие связано с усилением экссудации жидкости из просвета сосудов в ткани и отечности тканей. При повышенной продукции альдостерона усиливается также секреция водородных ионов и аммония в почечных канальцах, что может привести к изменению кислотно-основного состояния – алкалозу.

В регуляции уровня альдостерона в крови имеют место несколько механизмов, основной из них – это ренин-ангиотензин-альдостероновая система. В небольшой степени продукцию аль-достерона стимулирует АКТГ аденогипофиза. Гипонатриемия или гиперкалиемия по механизму обратной связи стимулирует выработку альдостерона. Антагонистом альдостерона является натрийуретический гормон предсердий.

Глюкокортикоиды.

К глюкокортикоидным гормонам относятся кортизол, кортизон, кортикостерон, 11-дезоксикортизол, 11-дегидрокортикостерон. У человека наиболее важным глюкокортикоидом является кортизол.

Эти гормоны оказывают влияние на обмен углеводов, белков и жиров:

1. Глюкокортикоиды вызывают повышение содержания глюкозы в плазме крови (гипергликемия). Этот эффект обусловлен стимулированием процессов глюконеогенеза в печени, т. е. образования глюкозы из аминокислот и жирных кислот. Глюкокортикоиды угнетают активность фермента гексокиназы, что ведет к уменьшению утилизации глюкозы тканями. Глюкокортикоиды являются антагонистами инсулина в регуляции углеводного обмена.

2. Глюкокортикоиды оказывают катаболическое влияние на белковый обмен. Вместе с тем они обладают и выраженным анти-анаболическим действием, что проявляется снижением синтеза особенно мышечных белков, так как глюкокортикоиды угнетают транспорт аминокислот из плазмы крови в мышечные клетки. В результате снижается мышечная масса, может развиться остеопороз, уменьшается скорость заживления ран.

3. Действие глюкокортикоидов на жировой обмен заключается в активации липолиза, что приводит к увеличению концентрации жирных кислот в плазме крови.

4. Глюкокортикоиды угнетают все компоненты воспалительной реакции: уменьшают проницаемость капилляров, тормозят экссудацию и снижают отечность тканей, стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции, угнетают фагоцитоз в очаге воспаления. Глюкокортикоиды уменьшают лихорадку. Это действие связано с уменьшением выброса интерлейкина-1 из лейкоцитов, который стимулирует центр теплопродукции в гипоталамусе.

5. Глюкокортикоиды оказывают противоаллергическое действие. Это действие обусловлено эффектами, лежащими в основе противовоспалительного действия: угнетение образования факторов, усиливающих аллергическую реакцию, снижение экссудации, стабилизация лизосом. Повышение содержания глюкокортикоидов в крови приводит к уменьшению числа эозинофилов, концентрация которых обычно увеличена при аллергических реакциях.

6. Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет. Они снижают продукцию Ти В-лимфоцитов, уменьшают образование антител, снижают иммунологический надзор. При длительном приеме глюкокортикоидов может возникнуть инволюция тимуса и лимфоидной ткани. Ослабление защитных иммунных реакций организма является серьезным побочным эффектом при длительном лечении глюкокортикоидами, так как возрастает вероятность присоединения вторичной инфекции. Кроме того, усиливается и опасность развития опухолевого процесса из-за депрессии иммунологического надзора. С другой стороны, эти эффекты глюкокортикоидов позволяют рассматривать их как активных иммунодепрессантов.

7. Глюкокортикоиды повышают чувствительность гладких мышц сосудов к катехоламинам, что может привести к возрастанию артериального давления. Этому способствует и их небольшое минералокортикоидное действие: задержка натрия и воды в организме.

8. Глюкокортикоиды стимулируют секрецию соляной кислоты.

Образование глюкокортикоидов корой надпочечников стимулируется АКТГ аденогипофиза. Избыточное содержание глюкокортикоидов в крови приводит к торможению синтеза АКТГ и кортиколиберина гипоталамусом. Таким образом, гипоталамус, аденогипофиз и кора надпочечников объединены функционально и поэтому выделяют единую гипоталамо-гипофизарно-надпочечниковую систему. При острых стрессовых ситуациях быстро повышается уровень глюкокортикоидов в крови. В связи с метаболическими эффектами они быстро обеспечивают организм энергетическим материалом.

Гипофункция коры надпочечников проявляется снижением содержания кортикоидных гормонов и носит название Аддисоновой (бронзовой) болезни. Главными симптомами этого заболевания являются: адинамия, снижение объема циркулирующей крови, артериальная гипотония, гипогликемия, усиленная пигментация кожи, головокружение, неопределенные боли в области живота, поносы.

При опухолях надпочечников может развиться гиперфункция коры надпочечников с избыточным образованием глюкокортикоидов. Это так называемый первичный гиперкортицизм, или синдром Иценко – Кушинга. Клинические проявления этого синдрома такие же, как и при болезни Иценко – Кушинга.

Различают пять видов действия гормонов на ткани-мишени: метаболическое, морфогенетическое, кинетическое, корригирующее и реактогенное.

1. Метаболическое действие гормонов

Метаболическое действие гормонов - вызывает изменение обме­на веществ в тканях. Оно происходит за счет трех основных гор­мональных влияний.
Во-первых , гормоны меняют проницаемость мембран клетки и органоидов, что изменяет условия мембранного транспорта субстратов, ферментов, ионов и метаболитов и, соответ­ственно, все виды метаболизма.
Во-вторых , гормоны меняют актив­ность ферментов в клетке, приводя к изменению их структуры и конфигурации, облегчая связи с кофакторами, уменьшая или увели­чивая интенсивность распада ферментных молекул, стимулируя или подавляя активацию проферментов.
В-третьих , гормоны изменяют синтез ферментов, индуцируя или подавляя их образование за счет влияния на генетический аппарат ядра клетки, как прямо вмеши­ваясь в процессы синтеза нуклеиновых кислот и белка, так и опос­редованно через энергетическое и субстратно- ферментное обеспече­ние этих процессов. Сдвиги метаболизма, вызываемые гормонами, лежат в основе изменения функции клеток, ткани или органа.

2. Морфогенетическое действие гормонов

Морфогенетическое действие - влияние гормонов на процессы формообразования, дифференцировки и роста структурных элемен­тов. Осуществляются эти процессы за счет изменений генетического аппарата клетки и обмена веществ. Примерами может служить вли­яние соматотропина на рост тела и внутренних органов, половых гормонов - на развитие вторичных половых признаков.

3. Кинетическое действие гормонов

Кинетическое действие - способность гормонов запускать де­ятельность эффектора, включать реализацию определенной функции. Например, окситоцин вызывает сокращение мускулатуры матки, адреналин запускает распад гликогена в печени и выход глюкозы в кровь, вазопрессин включает обратное всасывание воды в собира­тельных трубочках нефрона, без него не происходящее.

4. Корригирующее действие гормонов

Корригирующее действие - изменение деятельности органов или процессов, которые происходят и в отсутствие гормона. Примером корригирующего действия гормонов является влияние адреналина на частоту сердечных сокращений, активация окислительных процессов тироксином, уменьшение обратного всасывания ионов калия в по­чках под влиянием альдостерона. Разновидностью корригирующего действия является нормализующий эффект гормонов, когда их вли­яние направлено на восстановление измененного или даже нару­шенного процесса. Например, при исходном превалировании анабо­лических процессов белкового обмена глюкокортикоиды вызывают катаболический эффект, но если исходно преобладает распад белков, глюкокортикоиды стимулируют их синтез.

В более широком плане зависимость величины и направленности эффекта гормона от имеющихся перед его действием особенностей метаболизма или функции определяется правилом исходного состо­ яния, описанном в начале главы. Правило исходного состояния по­казывает, что гормональный эффект зависит не только от количе­ства и свойств молекул гормона, но и от реактивности эффектора, определяемой числом и свойствами мембранных рецепторов к гор­мону. Реактивностью в рассматриваемом контексте называют спо­собность эффектора реагировать определенной величиной и направ­ленностью ответа на действие конкретного химического регулятора.

5. Реактогенное действие гормонов

Реактогенное действие гормонов - способность гормона менять реактивность ткани к действию того же гормона, других гормонов или медиаторов нервных импульсов. Так, например, кальцийрегули-рующие гормоны снижают чувствительность дистальных отделов нефрона к действию вазопрессина, фолликулин усиливает действие прогестерона на слизистую оболочку матки, тиреоидные гормоны усиливают эффекты катехоламинов. Разновидностью реактогенного действия гормонов является пермиссивное действие, означающее спо­собность одного гормона давать возможность реализоваться эффекту другого гормона. Так, например, глюкокортикоиды обладают пермиссивным действием по отношению к катехоламинам, т.е. для реализации эффектов адреналина необходимо присутствие малых количеств кортизола, инсулин обладает пермиссивным действием для соматотропина (гормона роста) и др. Особенностью гормональной регуляции является то, что реактогенное действие гормоны могут реализовать не только в тканях - мишенях, где концентрация ре­цепторов к ним высока, но и в других тканях и органах, имеющих единичные рецепторы к гормону.

Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – сложный орган, он состоит из аденогипофиза (передней и средней долей) и нейрогипофиза (задней доли). Гормоны передней доли гипофиза делятся на две группы: гормон роста и пролактин и тропные гормоны (тиреотропин, кортикотропин, гонадотропин).

К первой группе относят соматотропин и пролактин.

Гормон роста (соматотропин) принимает участие в регуляции роста, усиливая образование белка. Наиболее выражено его влияние на рост эпифизарных хрящей конечностей, рост костей идет в длину. Нарушение соматотропной функции гипофиза приводит к различным изменениям в росте и развитии организма человека: если имеется гиперфункция в детском возрасте, то развивается гигантизм; при гипофункции – карликовость. Гиперфункция у взрослого человека не влияет на рост в целом, но увеличиваются размеры тех частей тела, которые еще способны расти (акромегалия).

Пролактин способствует образованию молока в альвеолах, но после предварительного воздействия на них женских половых гормонов (прогестерона и эстрогена). После родов увеличивается синтез пролактина и наступает лактация. Акт сосания через нервно-рефлекторный механизм стимулирует выброс пролактина. Пролактин обладает лютеотропным действием, способствует продолжительному функционированию желтого тела и выработке им прогестерона. Ко второй группе гормонов относят:

1) тиреотропный гормон (тиреотропин). Избирательно действует на щитовидную железу, повышает ее функцию. При сниженной выработке тиреотропина происходит атрофия щитовидной железы, при гиперпродукции – разрастание, наступают гистологические изменения, которые указывают на повышение ее активности;

2) адренокортикотропный гормон (кортикотропин). Стимулирует выработку глюкокортикоидов надпочечниками. Кортикотропин вызывает распад и тормозит синтез белка, является антагонистом гормона роста. Он тормозит развитие основного вещества соединительной ткани, уменьшает количество тучных клеток, подавляет фермент гиалуронидазу, снижая проницаемость капилляров. Этим определяется его противовоспалительное действие. Под влиянием кортикотропина уменьшаются размер и масса лимфоидных органов. Секреция кортикотропина подвержена суточным колебаниям: в вечерние часы его содержание выше, чем утром;

3) гонадотропные гормоны (гонадотропины – фоллитропин и лютропин). Присутствуют как у женщин, так и у мужчин;

а) фоллитропин (фолликулостимулирующий гормон), стимулирующий рост и развитие фолликула в яичнике. Он незначительно влияет на выработку эстрагенов у женщин, у мужчин под его влиянием происходит образование сперматозоидов;

б) лютеинизирующий гормон (лютропин), стимулирующий рост и овуляцию фолликула с образованием желтого тела. Он стимулирует образование женских половых гормонов – эстрагенов. Лютропин способствует выработке андрогенов у мужчин.

2. Гормоны средней и задней долей гипофиза

В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин , в нейронах супраоптического ядра – вазопрессин .

Вазопрессин выполняет две функции:

1) усиливает сокращение гладких мышц сосудов (тонус артериол повышается с последующим повышением артериального давления);

2) угнетает образование мочи в почках (антидиуретическое действие). Антидиуретическое действие обеспечивается способностью вазопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения).

Окситоцин (оцитоцин) избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза.

Гипоталамическая регуляция образования гормонов гипофиза

Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза. Существует обратная связь между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает.

3. Гормоны эпифиза, тимуса, паращитовидных желез

Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения:

1) мелатонин (принимает участие в регуляции пигментного обмена, тормозит развитие половых функций у молодых и действие гонадотропных гормонов у взрослых). Это обусловлено прямым действием мелатонина на гипоталамус, где идет блокада освобождения люлиберина, и на переднюю долю гипофиза, где он уменьшает действие люлиберина на освобождение лютропина;

2) гломерулотропин (стимулирует секрецию альдостерона корковым слоем надпочечников).

Тимус (вилочковая железа) – парный дольчатый орган, расположенный в верхнем отделе переднего средостения. Тимус образует несколько гормонов: тимозин, гомеостатический тимусный гормон, тимопоэтин I, II, тимусный гуморальный фактор . Они играют важную роль в развитии иммунологических защитных реакций организма, стимулируя образование антител. Тимус контролирует развитие и распределение лимфоцитов. Секреция гормонов тимуса регулируется передней долей гипофиза.

Вилочковая железа достигает максимального развития в детском возрасте. После полового созревания она начинает атрофироваться (железа стимулирует рост организма и тормозит развитие половой системы). Есть предположение, что тимус влияет на обмен ионов Ca и нуклеиновых кислот.

При увеличении вилочковой железы у детей возникает тимико-лимфатический статус. При этом состоянии, кроме увеличения тимуса, происходят разрастание лимфатической ткани, увеличение вилочковой железы является проявлением надпочечниковой недостаточности.

Паращитовидные железы – парный орган, они расположены на поверхности щитовидной железы. Гормон паращитовидной железы – паратгормон (паратирин). Паратгормон находится в клетках железы в виде прогормона, превращение прогормона в паратгормон происходит в комплексе Гольджи. Из паращитовидных желез гормон непосредственно поступает в кровь.

Паратгормон регулирует обмен Ca в организме и поддерживает его постоянный уровень в крови. В норме содержания Ca в крови составляет 2,25-2,75 ммоль/л (9-11 мг%). Костная ткань скелета – главное депо Ca в организме. Имеется определенная зависимость между уровнем Ca в крови и содержанием его в костной ткани. Паратгормон усиливает рассасывание кости, что приводит к увеличению освобождения ионов Ca, регулирует процессы отложения и выхода солей Ca в костях. Влияя на обмен Са, паратгормон параллельно воздействует на обмен фосфора: уменьшает обратное всасывание фосфатов в дистальных канальцах почек, что приводит к понижению их концентрации в крови.

Удаление паращитовидных желез приводит к вялости, рвоте, потере аппетита, к разрозненным сокращениям отдельных групп мышц, которые могут переходить в длительное тетаническое сокращение. Регуляция деятельности паращитовидных желез определяется уровнем Са в крови. Если в крови нарастает концентрация Са, это приводит к снижению функциональной активности паращитовидных желез. При уменьшении уровня Са повышается гормонообразовательная функция желез.

4. Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы

Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий белок – тиреоглобулин.

Гормоны щитовидной железы делятся на две группы:

1) йодированные – тироксин, трийодтиронин ;

2) тиреокальцитонин (кальцитонин) .

Йодированные гормоны образуются в фолликулах железистой ткани, его образование происходит в три этапа:

1) образование коллоида, синтез тиреоглобулина;

2) йодирование коллоида, поступление йода в организм, всасывание в виде йодидов. Йодиды поглощаются щитовидной железой, окисляются в элементарный йод и включаются в состав тиреоглобулина, процесс стимулируется ферментом – тиреоидпероксиказой;

3) выделение в кровоток происходит после гидролиза тиреоглобулина под действием катепсина, при этом освобождаются активные гормоны – тироксин, трийодтиронин.

Основной активный гормон щитовидной железы – тироксин, соотношение тироксина и трийодтиронина составляет 4: 1. Оба гормона находятся в крови в неактивном состоянии, они связаны с белками глобулиновой фракции и альбумином плазмы крови. Тироксин легче связывается с белками крови, поэтому быстрее проникает в клетку и имеет большую биологическую активность. Клетки печени захватывают гормоны, в печени гормоны образуют соединения с глюкуроновой кислотой, которые не обладают гормональной активностью и выводятся с желчью в ЖКТ. Этот процесс называется дезинтоксикацией, он предотвращает чрезмерное насыщение крови гормонами.

Роль йодированных гормонов:

1) влияние на функции ЦНС. Гипофункция ведет к резкому снижению двигательной возбудимости, ослаблению активных и оборонительных реакций;

2) влияние на высшую нервную деятельность. Включаются в процесс выработки условных рефлексов, дифференцировки процессов торможения;

3) влияние на рост и развитие. Стимулируют рост и развитие скелета, половых желез;

4) влияние на обмен веществ. Происходит воздействие на обмен белков, жиров, углеводов, минеральный обмен. Усиление энергетических процессов и увеличение окислительных процессов приводят к повышению потребления тканями глюкозы, что заметно снижает запасы жира и гликогена в печени;

5) влияние на вегетативную систему. Увеличивается число сердечных сокращений, дыхательных движений, повышается потоотделение;

6) влияние на свертывающую систему крови. Снижают способность крови к свертыванию (уменьшают образование факторов свертывания крови), повышают ее фибринолитическую активность (увеличивают синтез антикоагулянтов). Тироксин угнетает функциональные свойства тромбоцитов – адгезию и агрегацию.

Регуляция образования йодсодержащих гормонов осуществляется:

1) тиреотропином передней доли гипофиза. Влияет на все стадии йодирования, связь между гормонами осуществляется по типу прямых и обратных связей;

2) йодом. Малые дозы стимулируют образование гормона за счет усиления секреции фолликулов, большие – тормозят;

3) вегетативной нервной системой: симпатическая – повышает активность продукции гормона, парасимпатическая – снижает;

4) гипоталамусом. Тиреолиберин гипоталамуса стимулирует тиреотропин гипофиза, который стимулирует продукцию гормонов, связь осуществляется по типу обратных связей;

5) ретикулярной формацией (возбуждение ее структур повышает выработку гормонов);

6) корой головного мозга. Декортикация активизирует функцию железы первоначально, значительно снижает с течением времени.

Тиреокальцитоцин образуется парафолликулярными клетками щитовидной железы, которые расположены вне железистых фолликул. Он принимает участие в регуляции кальциевого обмена, под его влиянием уровень Ca снижается. Тиреокальцитоцин понижает содержание фосфатов в периферической крови.

Тиреокальцитоцин тормозит выделение ионов Ca из костной ткани и увеличивает его отложение в ней. Он блокирует функцию остеокластов, которые разрушают костную ткань, и запускают механизм активации остеобластов, участвующих в образовании костной ткани.

Уменьшение содержания ионов Ca и фосфатов в крови обусловлено влиянием гормона на выделительную функцию почек, уменьшая канальцевую реабсорбцию этих ионов. Гормон стимулирует поглощение ионов Ca митохондриями.

Регуляция секреции тиреокальцитонина зависит от уровня ионов Ca в крови: повышение его концентрации приводит к дегрануляции парафолликулов. Активная секреция в ответ на гиперкальциемию поддерживает концентрацию ионов Ca на определенном физиологическом уровне.

Секреции тиреокальцитонина способствуют некоторые биологически активные вещества: гастрин, глюкагон, холецистокинин.

При возбуждении бета-адренорецепторов повышается секреция гормона, и наоборот.

Нарушение функции щитовидной железы сопровождается повышением или понижением ее гормонообразующей функции.

Недостаточность выработки гормона (гипотериоз), появляющаяся в детском возрасте, ведет к развитию кретинизма (задерживаются рост, половое развитие, развитие психики, наблюдается нарушение пропорций тела).

Недостаточность выработки гормона ведет к развитию микседемы, которая характеризуется резким расстройством процессов возбуждения и торможения в ЦНС, психической заторможенностью, снижением интеллекта, вялостью, сонливостью, нарушением половых функций, угнетением всех видов обмена веществ.

При повышении активности щитовидной железы (гипертиреозе) возникает заболевание тиреотоксикоз . Характерные признаки: увеличение размеров щитовидной железы, числа сердечных сокращений, повышение обмена веществ, температуры тела, увеличение потребления пищи, пучеглазие. Наблюдаются повышенная возбудимость и раздражительность, изменяется соотношение тонуса отделов вегетативной нервной системы: преобладает возбуждение симпатического отдела. Отмечаются мышечное дрожание и мышечная слабость.

Недостаток в воде йода приводит к снижению функции щитовидной железы со значительным разрастанием ее ткани и образованием зоба. Разрастание ткани – компенсаторный механизм в ответ на снижение содержания йодированных гормонов в крови.

5. Гормоны поджелудочной железы. Нарушение функции поджелудочной железы

Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон, дельта-клетки – соматостатин. В экстрактах ткани поджелудочной железы обнаружены гормоны ваготонин и центропнеин.

Инсулин регулирует углеводный обмен, снижает концентрацию сахара в крови, способствует превращению глюкозы в гликоген в печени и мышцах. Он повышает проницаемость клеточных мембран для глюкозы: попадая внутрь клетки, глюкоза усваивается. Инсулин задерживает распад белков и превращение их в глюкозу, стимулирует синтез белка из аминокислот и их активный транспорт в клетку, регулирует жировой обмен путем образования высших жирных кислот из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани.

В бета-клетках инсулин образуется из своего предшественника проинсулина. Он переносится в клеточные аппарат Гольджи, где происходят начальные стадии превращения проинсулина в инсулин.

В основе регуляции инсулина лежит нормальное содержание глюкозы в крови: гипергликемия приводит к увеличению поступления инсулина в кровь, и наоборот.

Паравентрикулярные ядра гипоталамуса повышают активность при гипергликемии, возбуждение идет в продолговатый мозг, оттуда в ганглии поджелудочной железы и к бета-клеткам, что усиливает образование инсулина и его секрецию. При гипогликемии ядра гипоталамуса снижают свою активность, и секреция инсулина уменьшается.

Гипергликемия непосредственно приводит в возбуждение рецепторный аппарат островков Лангерганса, что увеличивает секрецию инсулина. Глюкоза также непосредственно действует на бета-клетки, что ведет к высвобождению инсулина.

Глюкагон повышает количество глюкозы, что также ведет к усилению продукции инсулина. Аналогично действует гормоны надпочечников.

Вегетативная нервная система регулирует выработку инсулина посредством блуждающего и симпатического нервов. Блуждающий нерв стимулирует выделение инсулина, а симпатический тормозит.

Количество инсулина в крови определяется активностью фермента инсулиназы, который разрушает гормон. Наибольшее количество фермента находится в печени и мышцах. При однократном протекании крови через печень разрушается до 50 % находящегося в крови инсулина.

Важную роль в регуляции секреции инсулина выполняет гормон соматостатин, который образуется в ядрах гипоталамуса и дельта-клетках поджелудочной железы. Соматостатин тормозит секрецию инсулина.

Активность инсулина выражается в лабораторных и клинических единицах.

Глюкагон принимает участие в регуляции углеводного обмена, по действию на обмен углеводов он является антагонистом инсулина. Глюкагон расщепляет гликоген в печени до глюкозы, концентрация глюкозы в крови повышается. Глюкагон стимулирует расщепление жиров в жировой ткани.

Механизм действия глюкагона обусловлен его взаимодействием с особыми специфическими рецепторами, которые находятся на клеточной мембране. При связи глюкагона с ними увеличивается активность фермента аденилатциклазы и концентрации цАМФ, цАМФ способствует процессу гликогенолиза.

Регуляция секреции глюкагона. На образование глюкагона в альфа-клетках оказывает влияние уровень глюкозы в крови. При повышении глюкозы в крови происходит торможение секреции глюкагона, при понижении – увеличение. На образование глюкагона оказывает влияние и передняя доля гипофиза.

Гормон роста соматотропин повышает активность альфа-клеток. В противоположность этому гормон дельта-клетки – соматостатин тормозит образование и секрецию глюкагона, так как он блокирует вхождение в альфа-клетки ионов Ca, которые необходимы для образования и секреции глюкагона.

Физиологическое значение липокаина . Он способствует утилизации жиров за счет стимуляции образования липидов и окисления жирных кислот в печени, он предотвращает жировое перерождение печени.

Функции ваготонина – повышение тонуса блуждающих нервов, усиление их активности.

Функции центропнеина – возбуждение дыхательного центра, содействие расслаблению гладкой мускулатуры бронхов, повышение способности гемоглобина связывать кислород, улучшение транспорта кислорода.

Нарушение функции поджелудочной железы.

Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), полидиспепсия (повышенная жажда).

Увеличение сахара в крови у больных сахарным диабетом является результатом потери способности печени синтезировать гликоген из глюкозы, а клеток – утилизировать глюкозу. В мышцах также замедляется процесс образования и отложения гликогена.

У больных сахарным диабетом нарушаются все виды обмена.

6. Гормоны надпочечников. Глюкокортикоиды

Надпочечники – парные железы, расположенные над верхними полюсами почек. Они имеют важное жизненное значение. Различают два типа гормонов: гормоны коркового слоя и гормоны мозгового слоя.

Гормоны коркового слоя длятся на три группы:

1) глюкокортикоиды (гидрокортизон, кортизон, кортикостерон) ;

2) минералокортикоиды (альдестерон, дезоксикортикостерон) ;

3) половые гормоны (андрогены, эстрогены, прогестерон) .

Глюкокортикоиды синтезируются в пучковой зоне коры надпочечников. По химическому строению гормоны являются стероидами, образуются из холестерина, для синтеза необходима аскорбиновая кислота.

Физиологическое значение глюкокортикоидов.

Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процесс образования глюкозы из белков, повышают отложение гликогена в печени, по своему действию являются антагонистами инсулина.

Глюкокортикоиды оказывают катаболическое влияние на белковый обмен, вызывают распад тканевого белка и задерживают включение аминокислот в белки.

Гормоны обладают противовоспалительным действием, что обусловлено снижением проницаемости стенок сосуда при низкой активности фермента гиалуронидазы. Уменьшение воспаления обусловлено торможением освобождения арахидоновой кислоты из фосфолипидов. Это ведет к ограничению синтеза простагландинов, которые стимулируют воспалительный процесс.

Глюкокортикоиды оказывают влияние на выработку защитных антител: гидрокортизон подавляет синтез антител, тормозит реакцию взаимодействия антитела с антигеном.

Глюкокортикоиды оказывают выраженное влияние на кроветворные органы:

1) увеличивают количество эритроцитов за счет стимуляции красного костного мозга;

2) приводят к обратному развитию вилочковой железы и лимфоидной ткани, что сопровождается уменьшением количества лимфоцитов.

Выделение из организма осуществляется двумя путями:

1) 75–90 % поступивших гормонов в кровь удаляется с мочой;

2) 10–25 % удаляется с калом и желчью.

Регуляция образования глюкокортикоидов.

Важную роль в образовании глюкокортикоидов играет кортикотропин передней доли гипофиза. Это влияние осуществляется по принципу прямых и обратных связей: кортикотропин повышает продукцию глюкокортикоидов, а избыточное их содержание в крови приводит к торможению кортикотропина в гипофизе.

В ядрах переднего отдела гипоталамуса синтезируется нейросекрет кортиколиберин , который стимулирует образование кортикотропина в передней доле гипофиза, а он, в свою очередь, стимулирует образование глюкокортикоида. Функциональное отношение «гипоталамус – передняя доля гипофиза – кора надпочечников» находится в единой гипоталамо-гипофизарно-надпочечниковой системе, которая играет ведущую роль в адаптационных реакциях организма.

Адреналин – гормон мозгового вещества надпочечников – усиливает образование глюкокортикоидов.

7. Гормоны надпочечников. Минералокортикоиды. Половые гормоны

Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся альдостерон и дезоксикортикостерон . Они усиливают обратное всасывание ионов Na в почечных канальцах и уменьшают обратное всасывание ионов K, что приводит к повышению ионов Na в крови и тканевой жидкости и увеличению в них осмотического давления. Это вызывает задержку воды в организме и повышение артериального давления.

Минералокортикоиды способствуют проявлению воспалительных реакций за счет повышения проницаемости капилляров и серозных оболочек. Они принимают участие в регуляции тонуса кровеносных сосудов. Альдостерон обладает способностью увеличивать тонус гладких мышц сосудистой стенки, что приводит к повышению величины кровяного давления. При недостатке альдостерона развивается гипотония.

Регуляция образования минералокортикоидов

Регуляция секрета и образования альдостерона осуществляется системой «ренин-ангиотензин». Ренин образуется в специальных клетках юкстагломерулярного аппарата афферентных артериол почки и выделяется в кровь и лимфу. Он катализирует превращение ангиотензиногена в ангиотензин I, который переходит под действием специального фермента в ангиотензин II. Ангиотензин II стимулирует образование альдостерона. Синтез минералокортикоидов контролируется концентрацией ионов Na и K в крови. Повышение ионов Na приводит к торможению секреции альдостерона, что приводит к выделению Na с мочой. Снижение образования минерало-кортикоидов происходит при недостаточном содержании ионов K. На синтез минералокортикоидов влияет количество тканевой жидкости и плазмы крови. Увеличение их объема приводит к торможению секреции альдостеронов, что обусловлено усиленным выделением ионов Na и связанной с ним воды. Гормон эпифиза гломерулотропин усиливает синтез альдостерона.

Половые гормоны (андрогены, эстрогены, прогестерон) образуются в сетчатой зоне коры надпочечников. Они имеют большое значение в развитии половых органов в детском возрасте, когда внутрисекреторная функция половых желез незначительна. Оказывают анаболическое действие на белковый обмен: повышают синтез белка за счет увеличенного включения в его молекулу аминокислот.

При гипофункции коры надпочечников возникает заболевание – бронзовая болезнь, или аддисонова болезнь. Признаками этого заболевания являются: бронзовая окраска кожи, особенно на руках шее, лице, повышенная утомляемость, потеря аппетита, появление тошноты и рвоты. Больной становится чувствителен к боли и холоду, более восприимчив к инфекции.

При гиперфункции коры надпочечников (причиной которой чаще всего является опухоль) происходит увеличение образования гормонов, отмечается преобладание синтеза половых гормонов над другими, поэтому у больных начинают резко изменяться вторичные половые признаки. У женщин наблюдается проявление вторичных мужских половых признаков, у мужчин – женских.

8. Гормоны мозгового слоя надпочечников

Мозговой слой надпочечников вырабатывает гормоны, относящиеся к катехоламинам. Основной гормон – адреналин , вторым по значимости является предшественник адреналина – норадреналин . Хромаффиновые клетки мозгового слоя надпочечников находятся и в других частях организма (на аорте, у места разделения сонных артерий и т. д.), они образуют адреналовую систему организма. Мозговой слой надпочечников – видоизмененный симпатический ганглий.

Значение адреналина и норадреналина

Адреналин выполняет функцию гормона, он поступает в кровь постоянно, при различных состояниях организма (кровопотере, стрессе, мышечной деятельности) происходит увеличение его образования и выделения в кровь.

Возбуждение симпатической нервной системы приводит к повышению поступления в кровь адреналина и норадреналина, они удлиняют эффекты нервных импульсов в симпатической нервной системе. Адреналин влияет на углеродный обмен, ускоряет расщепление гликогена в печени и мышцах, расслабляет бронхиальные мышцы, угнетает моторику ЖКТ и повышает тонус его сфинктеров, повышает возбудимость и сократимость сердечной мышцы. Он повышает тонус кровеносных сосудов, действует сосудорасширяюще на сосуды сердца, легких и головного мозга. Адреналин усиливает работоспособность скелетных мышц.

Повышение активности адреналовой системы происходит под действием различных раздражителей, которые вызывают изменение внутренней среды организма. Адреналин блокирует эти изменения.

Адреналин – гормон короткого периода действия, он быстро разрушается моноаминоксидазой. Это находится в полном соответствии с тонкой и точной центральной регуляцией секреции этого гормона для развития приспособительных и защитных реакций организма.

Норадреналин выполняет функцию медиатора, он входит в состав симпатина – медиатора симпатической нервной системы, он принимает участие в передаче возбуждения в нейронах ЦНС.

Секреторная активность мозгового слоя надпочечников регулируется гипоталамусом, в задней группе его ядер расположены высшие вегетативные центры симпатического отдела. Их активация ведет к увеличению выброса адреналина в кровь. Выделение адреналина может происходить рефлекторно при переохлаждении, мышечной работе и т. д. При гипогликемии рефлекторно повышается выделение адреналина в кровь.

9. Половые гормоны. Менструальный цикл

Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредственно поступают в кровь.

Мужские половые гормоны – андрогены образуются в интерстициальных клетках семенников. Различают два вида андрогенов – тестостерон и андростерон .

Андрогены стимулируют рост и развитие полового аппарата, мужских половых признаков и появление половых рефлексов.

Они контролируют процесс созревания сперматозоидов, способствуют сохранению их двигательной активности, проявлению полового инстинкта и половых поведенческих реакций, увеличивают образование белка, особенно в мышцах, уменьшают содержание жира в организме. При недостаточном количестве андрогена в организме нарушаются процессы торможения в коре больших полушарий.

Женские половые гормоны эстрогены образуются в фолликулах яичника. Синтез эстрогенов осуществляется оболочкой фолликула, прогестерона – желтым телом яичника, которое развивается на месте лопнувшего фолликула.

Эстрогены стимулируют рост матки, влагалища, труб, вызывают разрастание эндометрия, способствуют развитию вторичных женских половых признаков, проявлению половых рефлексов, усиливают сократительную способность матки, повышают ее чувствительность к окситоцину, стимулируют рост и развитие молочных желез.

Прогестерон обеспечивает процесс нормального протекания беременности, способствует разрастанию слизистой эндометрия, имплантации оплодотворенной яйцеклетки в эндометрий, тормозит сократительную способность матки, уменьшает ее чувствительность к окситоцину, тормозит созревание и овуляцию фолликула за счет угнетения образования лютропина гипофиза.

Образование половых гормонов находится под влиянием гонадотропных гормонов гипофиза и пролактина. У мужчин гонадотропный гормон способствует созреванию сперматозоидов, у женщин – росту и развитию фолликула. Лютропин определяет выработку женских и мужских половых гормонов, овуляцию и образование желтого тела. Пролактин стимулирует выработку прогестерона.

Мелатонин тормозит деятельность половых желез.

Нервная система принимает участие в регуляции активности половых желез за счет образования в гипофизе гонадотропных гормонов. ЦНС регулирует протекание полового акта. При изменении функционального состояния ЦНС могут произойти нарушение полового цикла и даже его прекращение.

Менструальный цикл включает четыре периода.

1. Предовуляционный (с пятого по четырнадцатый день). Изменения обусловлены действием фоллитропина, в яичниках происходит усиленное образование эстрогенов, они стимулируют рост матки, разрастание слизистой оболочки и ее желез, ускоряется созревание фолликула, поверхность его разрывается, и из него выходит яйцеклетка – происходит овуляция.

2. Овуляционный (с пятнадцатого по двадцатьвосьмой день). Начинается с выхода яйцеклетки в трубу, сокращение гладкой мускулатуры трубы способствует продвижению ее к матке, здесь может произойти оплодотворение. Оплодотворенное яйцо, попадая в матку, прикрепляется к ее слизистой и наступает беременность. Если оплодотворение не произошло, наступает послеовуляционный период. На месте фолликула развивается желтое тело, оно вырабатывает прогестерон.

3. Послеовуляционный период. Неоплодотворенное яйцо, достигая матки, погибает. Прогестерон уменьшает образование фоллитропина и снижает продукцию эстрогенов. Изменения, возникшие в половых органах женщины исчезают. Параллельно уменьшается образование лютропина, что ведет к атрофии желтого тела. За счет уменьшения эстрогенов матка сокращается, происходит отторжение слизистой оболочки. В дальнейшем происходит ее регенерация.

4. Период покоя и послеовуляционный период продолжаются с первого по пятый день полового цикла.

10. Гормоны плаценты. Понятие о тканевых гормонах и антигормонах

Плацента – уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух групп:

1) белковые – хорионический гонадотропин (ХГ), плацентарный лактогенный гормон (ПЛГ), релаксин ;

2) стероидные – прогестерон, эстрогены .

ХГ образуется в больших количествах через 7-12 недель беременности, в дальнейшем образование гормона снижается в несколько раз, его секреция не контролируется гипофизом и гипоталамусом, его транспорт к плоду ограничен. Функции ХГ – увеличение роста фолликулов, образование желтого тела, стимулирование выработки прогестерона. Защитная функция заключается в способности предотвращать отторжение зародыша организмом матери. ХГ обладает антиаллергическим действием.

ПЛГ начинает секретироваться с шестой недели беременности и прогрессивно увеличивается. Он влияет на молочные железы подобно пролактину гипофиза, на белковый обмен (повышает синтез белка в организме матери). Одновременно возрастает содержание свободных жирных кислот, повышается устойчивость к действию инсулина.

Релаксин секретируется на поздних стадиях развития беременности, расслабляет связки лонного сочленения, снижает тонус матки и ее сократимость.

Прогестерон синтезируется желтым телом до четвертой– шестой недели беременности, в дальнейшем в этот процесс включается плацента, процесс секреции прогрессивно нарастает. Прогестерон вызывает расслабление матки, снижение ее сократимости и чувствительность к эстрогенам и окситоцину, накопление воды и электролитов, особенно внутриклеточного натрия. Эстрогены и прогестерон способствуют росту, растяжению матки, развитию молочных желез и лактации.

Тканевые гормоны – биологически активные вещества, действующие в месте своего образования, не поступающие в кровь. Простагландины образуются в микросомах всех тканей, принимают участие в регуляции секреции пищеварительных соков, изменении тонуса гладких мышц сосудов и бронхов, процесса агрегации тромбоцитов. К тканевым гормонам, регулирующим местное кровообращение, относят гистамин (расширяет сосуды) и серотонин (обладает прессорным действием). Тканевыми гормонами считают медиаторы нервной системы – норадреналин и ацетилхолин.

Антигормоны – вещества, обладающие противогормональной активностью. Их образование происходит при длительном введении гормона в организм извне. Каждый антигормон обладает выраженной видовой специфичностью и блокирует действие того вида гормона, на который выработался. Он появляется в крови спустя 1–3 месяца после введения гормона и исчезает через 3–9 месяцев после последней инъекции гормона.

Внутренней секрецией (инкрецией) называется выделение специализированных биологически активных веществ - гормонов - во внутреннюю среду организма (кровь или лимфу). Термин "гормон" был впервые применен в отношении секретина (гормона 12-п.кишки) Старлингом и Бейлисом в 1902 году. Гормоны отличаются от других биологически активных веществ, например, метаболитов и медиаторов, тем, что они, во-первых, образуются высокоспециализированными инкреторными клетками, во-вторых, тем, что оказывают влияние через внутреннюю среду на отдаленные от железы ткани, т.е. обладают дистантным действием.

Наиболее древней формой регуляции является гуморально-метаболическая (диффузия активных веществ к соседним клеткам). Она в различной форме встречается у всех животных, особенно отчетливо проявляется в эмбриональном периоде. Нервная система по мере своего развития подчинила себе гуморально-метаболическую регуляцию.

Настоящие железы внутренней секреции появились поздно, но на ранних этапах эволюции есть нейросекреция . Нейросекреты - это не медиаторы. Медиаторы являются более простыми соединениями, работают локально в области синапса и быстро разрушаются, а нейросекреты - белковые вещества, расщепляются более медленно и работают на большом расстоянии.

С появлением кровеносной системы нейросекреты стали выделяться в ее полость. Затем возникли специальные образования для накопления и изменения этих секретов (у кольчатых), затем их вид усложнялся и эпителиальные клетки сами стали выделять свои секреты в кровь.

Эндокринные органы имеют самое разное происхождение. Часть из них возникли из органов чувств (эпифиз - из третьего глаза).Другие эндокринные железы образовалась из желез внешней секреции (щитовидная). Бранхиогенные железы образовались из остатков провизорных органов (тимус, паращитовидные железы). Стероидные железы произошли из мезодермы, из стенок целома. Половые гормоны выделяются стенками желез, содержащих половые клетки. таким образом, разные эндокринные органы имеют разное происхождение, но все они возникли как дополнительный способ регуляции. Есть единая нейрогуморальная регуляция, в которой ведущую роль играет нервная система.

Зачем образовалась такая добавка к нервной регуляции? Нервная связь - быстрая, точная, адресована локально. Гормоны - действуют шире, медленнее, дольше. Они обеспечивают длительную реакцию без участия нервной системы, без постоянной импульсации, что неэкономно. Гормоны имеют длительное последействие. Когда требуется быстрая реакция - работает нервная система. Когда требуется более медленная и стойкая реакция на медленные и длительные изменения среды - работают гормоны (весна, осень и т.п.), обеспечивая все адаптивные перестройки в организме, вплоть до полового поведения. У насекомых гормоны полностью обеспечивают весь метаморфоз.

Нервная система действует на железы по следующим путям:

1. Через нейросекреторные волокна вегетативной нервной системы;

2.Через нейросекреты - образование т.н. relising или inhibiting - факторов;

3. Нервная система может менять чувствительность тканей к гормонам.

Гормоны тоже влияют на нервную систему. Есть рецепторы реагирующие на АКТГ, на эстрогены (в матке), гормоны влияют на ВНД (половые), на активность ретикулярной формации и гипоталамуса и т.д. Гормоны оказывают влияние на поведение, мотивации и рефлексы, участвуют в стресс реакции.

Есть рефлексы, в которые в качестве звена включена гормональная часть. Например: холод -- рецептор -- ЦНС -- гипоталамус -- релизинг-фактор -- секреция тиреотропного гормона -- тироксин -- увеличение клеточного метаболизма -- повышение температуры тела.

Нейросекреция . Нейросекрецией называют способность специализированных нервных клеток синтезировать и выделять в кровь и ликвор пептиды, получившие название нейрогормоны. Такой функцией обладают преимущественно нейроны гипоталамуса. Нейросекрет, образующийся в соме клетки, хранится в виде гранул и путем аксонального транспорта переносится либо для складирования в задней доле гипофиза, (вазопрессин и окситоцин), либо через аксовазальные контакты поступает в капилляры портальной вены гипофиза и с током крови переносится в аденогипофиз либо поступают в ликвор (вазопрессин, окситоцин, нейротензин и др.), либо переносятся в другие отделы мозга, где выделяющиеся на аксонах пептиды выполняют роль медиаторов или модуляторов нервных процессов.

Все пептидные нейрогормоны в зависимости от биологических эффектов и органов-мишеней делятся на 3 группы:

1. Висцеро-рецептивные нейрогормоны, обладающие преимущественным действием на висцеральные органы (вазопрессин, окситоцин).

2. Нейрорецептивные нейрогормоны или нейромодуляторы, обладающие выраженными эффектами на функции нервной системы и оказывающие аналгезирующее, седативное, каталептическое, мотивационное, поведенческие и эмоциональное влияния, влияние на память и мышление (эндорфины, энкефалины, нейротензин, вазопрессин и др.).

3. Аденогипофизотропные нейрогормоны, регулирующие деятельность железистых клеток аденогипофиза ((стимуляторы гипофизальных гормонов - либерины и ингибиторы - статины).

Центральная нервная система имеет два пути управления эндокринными органами - прямой (церебро-гландулярный) и опосредованный (церебро-питуитарный (Pituitarium - гипофиз)). Оба эти пути широко используются в организме.

Виды гормональных эффектов .

Гормоны оказывают достаточно широкий круг эффектов на клетки, органы и ткани организма.

1.Метаболический эффект .. Влияние гормонов на обмен веществ осуществляется за счет изменения проницаемости мембраны для субстратов и коферментов, за счет изменения количества, активности и сродства ферментов, через влияние на генетический аппарат.

2.Морфогенетический эффект . Влияние гормонов на процессы формообразования, дифференцировки и роста клеток, метаморфоз. Осуществляется за счет изменения генетического аппарата клеток и обмена веществ, включая поступление, всасывание, транспорт и утилизацию пластических веществ. Примерами может служить влияние соматотропина на рост тела, половых гормонов на развитие

вторичных половых признаков и др.

3.Кинетический эффект. Действие гормонов, запускающее деятельность эффектора, включающее в работу определенный вид деятельности. Например, окситоцин вызывает сокращение мускулатуры матки, тиротропин вызывает синтез и секрецию гормонов щитовидной железы, адреналин вызывает распад гликогена и поступление глюкозы в кровь.

4. Корригирующий эффект . Действие гормонов, изменяющее деятельность органов или процессы, которые происходят и при отсутствии гормона. Разновидностью корригирующего эффекта является нормализующее действие гормонов, когда их влияние направлено на восстановление измененного или нарушенного процесса. Примером корригирующего действия является влияние адреналина на частоту сердечных сокращений, активация окислительных процессов тироксином, уменьшение альдостероном реабсорбции ионов калия.

5.Пермиссивный эффект . Действие гормонов на эффектор, позволяющее проявиться влиянию других регуляторов, в том числе и гормонов. Например, присутствие глюкокортикоидов необходимо для реализации сосудосуживающего эффекта симпатической нервной системы, инсулин и глюкокортикоиды необходимы для реализации метаболических эффектом соматотропина.

Гормональная функция аденогипофиза .

Клетки аденогипофиза (их строение и состав смотрите в курсе гистологии) продуцируют следующие гормоны: соматотропин (гормон роста), пролактин, тиротропин (тиреотропный гормон), фолликулостимулирующий гормон, лютеинизирующий гормон, кортикотропин (АКТГ), меланотропин, бета-эндорфин, диабетогенный пептид, экзофтальмический фактор и гормон роста яичников. Рассмотрим более подробно эффекты некоторых из них.

Кортикотропин . (адренокортикотропный гормон - АКТГ) секретируется аденогипофизом непрерывно пульсирующими вспышками, имеющими четкую суточную ритмичность. Секреция кортикотропина регулируется прямыми и обратными связями. Прямая связь представлена пептидом гипоталамуса - кортиколиберином, усиливающим синтез и секрецию кортикотропина. Обратные связи запускаются содержанием в крови кортизола (гормон коры надпочечников) и за- мыкаются как на уровне гипоталамуса, так и аденогипофиза, причем прирост концентрации кортизола тормозит секрецию кортиколиберина и кортикотропина.

Кортикотропин обладает двумя типами действия - надпочечниковым и вненадпочечниковым. Надпочечниковое действие является основным и заключается в стимуляции секреции глюкокортикоидов, в существенно меньшей степени - минералокортикоидов и андрогенов. Гормон усиливает синтез гормонов в коре надпочечников - стероидогенез и синтез белка, приводя к гипертрофии и гиперплазии коры надпочечников. Вненадпочечниковое действие заключается в липолизе жировой ткани, повышении секреции инсулина, гипогликемии, повышенном отложении меланина с гиперпигментацией.

Избыток кортикотропина сопровождается развитием гиперкортицизма с преимущественным увеличением секреции кортизола и носит название "болезнь Иценко-Кушинга". Основные проявления типичны для избытка глюкокортикоидов: ожирение и другие метаболические сдвиги, падение эффективности механизмов иммунитета, развитие артериальной гипертензии и возможности возникновения диабета. Дефицит кортикотропина вызывает недостаточность глюкокортикоидной функции надпочечников с выраженными метаболическими сдвигами, а также падение устойчивости организма к неблагоприятным условиям среды.

Соматотропин . . Соматотропный гормон обладает широким спектром метаболических эффектов, обеспечивающих морфогенетическое действие. На белковый обмен гормон влияет, усиливая анаболические процессы. Он стимулирует поступление аминокислот в клетки, синтез белка за счет ускорения трансляции и активации синтеза РНК, увеличивает деление клеток и рост тканей, подавляет протеолитические ферменты. Стимулирует включение сульфата в хрящи, тимидина в ДНК, пролина в коллаген, уридина в РНК. Гормон вызывает положительный азотистый баланс. Стимулирует рост эпифизарных хрящей и их замену костной тканью, активируя щелочную фосфатазу.

Действие на углеводный обмен двояко. С одной стороны, соматотропин повышает продукцию инсулина как из-за прямого эффекта на бета клетки, так и из-за вызываемой гормоном гипергликемии, обусловленной распадом гликогена в печени и мышцах. Соматотропин активирует инсулиназу печени - фермент, разрушающий инсулин. С другой стороны, соматотропин оказывает контраинсулярное действие, угнетая утилизацию глюкозы в тканях. Указанное сочетание эффектов при наличии предрасположенности в условиях избыточной секреции может вызывать сахарный диабет, по происхождению называемый гипофизарным.

Действие на жировой обмен заключается в стимуляции липолиза жировой ткани и липолитического эффекта катехоламинов, повышении уровня свободных жирных кислот в крови; из-за избыточного поступления их в печень и окисления повышается образование кетоновых тел. Эти влияния соматотропина также относят к числу диабетогенных.

Если избыток гормона возникает в раннем возрасте, формируется гигантизм с пропорциональным развитием конечностей и туловища. Избыток гормона в юношеском и зрелом возрасте вызывает усиление роста эпифизарных участков костей скелета, зон с незавершенным окостенением, что получило название акромегалия. . Увеличиваются в размерах и внутренние органы - спланхомегалия.

При врожденном дефиците гормона формируется карликовость, получившая название "гипофизарный нанизм". Таких людей после выхода в свет романа Дж. Свифта о Гулливере называют в разговорной речи лилипутами. В других случаях приобретенный дефицит гормона вызывает не резко выраженное отставание в росте.

Пролактин . Секреция пролактина регулируется гипоталамическими пептидами - ингибитором пролактиностатином и стимулятором пролактолиберином. Продукция гипоталамических нейропептидов находится под дофаминэргическим контролем. На величину секреции пролактина влияет уровень в крови эстрогенов, глюкокортикоидов

и тиреоидных гормонов.

Пролактин специфически стимулирует развитие молочных желез и лактацию, но не его выделение, которое стимулируется окситоцином.

Помимо молочных желез, пролактин оказывает влияние на половые железы, способствуя поддержанию секреторной активности желтого тела и образованию прогестерона. Пролактин является регулятором водно-солевого обмена, уменьшая экскрецию воды и электролитов, потенцирует эффекты вазопрессина и альдостерона, стимулирует рост внутренних органов, эритропоэз, способствует проявлению инстинкта материнства. Помимо усиления синтеза белка, увеличивает образование жира из углеводов, способствуя послеродовому ожирению.

Меланотропин . . Образуется в клетках промежуточной доли гипофиза. Продукция меланотропина регулируется меланолиберином гипоталамуса. Основной эффект гормона заключается в действии на меланоциты кожи, где он вызывает депрессию пигмента в отростках, увеличение свободного пигмента в эпидермисе, окружающем меланоциты, повышение синтеза меланина. Увеличивает пигментацию кожи и волос.

Вазопрессин . . Образуется в клетках супраоптического и паравентрикулярного ядер гипоталамуса и накапливается в нейрогипофизе. Основные стимулы, регулирующие синтез вазопрессина в гипоталамусе и его секрецию в кровь гипофизом в общем могут быть названы осмотическими. Они представлены: а) повышением осмотического давления плазмы крови и стимуляцией осморецепторов сосудов и нейронов-осморецепторов гипоталамуса; б) повышением в крови содержания натрия и стимуляцией гипоталамических нейронов, выполняющих роль рецепторов натрия; в) уменьшением центрального объема циркулирующей крови и артериального давления, воспринимаемыми волюморецепторами сердца и механорецепторами сосудов;

г) эмоционально-болевым стрессом и физической нагрузкой; д) активацией ренин- ангиотензиновой системы и стимулирующим нейросекреторные нейроны влиянием ангиотензина.

Эффекты вазопрессина реализуются за счет связывания гормона в тканях с двумя типами рецепторов. Связывание с рецепторами Y1-типа, преимущественно локализованными в стенке кровеносных сосудов, через вторичные посредники инозитолтрифосфат и кальций вызывает сосудистый спазм, что способствует названию гормона - "вазопрессин". Связывание с рецепторами Y2-типа в дистальных отделах нефрона через вторичный посредник ц-АМФ обеспечивает повышение проницаемости собирательных трубочек нефрона для воды, ее реабсорбцию и концентрацию мочи, что соответствует второму названию вазопрессина - "антидиуретический гормон, АДГ".

Кроме действия на почку и кровеносные сосуды, вазопрессин является одним из важных мозговых нейропептидов, участвующим в формировании жажды и питьевого поведения, механизмах памяти, регуляции секреции аденогипофизарных гормонов.

Недостаток или даже полное отсутствие секреции вазопрессина проявляется в виде резкого усиления диуреза с выделением большого количества гипотонической мочи. Этот синдром получил называние "несахарный диабет ", он бывает врожденным или приобретенным. Синдром избытка вазопрессина (синдром Пархона) проявляется

в чрезмерной задержке жидкости в организме.

Окситоцин . Синтез окситоцина в паравентрикулярных ядрах гипоталамуса и выделение его в кровь из нейрогипофиза стимулируется рефлекторным путем при раздражении рецепторов растяжения шейки матки и рецепторов молочных желез. Повышают секрецию окситоцина эстрогены.

Окситоцин вызывает следующие эффекты: а) стимулирует сокращение гладкой мускулатуры матки, способствуя родам; б) вызывает сокращение гладкомышечных клеток выводных протоков лактирующей молочной железы, обеспечивая выброс молока; в) оказывает при определенных условиях диуретическое и натриуретическое действие; г) участвует в организации питьевого и пищевого поведения; д) является дополнительным фактором регуляции секреции аденогипофизарных гормонов.

Гормональная функция надпочечников .

Минералокортикоиды секретируются в клубочковой зоне коры надпочечников. Основным минералокортикоидом является альдостерон .. Этот гормон участвует в регуляции обмена солей и воды между внутренней и внешней средой, преимущественно воздействуя на канальцевый аппарат почек, а также потовые и слюнные железы, слизистую оболочку кишечника. Действуя на клеточные мембраны сосудистой сети и тканей, гормон обеспечивает также регуляцию обмена натрия, калия и воды между внеклеточной и внутриклеточной средой.

Основные эффекты альдостерона в почках - усиление реабсорбции натрия в дистальных отделах канальцев с его задержкой в организме и повышение экскреции калия с мочой с падением содержания катиона в организме. Под влиянием альдостерона происходит задержка в организме хлоридов, воды, усиленное выведение водородных ионов, аммония, кальция и магния. Увеличивается объем циркулирующей крови, формируется сдвиг кислотно-щелочного равновесия в сторону алкалоза. Альдостерон может оказывать глюкокортикоидное действие, однако оно в 3 раза слабее, чем у кортизола и в физиологических условиях не проявляется.

Минералокортикоиды являются жизненно важными гормонами, так как гибель организма после удаления надпочечников можно предотвратить, вводя гормоны извне. Минералокортикоиды усиливают воспаление, почему их называют иногда противовоспалительными гормонами.

Основным регулятором образования и секреции альдостерона является ангиотензин-II, что позволило считать альдостерон частью ренин-ангиотензин- альдостероновой системы (РААС), обеспечивающей регуляцию водно-солевого и гемодинамического гомеостаза. Звено обратной связи регуляции секреции альдостерона реализуется при изменении уровня калия и натрия в крови, а такжеобъема крови и внеклеточной жидкости, содержания натрия в моче дистальных канальцев.

Избыточная продукция альдостерона - альдостеронизм - может быть первичный и вторичный. При первичном альдостеронизме надпочечник из-за гиперплазии или опухоли клубочковой зоны (синдром Кона) продуцирует повышенные количества гормона, что ведет к задержке в организме натрия, воды, отекам и артериальной гипертензии, потере калия и водородных ионов через почки, алкалозу и сдвигам возбудимости миокарда и нервной системы. Вторичный альдостеронизм есть результат избыточного образования ангиотензина-II и повышенной стимуляции надпочечников.

Недостаток альдостерона при повреждении надпочечника патологическим процессом редко бывает изолированным, чаще сочетается с дефицитом и других гормонов коркового вещества. Ведущие нарушения отмечаются со стороны сердечно- сосудистой и нервной систем, что связано с угнетением возбудимости,

уменьшением ОЦК и сдвигами электролитного баланса.

Глюкокортикоиды (кортизол и кортикостерон ) оказывают влияние на все виды обмена.

На белковый обмен гормоны оказывают в основном катаболический и антианаболический эффекты, вызывают отрицательный азотистый баланс. распад белка происходит в мышечной, соединительной костной ткани, падет уровень альбумина в крови. Снижается проницаемость клеточных мембран для аминокислот.

Эффекты кортизола на жировой обмен обусловлены сочетанием прямых и опосредованных влияний. Синтез жира из углеводов самим кортизолом подавляется, но благодаря вызываемой глюкокортикоидами гипергликемии и повышению секреции инсулина происходит усиление образования жира. Жир откладывается в

верхней части туловища, на шее и на лице.

Эффекты на углеводный обмен в общем противоположны инсулину, почему глюкокортикоиды и называют контраинсулярными гормонами. Под влиянием кортизола возникает гипергликемия из-за: 1) усиленного образования углеводов из аминокислот путем глюконеогенеза; 2) подавления утилизации глюкозы тканями. Следствием гипергликемии являются глюкозурия и стимуляция секреции инсулина. Снижение чувствительности клеток к инсулину в совокупности с контраинсулярным и катаболическим эффектами может вести к развитию стероидного сахарного диабета.

Системные эффекты кортизола проявляются в виде снижения количества в крови лимфоцитов, эозинофилов и базофилов, увеличении нейтрофилов и эритроцитов, повышении сенсорной чувствительности и возбудимости нервной системы, увеличении чувствительности адренорецепторов к действию катехоламинов, поддержании оптимального функционального состояния и регуляции сердечно- сосудистой системы. Глюкокортикоиды повышают устойчивость организма к действию чрезмерных раздражителей и подавляют воспаление и аллергические реакции, почему из называют адаптивными и противовоспалительными гормонами.

Избыток глюкокортикоидов, не связанный с повышенной секрецией кортикотропина, получил название синдрома Иценко-Кушинга . Его основные проявления близки болезни Иценко-Кушинга, однако, благодаря обратной связи, секреция кортикотропина и его уровень в крови существенно снижены. Мышечная слабость, склонность к сахарному диабету, гипертензия и нарушения половой сферы, лимфопения, пептические язвы желудка, изменения психики - вот далеко не полный перечень симптомов гиперкортицизма.

Дефицит глюкокортикоидов вызывает гипогликемию, снижение сопротивляемости организма, нейтропению, эозинофилию и лимфоцитоз, нарушение адренореактив-ности и деятельности сердца, гипотензию.

Катехоламины - гормоны мозгового вещества надпочечников, представлены адреналином и норадреналином , которые секретируются в отношении 6:1.

Основными метаболическими эффектами. адреналина являются: усиление расщепления гликогена в печени и мышцах (гликогенолиз) за счет активации фосфорилазы, подавление синтеза гликогена, подавление потребления глюкозы тканями, гипергликемия, усиление потребления кислорода тканями и окислительных процессов в них, активация распада и мобилизация жира и его окисление.

Функциональные эффекты катехоламинов. зависят от преобладания в тканях одного из типов адренорецепторов (альфа или бета). Для адреналина основные функциональные эффекты проявляются в виде: учащения и усиления сердечных сокращений, улучшении проведения возбуждения в сердце, сужения сосудов кожи и органов брюшной полости; повышения теплообразования в тканях, ослабления сокращений желудка и кишечника, расслаблении бронхиальной мускулатуры, расширении зрачков, уменьшении клубочковой фильтрации и образования мочи, стимуляции секреции ренина почкой. Таким образом, адреналин вызывает улучшение взаимодействия организма с внешней средой, повышает работоспособность в чрезвычайных условиях. Адреналин является гормоном срочной (аварийной) адаптации.

Выделение катехоламинов регулируется нервной системой через симпатические волокна, проходящие в составе чревного нерва. Нервные центры, регулирующие секреторную функцию хромаффинной ткани, расположены в гипоталамусе.

Гормональная функция щитовидной железы .

Гормонами щитовидной железы являются трийодтиронин и тетрайодтиронин (тироксин ). Основным регулятором их выделения является гормон аденогипофиза тиротропин. Кроме того, существует прямая нервная регуляция щитовидной железы через симпатические нервы. Обратная связь осуществляется уровнем гормонов в крови и замыкается как в гипоталамусе, так и в гипофизе. Интенсивность секреции тиреоидных гормонов влияет на объем их синтеза в самой железе (местная обратная связь).

Основными метаболическими эффектами. тиреоидных гормонов являются: повышение поглощения кислорода клетками и митохондриями, активация окислительных процессов и повышение основного обмена, стимуляция синтеза белка за счет повышения проницаемости мембран клетки для аминокислот и активации генетического аппарата клетки, липолитический эффект, активация синтеза и экскреции холестерина с желчью, активация распада гликогена, гипергликемия, повышение потребления глюкозы тканями, повышение всасывания глюкозы в кишечнике, активация инсулиназы печени и ускорение инактивации инсулина, стимуляция секреции инсулина за счет гипергликемии.

Основными функциональными эффектами гормонов щитовидной железы являются: обеспечение нормальных процессов роста, развития и дифференцировки тканей и органов, активация симпатических эффектов за счет уменьшения распада медиатора, образования катехоламиноподобных метаболитов и повышения чувствительности адренорецепторов (тахикардия, потливость, спазм сосудов и др.), повышение теплообразования и температуры тела, активация ВНД и повышение возбудимости ЦНС, повышение энергетической эффективности митохондрий и сократимости миокарда, протекторный эффект по отношению к развитию повреждений миокарда и язвообразованию в желудке при стрессе, увеличение почечного кровотока, клубочковой фильтрации и диуреза, стимуляция процессов регенерации и заживления, обеспечение нормальной репродуктивной деятельности.

Повышенная секреция тиреоидных гормонов является проявлением гиперфункции щитовидной железы - гипертиреоза. При этом отмечаются характерные изменения обмена веществ (повышение основного обмена, гипергликемия, похудание и др.), симптомы избыточности симпатических эффектов (тахикардия, повышенная потливость, повышенная возбудимость, повышение АД и др.). Может

развиваться диабет.

Врожденная недостаточность тиреоидных гормонов нарушает рост, развитие и дифференцировку скелета, тканей и органов, в том числе и нервной системы (возникает умственная отсталость). Эта врожденная патология получила название "кретинизм". Приобретенная недостаточность щитовидной железы или гипотиреоз проявляются в замедлении окислительных процессов, снижении основного обмена, гипогликемии, перерождении подкожно-жировой клетчатки и кожи с накоплением глюкозаминогликанов и воды. Снижается возбудимость ЦНС, ослабляются симпатические эффекты и теплопродукция. Комплекс таких нарушений носит название "микседема", т.е. слизистый отек.

Кальцитонин - образуется в парафолликулярных К-клетках щитовидной железы. Органы-мишени для кальцитонина - кости, почки и кишечник. Кальцитонин снижает уровень кальция в крови, благодаря облегчению минерализации и подавлению резорбции костной ткани. Уменьшает реабсорбцию кальция и фосфата в почках. Кальцитонин тормозит секрецию гастрина в желудке и снижает кислотность желудочного сока. Секреция кальцитонина стимулируется повышением уровня Са++ в крови и гастрином.

Гормональные функции поджелудочной железы .

Сахаро-регулирующими гормонами, т.е. влияющими на содержание сахара в крови и углеводный обмен, являются многие гормоны желез внутренней секреции. Но наиболее выраженные и мощные эффекты оказывают гормоны островков Лангерганса поджелудочной железы - инсулин и глюкагон . Первый из них может быть назван гипогликемическим, так как снижает уровень сахара в крови, а второй - гипергликемическим.

Инсулин оказывает мощное влияние на все виды обмена веществ. Действие его на углеводный обмен в основном проявляется следующими эффектами: он повышает проницаемость клеточных мембран в мышцах и жировой ткани для глюкозы, активирует и увеличивает содержание ферментов в клетках, усиливает утилизацию глюкозы клетками, активирует процессы фосфорилирования, подавляет распад и стимулирует синтеза гликогена, угнетает глюконеогенез, активирует гликолиз.

Основные эффекты инсулина на белковый обмен: повышение проницаемости мембран для аминокислот, усиление синтеза необходимых для образования белков

нуклеиновых кислот, прежде всего иРНК, активация в печени синтеза аминокислот, активация синтеза и подавление распада белков.

Основные эффекты инсулина на жировой обмен: стимуляция синтеза свободных жирных кислот из глюкозы, стимуляция синтеза триглицеридов, подавление распада жира, активация окисления кетоновых тел в печени.

Глюкагон вызывает следующие основные эффекты: активирует гликогенолиз в печени и мышцах, вызывает гипергликемию, активирует глюконеогенез, липолиз и подавление синтеза жира, повышает синтез кетоновых тел в печени, стимулирует катаболизм белков в печени, увеличивает синтез мочевины.

Основным регулятором секреции инсулина является D-глюкоза притекающей крови, активирующая в бета клетках специфический пул цАМФ и через этот посредник приводящая к стимуляции выброса инсулина из секреторных гранул. Усиливает ответ бета клеток на действие глюкозы гормон кишечника- желудочный ингибиторный пептид (ЖИП). Через неспецифический, независимый от глюкозы пул цАМФ стимулируют секрецию инсулина и ионы СА++. В регуляции секреции инсулина определенную роль играет и нервная система, в частности, блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и катехоламины через альфа-адренорецепторы подавляют секрецию инсулина и стимулируют секрецию глюкагона.

Специфическим ингибитором продукции инсулина является гормон дельта- клеток островков Лангерганса - соматостатин . Этот гормон образуется также и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную реакцию бета клеток на глюкозный стимул.

Секреция глюкагона стимулируется при снижении уровня глюкозы в крови, под влиянием гормонов ЖКТ (ЖИП, гастрин, секретин, панкреозимин- холецистокинин) и при уменьшении содержания ионов СА++, а угнетается - инсулином, соматостатином, глюкозой и кальцием.

Абсолютный или относительный по отношению к глюкагону недостаток инсулина проявляется в виде сахарного диабета.. При этом заболевании происходят глубокие расстройства обмена веществ и, если инсулиновую активность не восстанавливать искусственно извне, может наступить гибель. Для сахарного диабета характерны гипогликемия, глюкозурия, полиурия, жажда, постоянное чувство голода, кетонемия, ацидоз, слабость иммунитета, недостаточность кровообращения и многие другие нарушения. Крайне тяжелым проявлением сахарного диабета является диабетическая кома.

Паращитовидные железы .

Паращитовидные железы секретируют паратгормо н , который, действуя на три основных органа мишени (кости, почку и кишечник), через цАМФ вызывает гиперкальциемию, гиперфосфатемию и гиперфосфатурию. Эффект паратгормона на костную ткань обусловлен стимуляцией и увеличением количества остеокластов, резорбирующих кость, а также образованием избытка лимонной и молочных кислот, закисляющих среду. При этом тормозится активность щелочной фосфатазы - фермента, необходимого для образования основного минерального вещества кости - фосфорнокислого кальция. Избыток лимонной и молочной кислот ведет к образованию растворимых солей кальция, вымыванию их в кровь и деминерализации костной ткани.

В почках паратгормон снижает реабсорбцию кальция в проксимальных канальцах, но резко стимулирует обратное всасывание кальция в дистальных канальцах, что предотвращает потери кальция с мочой. Реабсорбция фосфата угнетается и в проксимальном и дистальном отделах нефрона, что вызывает фосфатурию. Кроме того, паратгормон вызывает диуретический и натрийуретический эффекты.

В кишечнике паратгормон активирует всасывание кальция. Во многих других тканях паратгормон стимулирует поступление кальция в кровь, транспорт Са++ из цитозоля во внутриклеточные депо и удаление его из клетки. Кроме того, паратгормон стимулирует секрецию кислоты и пепсина в желудке.

Основным регулятором секреции паратгормона является уровень ионизированного кальция (Са++) во внеклеточной среде. Низкая концентрация кальция стимулирует секрецию гормона, которая связана с повышением содержания цАМФ в клетках паращитовидных желез. Поэтому стимулируют секрецию паратгормона и катехоламины через бета адренорецепторы. Подавляют секрецию высокий уровень Са++ и кальцитрио л (активный метаболит витамина D).

Повышенная секреция паратгормона при гиперплазии или аденоме околощитовидных желез сопровождается деминерализацией скелета и деформацией длинных трубчатых костей, снижением плотности костной ткани при рентгенографии, образованием почечных камней, мышечной слабостью, депрессией, нарушениями памяти и концентрации внимания.

Гормональная функция эпифиза .

В эпифизе (шишковидной железе) образуется мелатонин , являющийся производным триптофана. Синтез мелатонина зависит от освещенности, т.к. избыток света тормозит его образование. Непосредственным стимулятором-посредником синтеза и секреции мелатонина является норадреналин, выделяющийся симпатическими нервными окончаниями на клетках эпифиза. Путь регуляции секреции начинается от сетчатки глаза ретино-гипоталамическим трактом, из межуточного мозга по преганглионарным волокнам в верхний шейный симпатический ганглий, откуда отростки постганглионарных клеток доходят до эпифиза. Таким образом, снижение освещенности повышает выделение норадреналина и секрецию мелатонина. У человека на ночные часы приходится 70% суточной продукции мелатонина.

Адренергический контроль секреции мелатонина возможен и непосредственно со стороны гипоталамических структур, что находит отражение в стимуляции секреции мелатонина при стрессе.

Основной физиологический эффект мелатонина заключается в торможении секреции гонадотропинов как на уровне нейросекреции либеринов гипоталамуса, так и на уровне аденогипофиза. Действие мелатонина реализуется через ликвор и кровь. Помимо гонадотропинов под влиянием мелатонина в меньшей степени снижается секреция и других гормонов аденогипофиза - кортикотропина и соматотропина.

Секреция мелатонина подчинена четкому суточному ритму, определяющему ритмичность гонадотропных эффектов и половой функции. Деятельность эпифиза нередко называют "биологическими часами" организма, т.к. железа обеспечивает процессы временной адаптации организма. Введение мелатонина человеку вызывает

легкую эйфорию и сон.

Гормональная функция половых желез .

Мужские половые гормоны .

Мужские половые гормоны - андрогены - образуются в клетках Лейдига семенников из холестерола. Основным андрогеном человека является тестостерон . . Небольшие количества андрогенов образуются в коре надпочечников.

Тестостерон оказывает широкий спектр метаболических и физиологических эффектов: обеспечение процессов дифференцировки в эмбриогенезе и развития первичных и вторичных половых признаков, формирование структур ЦНС, обеспечивающих половое поведение и половые функции, генерализованное анаболическое действие, обеспечивающее рост скелета, мускулатуры, распределение подкожного жира, обеспечение сперматогенеза, задержку в организме азота, калия, фосфата, активацию синтеза РНК, стимуляцию эритропоэза.

Андрогены в небольших количествах образуются и в женском организме, являясь не только предшественниками синтеза эстрогенов, но и поддерживая половое влечение, а также стимулируя рост волос на лобке и в подмышечных впадинах.

Женские половые гормоны .

Секреция этих гормонов (эстрогенов ) тесно связана с женским половым циклом . Женский половой цикл обеспечивает четкую интеграцию во времени различных процессов, необходимых для осуществления репродуктивной функции - периодическую подготовку эндометрия к имплантации эмбриона, созревание яйцеклетки и овуляцию, изменение вторичных половых признаков и др. Координация этих процессов обеспечивается колебаниями секреции ряда гормонов, прежде всего гонадотропинов и половых стероидов. Секреция гонадотропинов осуществляется как "тонически", т.е. непрерывно, так и "циклически", с периодическим выбросом больших количеств фолликулина и лютеотропина в середине цикла.

Половой цикл длится 27-28 дней и делится на четыре периоды:

1) предовуляционный - период подготовки к беременности, матка в это время увеличивается в размерах, слизистая оболочка и ее железы разрастаются, усиливаются и учащается сокращение маточных труб и мышечного слоя матки, разрастается и слизистая оболочка влагалища;

2) овуляционный - начинается с разрыва пузырчатого яичникового фолликула, выхода из него яйцеклетки и продвижения ее по маточной трубе в полость матки. В этот период обычно наступает оплодотворение, половой цикл прерывается и наступает беременность;

3) послеовуляционный - у женщин в этот период появляется менструация, неоплодотворенная яйцеклетка, оставшаяся в матке несколько дней живой, погибает, нарастают тонические сокращения мускулатуры матки, приводящие к отторжению ее слизистой оболочки и выходу обрывков слизистой вместе с кровью.

4) период покоя - наступает после завершения послеовуляционного периода.

Гормональные сдвиги в течение полового цикла сопровождаются следующими перестройками. В предовуляционном периоде сначала происходит постепенно нарастание секреции фоллитропина аденогипофизом. Созревающий фолликул вырабатывает все большее количество эстрогенов, что по обратной связи начинает снижать продукцию фоллинотропина. Повышающийся уровень лютропина ведет к стимуляции синтеза ферментов, приводящих к истончению стенки фолликула, необходимой для овуляции.

В овуляционном периоде происходит резкий всплеск уровня в крови лютропина, фоллитропина и эстрогенов.

В начальной фазе постовуляционного периода происходит кратковременное падение и уровня гонадотропинов и эстрадиола , разорванный фолликул начинает заполняться лютеальными клетками, образуются новые кровеносные сосуды. Нарастает продукция прогестерона образующимся желтым телом, повышается секреция эстрадиола другими созревающими фолликулами. Создающийся уровень прогестерона и эстрогенов по обратной связи подавляет секрецию фоллотропина и лютеотропина. Начинается дегенерация желтого тела, падает в крови уровень прогестерона и эстрогенов. В секреторном эпителии без стероидной стимуляции возникают геморрагические и дегенеративные изменения, что приводит к кровотечению, отторжению слизистой, сокращению матки, т.е. к менструации.

Гормональная функция плаценты . . Плацента настолько тесно функционально связана с плодом, что принято использовать термин "фетоплацентарный комплекс". Так, например, синтез в плаценте эстриола происходит из предшественника дегидроэпиандростерона, образуемого надпочечниками плода. По экскреции матерью эстриола даже можно судить о жизнеспособности плода.

В плаценте образуется прогестерон , эффект которого преимущественно местный. Именно с плацентарным прогестероном связан временной интервал между рождениями плодов при двойне.

Одним из основных плацентарных гормонов является хорионический гонадотропин , оказывающий эффект не только на процессы дифференцировки и развития плода, но и на процессы метаболизма в организме матери. Хорионический гонадотропин обеспечивает в организме матери задержку солей и воды, стимулирует секрецию вазопрессина и сам обладает антидиуретическими свойствами, активирует механизмы иммунитета.