Нужно ли нам супер-зрение? Аберрации глаза

Г.Б. Егорова, Н.В. Бородина, И.А. Бубнова
ГУ НИИ глазных болезней РАМН

This article is devoted to the new technology, «new diagnostic tool» –non–invasive wavefront sensing of the human eye, which can provide ophthalmologists with precise measurement of both higher– and lower–order aberrations. It describes most wide–spread types of wavefront systems, which use different principles in there functioning. Many factors, such as age of patient, accommodation, tear film break–up may cause the changes in wavefront map. Also higher order aberrations can be increased, by wearing soft or rigid contact lenses. Refractive and cataract surgery may induce large amount of higher order aberrations, which determine the cause the lower BCVA, than we can expect. This article describes different possible ways of correction higher order aberrations.

Современный мир предъявляет высокие требования к здоровью человека, и в первую очередь к зрению, так как основной объем информации поступает через зрительный анализатор. Для выполнения качественной и быстрой интеллектуальной работы специалист должен не только иметь хорошую остроту зрения, но удовлетворительную зрительную работоспособность, которая зависит от качества поступающего в головной мозг изображения.

Как и любой «неидеальной» оптической системе, человеческому глазу свойственны оптические дефекты – аберрации, которые снижают качество зрения, искажая изображение на сетчатке. Аберрация – это любое угловое отклонение узкого параллельного пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через всю оптическую систему глаза .

В технической оптике качество оптической системы определяется аберрациями плоского или сферического фронта световой волны при прохождении через эту систему . Так, глаз без аберраций имеет плоский волновой фронт и дает наиболее полноценное изображение на сетчатке точечного источника (так называемый «диск Эйри», размер которого зависит только от диаметра зрачка) . Но в норме, даже при остроте зрения 100%, оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным. Такое искажение называется «функцией светорассеяния изображения точки» .

Количественной характеристикой оптического качества изображения является среднеквадратичное значение ошибок отклонения реального волнового фронта от идеального . Zernike ввел математический формализм, использующий серии полиномов для описания аберраций волнового фронта . Полиномы первого и второго, т. е. низших порядков, описывают привычные для офтальмологов оптические аберрации – дефокусировку (аметропии), астигматизм. Менее известны полиномы высших порядков: третий соответствует коме – это сферическая аберрация косых пучков света, падающих под углом к оптической оси глаза. В ее основе лежит асимметрия оптических элементов глаза, в результате которой центр роговицы не совпадает с центром хрусталика и фовеолы. К аберрациям четвертого порядка относится сферическая аберрация, которая в основном обусловлена тем, что периферия хрусталика преломляет падающие на нее параллельные лучи сильнее центра. Более высокие порядки известны, как нерегулярные аберрации .

Кроме того, сама полихроматическая природа света обусловливает появление аберраций: лучи разной длины волны фокусируются на разном расстоянии от сетчатки (коротковолновые – ближе к роговице, чем длинноволновые). Такие аберрации называют хроматическими .

Оптическая система считается хорошей, если коэффициенты Цернике близки к нулю и, следовательно, среднеквадратичное значение ошибок волнового фронта меньше 1/14 длины волны (критерий Марешаля) . При известных волновых аберрациях можно рассчитать коэффициент Штреля (соотношение между пиком интенсивности функции светорассеяния изображения точки определенного глаза и глаза без аберраций), который в определенных условиях хорошо коррелирует с остротой зрения . Исходя из данных этого коэффициента можно прогнозировать остроту зрения, моделируя изображение любых оптотипов на сетчатке.

Вопрос разработки методов качественной и количественной оценки аберраций стоял перед офтальмологами давно. Еще в конце 19 века, в 1894 году, Tscherning разработал оригинальный метод, основанный на субъективном определении аберраций . В дальнейшем он был доработан Howland в 1960 году, а в 1989 аберроскопом такого типа пользовался Ю.З. Розенблюм . Но, к сожалению, такая аберрометрия носит только описательный характер, требует активного участия пациента и является весьма трудоемкой процедурой. С приходом в офтальмологию новых технологий появился широкий спектр точных объе ктивных методов как качественного, так (и что особенно важно) количественного способа оценки аберраций глаза.

В настоящее время известно несколько методов определения аберраций глаза, основанных на разных принципах. Первый из них – это анализ ретинального изображения мишени (retinal imaging aberrometry), реализованный в двух вариантах. В усовершенствованном аберрометре Tscherning в качестве источника параллельных лучей используется YAG–лазер с длиной волны 532 нм, луч которого, пройдя через коллиматор, приобретает параллельное направление и проецирует на сетчатку решетку из 168 точек, расположенных в форме квадрата. Ретинальное изображение этой решетки регистрируется цифровой камерой и обрабатывается на компьютере . При аберрометрии по отслеживанию луча (ray tracing aberrometry) используется прибор, разработанный В.В. и В.С. Молебными совместно с И. Паликарисом. На сетчатку проецируются два параллельных лазерных луча с длиной волны 650 нм и диаметром 0,3 мм, один из которых падает строго по зрительной оси и является опорным, а другой расположен на заданном расстоянии от него. Далее регистрируется степень отклонения второго луча от точки фиксации опорного луча, и таким образом последовательно анализируется каждая точка в пределах зрачка .

Второй принцип – анализ вышедшего из глаза отраженного луча (outgoing refraction aberrometry) – впервые был описан Hartmann в 1900 году, позднее модифицирован R.V. Shack и B.C. Platt в 1971 году и применялся в астрономии для компенсации аберраций в телескопах при прохождении через атмосферу и космическое пространство. С помощью диодного лазера с длиной волны 850 нм в глаз направляется коллимированный пучок излучения, который, пройдя через все среды глаза, отражается от сетчатки с учетом аберраций и на выходе попадает на матрицу, состоящую из 1089 микролинз. Каждая микролинза собирает неаберрированные лучи в своей фокальной точке, а подверженные аберрации лучи фокусируются на некотором расстоянии от нее. Полученная информация обрабатывается компьютером и представляется в виде карты аберраций .

Третий принцип основан на компенсаторной юстировке падающего на фовеолу светового пучка. Основоположником его был русский физик М.И. Смирнов, который изобрел простейший метод измерения аберраций и опубликовал свою работу в 1961 году. В дальнейшем он был усовершенствован и в настоящее время применяется в качестве субъективного аберрометра, требующего активного участия пациента. В ходе исследования через вращающийся диск с отверстиями 1 мм, расположенный на одной оптической оси со зрачком, в глаз направляется пучок света. При вращении диска узкие параллельные пучки света проходят через каждую точку зрачка и при отсутствии аберраций проецируются на фовеолу, куда направлен другой луч с контрольной меткой в виде крестика. Если у пациента имеется аметропия или другие аберрации более высоких порядков, то он заметит несовпадение этих точек с крестиком и с помощью специального устройства должен будет их сопоставить. Угол, на который он смещает точку, отражает степень аберраций .

Принцип классической скиаскопии реализован в виде сканирующего щелевого рефрактометра «OPD Scan», в котором через вращающееся колесо с щелью по оптической оси глаза проецируется инфракрасный пучок. Его отражение воспринимает фотодетектор и оценивает направление и скорость движения отраженного от сетчатки луча .

Разнообразие офтальмологических приборов, созданных с учетом новейших технологий и основанных на различных принципах действия, делает реальным не только качественную, но и количественную оценку аберрации низших и высших порядков, а также влияющих на них факторов.

Выявлено, что аберрации оптической системы глаза зависят от формы и прозрачности роговицы и хрусталика; локализации патологических изменений в сетчатке; прозрачности внутриглазной жидкости и стекловидного тела .

Известно, что увеличение диаметра зрачка вносит изменения в соотношение аберраций высших порядков. Если при диаметре зрачка равном 5,0 мм превалируют аберрации 3–го порядка, то при его увеличении до 8,0 мм возрастает доля аберраций 4–го порядка. Рассчитано, что критический размер зрачка, при котором аберрации высших порядков оказывают наименьшее влияние и отвечают критерию Марешаля, составляет 3,22 мм .

Несомненно воздействие на карту аберраций аккомодации. Отмечено, что с возрастом аберрации увеличиваются, и в период от 30 до 60 лет аберрации высшего порядка удваиваются. Возможно, это связано с тем, что со временем эластичность и прозрачность хрусталика уменьшается, и он перестает компенсировать роговичные аберрации .

К факторам, влияющим на аберрации, относится и состояние слезной пленки. Авторами обнаружено, что при разрушении слезной пленки аберрации высших порядков увеличиваются в 1,44 раза .

Значительное место в использовании волнового фронта занимают исследования аберраций при кератоконусе. Отмечено значительное увеличение аберраций, особенно кома–подобных, которые превышали в 2,3 раза уровень сферических аберраций . Метод волнового фронта дает возможность создания «индивидуальной оптики» – контактной линзы (КЛ) для коррекции кератоконуса. «Индивидуальная оптика» предназначена для коррекции аберраций высшего порядка. Алгоритм дизайна КЛ разрабатывается на основе данных волнового фронта и компьютерной топографии роговицы .

Некоторые исследователи отмечают появление аберраций, индуцированных КЛ. Так, выявлено, что мягкие КЛ могут вызывать волновые монохроматические аберрации высокого порядка, тогда как жесткие КЛ значительно уменьшают аберрации 2–го порядка. Однако асферичность поверхности жестких КЛ может быть причиной сферических аберраций. Асферические КЛ могут вызывать большую нестабильность остроты зрения, чем сферические КЛ при одной и той же подвижности за счет индуцирования аберраций . Мультифокальные КЛ могут индуцировать аберрации по типу комы и 5–го порядка .

Использование волнового фронта позволило разработать методы изготовления КЛ с целью максимальной нейтрализации аберраций глаза. Однако ротация и изменение положения линзы на роговице ограничивают возможности компенсации аберраций [ 16, 22, 29].

Исследования аберраций индуцированных КЛ открыли возможность изготовления линз определенного дизайна, который позволяет снизить уровень суммарных остаточных аберраций глаза и повысить контрастную чувствительность .

Несомненным является тот факт, что практически любое хирургические вмешательство индуцирует аберрации высших и низших порядков. Так, фоторефракционные операции увеличивают аберрации роговицы (в основном 3–го и 4–го порядка) и изменяют их соотношение, что может обусловливать низкое зрение после операции и появление жалоб у пациентов на ослепление и двоение изображения . Выявлена строгая корреляция между зрительными симптомами и аберрациями: монокулярная диплопия возникает при горизонтальной коме, а глэр–эффект – при сферических аберрациях . Проведенные исследования показывают, что при диаметре зрачка, превышающем 7,0 мм, Laser in situ keratomileusis (LASIK) индуцирует больше сферических аберраций, чем фоторефрактивная кератэктомия (ФРК). Вероятно, этим можно объяснить, что после проведенного LASIK описывается большее количество жалоб пациентов, связанных с ослеплением, чем после ФРК .

В настоящее время разработана методика проведения индивидуализированной абляции на основе аберрометрии, которая позволяет достичь так называемого «суперзрения», т.е. остроты зрения 1,5 и более. Множество факторов могут ограничивать возможности данной методики. Во–первых, это постоянные динамические изменения параметров глаза, зависящие от тонуса аккомодации, размера зрачка, изменения направления взгляда, которые нельзя полностью учесть при прогнозировании результатов операции. Во–вторых, имеются так называемые рецепторные и нейронные ограничения остроты зрения: плотность фоторецепторов сетчатки определяет минимальные размеры деталей, возможных для их различения. Следовательно, совершенствование оптических свойств глаза, позволяющих получить на сетчатке изображение с более мелкими деталями, не только не улучшит его качества, но может даже исказить реальную картину .

После экстракции катаракты даже таким современным методом, как факоэмульсификация с имплантацией ИОЛ, также отмечается значительное увеличение высших аберраций высших (преимущественно 4–го) порядков . Предпринята попытка разработки ИОЛ с отрицательными сферическими аберрациями, которые частично компенсируют положительные сферические аберрации роговицы. Авторами, в предварительных сообщениях, отмечено некоторое повышение контрастной чувствительности при имплантации таких линз . Это направление коррекции аберраций представляется весьма интересным, но требует дальнейшего изучения.

Таким образом, изучение аберраций человеческого глаза позволяет дать дополнительную оценку оптическому аппарату глаза, что расширяет возможности для более углубленной и полноценной диагностики, адекватной коррекции и эффективного лечения большинства офтальмологических заболеваний, сопровождающихся снижением корригированной остроты зрения, появлением астенопических жалоб.

Литература:

1. Арталь П. «Суперзрение»: факты и вымыслы.// Вестник оптометрии. – 2002. – №4. – С.34–41.

2. Балашевич Л.И. Оптические аберрации глаза: диагностика и коррекция.// Окулист. – 2001. – №6(22). – С.12–15.

3. Балашевич Л.И. Рефракционная хирургия. – Санкт–Петербург, 2002. – С.285.

4. Корнюшина Т.А., Розенблюм Ю.З. Аберрации оптической системы глаза человека и их клиническое значение.// Вестник оптометрии. – 2002. – №3. – С.13–20.

5. Семчишен В., Мрохен М., Сайлер Т. Оптические аберрации человеческого глаза и их коррекция.// Рефракционная хирургия и офтальмология. – 2003. – Т.3.– №1. – С. 5–13.

6. Artal P. Understanding Aberrations by using Double–pass techniques.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 560–562.

7. Atchison D.A. Aberrations associated with rigid contact lenses.// J. Opt. Soc.Am. A. – 1995.– vol.– 12.– №10.– Р. 2267–2273.

8. Barbero S., Marcos S., Merayo–Lloves J., Moreno–Barriuso E. Validation of the estimation of corneal aberration from videokeratography in keratokonus.// J. Refract. Surg. – 2002. – Vol. 18. – No 3. – P. 263–270.

9. Brabander J., Chaten N., Bouchard F. et al. Contrast sensivitivity soft contact lenses compensated for spherical aberration in high ametropia.// Optom. Vis. Sci.– 1998.– Vol.75.– №1.– Р.–43.

10. Burns S.A. The Spatially Resolved Refractometer.// J. Refract. Surg. – 2000.– Vol. 16. – No 5 – P. 566–569.

11. Chalita M.R., Waheed S., Xu M., Krueger R.R. Wavefront Analysis in Post–LASIK Eyes and its Correlation with Visual Symptoms, Refraction and Topography.// Invest Ophthalmol Vis Sci. – 2003. – №44(5). – P. 2651.

12. Dietze H.H., Cox VJ. On– and of– eye spherical aberration of soft contact lenses and consequent changes of effective lens power . // Optom. Vis. Sci.– 2003.– Vol. 80.– №2.– Р.126–134.

13. Holladay J.T., Piers P.A., Koranyi G., Mooren M., Norrby S. A new intraocular lens design to reduce spherical aberration of pseudopfakic eyes.// J. Refract. Surg. – 2002.– Vol. 18. – No 6. – P. 683–691.

14. Hong X., Himebaugh N., Thibos LN. On – eye evaluation of optical performance of rigid and soft contact lenses. // Optom. Vis. Sci. –2001.– Vol. 78.–№12.– Р.872–880.

15. Koh S., Maeda N., Kuroda T., Hori Y., Watanabe H., Fujikado T., Tano Y., Hirohara Y., Mihashi T. Effect of tear film break–up on higher–order aberrations measured with wavefront sensor.// Am J Ophthalmol. – 2002. – №134. – P. 115–117.

16. Lopez – Gil N., Castejon – Mochon JF.,Benito A. at al. Aberration generation by contact lenses with aspheric and asymmetric surfaces. // J.Refract. Surg.–2002.– Vol.–18.– №5.– Р. 603–609.

17. Lu F,.Mao X.,Qu J., еt al. Monochromatic wavefront aberration in the human eye with contact lenses.// Optom.Vis. Sci. –2003.– Vol.–80.–№2.– Р.135–141

18. MacRae S., Fujieda M. Slit Skiascopic–guided Ablation Using the Nidek Laser.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 576–580.

19. Maeda N., Fujikado T., Kuroda T., et al. Wavefront aberrations measured with Hartmann–Shack sensor in patients with keratoconus.// Ophthalmology.– 2002.– Vol.109.– №11.– Р. 1996–2003.

20. Marechal A. Etude des effect combines de la diffraction et des aberrations geometriques sur L’image d’un point lumineux.// Revue d’optique. – 1947. – P. 257–277.

21. Marsack J., Milner T., Rylander G.,et al. Applying wavefront sensors and corneal topography to keratoconus. // Biomed. Sci. Instrum.– 2002.– Vol.38.– Р. 471–476.

22. Molebny V.V., Panagopoulou S.I., Molebny S.V., Wakil Y.S., Pallikaris I.G. Principles of Ray Tracing Aberrometry.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 572–575.

23. Mrochen M., Kaemmerer M., Mierdel P., Krinke H.E., Seiler T. Principles of Tscherning Aberrometry.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 570–571.

24. Oshika T., Klyce S.D., Applegate R.A., Howland H.C., Danasoury M.A. Comparision of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis.// Am J Ophthalmol. – Vol. 127. – №1. – P. 1–7.

25. Oshika T., Miyata K., Tokunaga T., Samejima T., Amano S., Tanaka S., Hirohara Y., Mihashi T., Maeda N., Fujikado T. Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis.// Ophthalmology. – 2002. – Vol. 109. – №6. – P. 1154–1158.

26. Patel S., Fakhry M., Alio JL. Objective assessment of aberrations induced by multifocal contact lenses in vivo.// CLAO J.– 2002 – Vol. 28.– №4.– Р. 196–201.

27. Piers P.A., Mester U., Anterist N., Dillinger P., Norrby S. How wavefront–based IOL designs affect pseudophakic visual quality.// Invest Ophthalmol Vis Sci. – 2002. – Vol. 43. – №12.– P. 2022.

28. Thibos L.N. Principles of Hartmann–Shack Aberrometry.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 563–565.

29. Williams D., Yoon GY., Porter J.,et al. Visual benefit of correcting higher order aberrations of the eye.// J. Refract. Surg.– 2000.– Vol.– 16.– № 5.– Р. 554–559.

30. Xiong Y., Lu Y., Qu X., Xue F., Chu R., He J.C. Investigation of wavefront aberrations for patients with cataract surgery.// Invest Ophthalmol Vis Sci. – 2002. – Vol. 43. – №12.– P. 387.

31. Zernike F. Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form der Phasenkontrastmethode.// Physica I. – 1934. – №2. – Р. 689–704.


Как и любой «неидеальной» оптической системе, человеческому глазу свойственны оптические дефекты — аберрации, которые снижают качество зрения, искажая изображение на сетчатке. Аберрация — это любое угловое отклонение узкого параллельного пучка света от точки идеального пересечения с сетчаткой при его прохождении через всю оптическую систему глаза.

В технической оптике качество оптической системы определяется аберрациями плоского или сферического фронта световой волны при прохождении через эту систему. Так, глаз без аберраций имеет плоский волновой фронт и дает наиболее полноценное изображение на сетчатке точечного источника (так называемый «диск Эйри», размер которого зависит только от диаметра зрачка). Но в норме, даже при остроте зрения 100%, оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным.

Количественной характеристикой оптического качества изображения является среднеквадратичное значение ошибок отклонения реального волнового фронта от идеального. Немецкий математик Зернике (Zernike) ввел математический формализм, использующий серии полиномов для описания аберраций волнового фронта. Полиномы первого и второго, т. е. низших порядков, описывают привычные для офтальмологов оптические аберрации — близорукости, дальнозоркости и астигматизма. Менее известны полиномы высших порядков: третий соответствует коме — это сферическая аберрация косых пучков света, падающих под углом к оптической оси глаза. В ее основе лежит асимметрия оптических элементов глаза, в результате которой центр роговицы не совпадает с центром хрусталика. К аберрациям четвертого порядка относится сферическая аберрация, которая в основном обусловлена неравномерностью преломляемой силы хрусталика в различных его точках. Более высокие порядки известны как нерегулярные аберрации.

Как измеряется волновой фронт

Оптическая система считается хорошей, если коэффициенты Зернике близки к нулю и, следовательно, среднеквадратичное значение ошибок волнового фронта меньше 1/14 длины световой волны (критерий Марешаля). Исходя из данных этого коэффициента можно прогнозировать остроту зрения, моделируя изображение любых оптотипов на сетчатке. Для определения аберраметрии зрительной системы человека используется специальный прибор — аберрометр. В клиниках «Эксимер» использует аберрометр Wave Scan компании «VISX Inc» (США).

В настоящее время известно несколько методов определения аберраций глаза, основанных на разных принципах.

Первый из них — это анализ ретинального изображения мишени (retinal imaging aberrometry) . На сетчатку проецируются два параллельных лазерных луча с длиной волны 650 нм и диаметром 0,3 мм, один из которых падает строго по зрительной оси и является опорным, а другой расположен на заданном расстоянии от него. Далее регистрируется степень отклонения второго луча от точки фиксации опорного луча, и таким образом последовательно анализируется каждая точка в пределах зрачка.

Второй принцип — анализ вышедшего из глаза отраженного луча (outgoing refraction aberrometry). Широко применялся в астрономии для компенсации аберраций в телескопах при прохождении через атмосферу и космическое пространство. С помощью диодного лазера с длиной волны 850 нм в глаз направляется коллимированный пучок излучения, который, пройдя через все среды глаза, отражается от сетчатки с учетом аберраций и на выходе попадает на матрицу, состоящую из 1089 микролинз. Каждая микролинза собирает неискаженные лучи в своей фокальной точке, а подверженные аберрации лучи фокусируются на некотором расстоянии от нее. Полученная информация обрабатывается компьютером и представляется в виде карты аберраций. На этом принципе построена работа Wave Scan.

Третий принцип основан на компенсаторной юстировке падающего на фовеолу светового пучка. В настоящее время этот способ применяется в качестве субъективного аберрометра, требующего активного участия пациента. В ходе исследования через вращающийся диск с отверстиями 1 мм, расположенный на одной оптической оси со зрачком, в глаз направляется пучок света. При вращении диска узкие параллельные пучки света проходят через каждую точку зрачка и при отсутствии аберраций проецируются на фовеолу, куда направлен другой луч с контрольной меткой в виде крестика. Если у пациента имеется близорукость, дальнозоркость, астигматизм или другие аберрации более высоких порядков, то он заметит несовпадение этих точек с крестиком и с помощью специального устройства должен будет их сопоставить. Угол, на который он смещает точку, отражает степень аберраций.

Разнообразие офтальмологических приборов, созданных с учетом новейших технологий и основанных на различных принципах действия, делает реальным не только качественную, но и количественную оценку аберрации низших и высших порядков, а также влияющих на них факторов.

Основные причины появления аберраций в оптической системе глаза

  • Формы и прозрачность роговицы и хрусталика; состояние сетчатки; прозрачность внутриглазной жидкости и стекловидного тела.
  • Увеличение диаметра зрачка . Если при диаметре зрачка равном 5,0 мм превалируют аберрации 3—го порядка, то при его увеличении до 8,0 мм возрастает доля аберраций 4 —го порядка. Рассчитано, что критический размер зрачка, при котором аберрации высших порядков оказывают наименьшее влияние, составляет 3,22 мм.
  • Аккомодация . Отмечено, что с возрастом аберрации увеличиваются, и в период от 30 до 60 лет аберрации высшего порядка удваиваются. Возможно, это связано с тем, что со временем эластичность и прозрачность хрусталика уменьшается, и он перестает компенсировать роговичные аберрации. Аналогично происходит и при спазме аккомодации.
  • Спазм аккомодации встречается достаточно часто у людей разного возраста. В офтальмологии под спазмом аккомодации понимается излишне стойкое напряжение аккомодации, обусловленное таким сокращением ресничной мышцы, которое не исчезает под влиянием условий, когда аккомодация не требуется. Проще говоря, спазм аккомодации — это длительное статичное перенапряжение, глазной мышцы, например, из-за длительной работы за компьютером и возникновение вследствие этого компьютерного синдрома. Спазмы аккомодации могут развиваться при всех рефракциях (включая астигматизм). Спазм аккомодации вызывает ложную близорукость или усиливает близорукость истинную.
  • Состояние слезной пленки. Была обнаружено, что при разрушении слезной пленки аберрации высших порядков увеличиваются в 1,44 раза. Одна из разновидностей нарушения слезной пленки — синдром сухого глаза .
    Синдром сухого глаза возникает в связи с пересыханием поверхности роговицы от редкого моргания и непрерывного смотрения на объект работы. Исследования показали, что при работе на компьютере, а также при чтении человек моргает в три раза реже, чем обычно. В результате чего слезная пленка высыхает и не успевает восстанавливаться. Причинами возникновения синдрома сухого глаза могут быть: большие нагрузки на глаза при чтении и работе за компьютером, сухой воздух в помещениях, неправильное питание с недостаточным количеством витаминов, большая загрязненность воздуха, прием некоторых медикаментов.
  • Ношение контактных линз. Выявлено, что мягкие контактные линзы могут вызывать волновые монохроматические аберрации высокого порядка, тогда как жесткие контактные линзы значительно уменьшают аберрации 2-го порядка. Однако асферичность поверхности жестких контактных линз может быть причиной сферических аберраций. Асферические контактные линзы могут вызывать большую нестабильность остроты зрения, чем сферические контактные линзы. Мультифокальные контактные линзы могут индуцировать аберрации по типу комы и 5—го порядка.

В настоящее время разработана методика проведения индивидуализированной коррекции зрения (Super Lasik, Custom Vue ) на основе аберрометрии, которая позволяет, максимальным образом компенсируя все возможные искажения в зрительной системе, добиваться отличных результатов в практически любых сложных случаях.

  • Аберрации различных порядков
  • Исправление сферических аберраций
  • Линзы сферические и асферические – в чем разница
  • Преимущества линз асферического дизайна
  • Особенности подбора
  • Цены и производители асферических линз

На сегодняшний день практически каждый человек уже слышал о высоком качестве расширения. Если вы желаете улучшить качество своего зрения, тогда в этом случае необходимо использовать асферические линзы для глаз.

Асферические линзы - это уникальный продукт

Многие люди сталкиваются с размытой картинкой или плохой видимости при низком освещении. Причина всего этого будет заключаться в аберрации высших порядков.

Аберрации различных порядков

Под аберрациями может подразумеваться искажение изображений, которые будут получены при помощи оптических систем. Если у вас действительно присутствуют искажения, тогда предметы будут выглядеть не такими, как являются.

Позитивные и негативные аберрации глаза

Аберрации могут быть низшего или высшего порядка. К аберрациям низшего порядка можно отнести распространенные расстройства зрения, которые можно вылечить с помощью обычных корректирующих приборов. Для их определения вам необходимо использовать специальные диагностические устройства, а также специальные таблицы, которые предназначаются для проверки зрения. Перед использованием этих линз изучите срок годности линз.

К аберрациям высшего порядка все сложнее. Традиционными методами их выявить будет просто невозможно. Для их выявления могут потребоваться компьютеризованными устройствами, которые имеют название аберрометрами. Эти устройства будут показывать графическое изображение волнового фронта пучка лучей света. Все полиномы 3 степени и будут относится к высшим порядкам.

Ореолы вокруг источников света - это симптом аберрации

Если перейти к детальному изучению, тогда можно сделать вывод о том, что искажения могут возникать по разным причинам:

  1. Сферические. Они могут появиться, когда параллельные лучи, которые попадают на периферии хрусталика и преломляются больше тех, что попадают на его центр.
  2. Кома – это сферические искажения косых лучей света, которые попадают под определенным углом к глазной оси. Если говорить простыми словами, тогда центр хрусталика просто не будет совпадать с центром роговицы.
  3. Хроматические – это результат более сильного преломления коротковолновых лучей белого спектра в зрительной системе. Из-за этого многоцветовые объекты просто не будут восприниматься глазом с абсолютной четкостью.

Теперь пришло время изучить, как исправить подобные искажения.

Исправление сферических аберраций

Ранее корректировка зрения осуществлялась с помощью обычных очковых линз. Именно поэтому в скором времени были созданы асферические типы линз, которые способны исправлять подобные искажения. Практика на сегодняшний день доводит, что этот способ коррекции еще далеко от идеального.

Вот так будет выглядеть вид в асферических линзах

Если человек будет смотреть в сторону, тогда прибор будет видеть с другими параметрами. Из-за этого картинка может искажаться, так как линза соответствует индивидуальным параметрам человека. Чем ближе к ее краю будет смотреть пациент, тем больше будет разница в параметрах. Также очковые линзы асферического дизайна могут иметь еще один весомый недостаток. Основным недостатком считается они будут изменять не только размеры предметов, но и расстояния до них. Многие люди, которые избавились от очков и перешли использовать асферические контактные линзы сообщаю о том, что, когда смотрят в зеркало, тогда картинка будет выглядеть совершенно иначе. Степень искажения может зависеть от разнообразных факторов:

  1. Расстояние между глазном и прибором.
  2. Преломляющая сила прибора.

Приборы высоких рефракций также могут искажать и размер глаза человека. Отличительной способностью можно считать то, что параллельный пучок будет находиться строго в одной точке. Простыми словами: картинка, которая будет попадать на края может искажаться.

Асферический и сферичиский дизайн

Линзы сферические и асферические – в чем разница

Сферические контактные линзы способны просто корректировать искажения только низких порядков. Исправить высшие порядки с помощью подобной линзы будет просто невозможно. Сферические очки и линзы практически ничем не отличаются. Единственным отличием считается то, что линзы позволяют корректировать и периферическое зрение.

Асферические контактные линзы отличаются своей удобной конструкцией. Они могут отличаться благодаря своей конструкции. Линза будет иметь форму эллипса. Благодаря этому радиус кривизны от центра к краю может увеличиваться. После использования подобных линз можно значительно повысить контрастность линзы. Если вам будет интересно, тогда можете прочесть про астигматические линзы.

Преимущества линз асферического дизайна

  1. Асферические приборы позволяют исправить периферическое зрение. Благодаря этому качество изображения может повыситься.
  2. Искажение окружающих предметов можно минимизировать.
  3. Приборы достаточно тонкие и поэтому период привыкания не потребуется.
  4. Поле зрения будет достаточно широким.

Важно знать! Асферические модели будут просто незаменимы в ночной период времени. Они могут бороться с искажениями, как высшего, так и низшего порядка.

Если детально изучить отзывы, тогда можно понять, что усталость глаз не будет ощущаться, даже после сильной и длительной нагрузки.

Особенности подбора

Сначала, вам необходимо пройти обследование у офтальмолога. Именно он сможет определить полезно использовать такие линзы или нет. Специалист благодаря специальному оборудованию сможет определить все технические характеристики.

Степень аберрации у человека может значительно отклоняться от среднего показателя. Именно поэтому конечный результат может быть не лучше, а еще хуже.

Цены и производители асферических линз

Цена на асферические линзы может быть достаточно разнообразной. Все будет зависеть от качества. Ниже мы представили вашему вниманию таблицу, в которой указан не только перечень производителей, но и цен.

Теперь вы точно знаете, что асферические контактные линзы могут обладать рядом определенных достоинств. Основным их преимуществам можно отнести минимальные искажения картинки. Надеемся, что эта информация была полезной и интересной.

Читайте также: как снять контактные линзы с глаз.

В каких случаях требуется имплантация искусственного хрусталика?

ИОЛы используются в современной офтальмологии в том случае, если естественный хрусталик по каким-либо причинам оказался более неспособен к выполнению своих стандартных функций.

Чаще всего интраокулярная линза используется у больных с катарактой. Дело в том, что при оперативном вмешательстве по поводу этой болезни натуральное анатомическое образование часто мутнеет, перестает выполнять свои стандартные функции. В таком случае именно интраокулярные линзы помогут скорректировать такие патологии, как:

  • астигматизм;
  • близорукость;
  • дальнозоркость.

Катаракта, из-за которой природный хрусталик утратил свою функциональность – это не единственное показание. Офтальмологические приспособления подобного типа также используются, если по каким-либо причинам пациенту нельзя выполнять лазерную коррекцию. В основном это происходит в возрасте 50-60 лет, когда утрачивается природная аккомодация глаза. Пациенту даже после постановки импланта придется носить очки.

Если аккомодация находится в рабочем состоянии, имплантацию также можно провести, и тогда пациент возвращает себе способность видеть предметы, независимо от расстояния до них.

Устройство ИОЛ

Стандартные интраокулярные линзы, применяемые в современной практике для восстановления зрения, имеют два основных элемента.

Оптическая составляющая – это непосредственно сама линза, для производства которой обычно используется специальный прозрачный материал. Эта часть обычно контактирует с живыми тканями глаза, потому делается из качественных элементов, которые с минимальной вероятность вызовут негативные реакции. Дополнительно на оптической составляющей всегда имеется дефракционная зона, благодаря которой и достигается четкость зрения.

Вторая составляющая – опорная. Благодаря ей происходит надежная фиксация линзы в глазу.

Срок годности современных ИОЛов, независимо от материала, совершенно неограничен. Они в течение длительного времени могут служить человеку без замен. Главное – соблюдать рекомендации врача относительно ухода за глазами.

Виды

Сегодня выделяют разные виды ИОЛ. В первую очередь деление происходит по критерию жесткости. Выделяют:

  • Жесткие импланты. Интраокулярные линзы жесткого типа имеют постоянную форму. Их невозможно сдавить или иначе изменить их конфигурацию для наиболее оптимального вживления в глаз. В связи с этим в ходе операции офтальмолог вынужден выполнять довольно крупный разрез, который затем заживляется с помощью наложения швов. Минусом подобных линз является более долгий восстановительный период.
  • Мягкие импланты. В офтальмологии на сегодняшний день наибольшую популярность получил искусственный хрусталик глаза, который изготавливается из специального полимера. Подобный хрусталик в ходе операции можно подвергнуть различным конфигурационным изменениям, не нанеся конструкции вреда. Благодаря этой особенности не требуется совершать больших, травматичных разрезов. Такая интраокулярная линза погружается в глаз в сложенном виде. Ее разворачивание и фиксация происходят самостоятельно, без помощи врача.

Довольно большой классификацией представлено деление интраокулярных линз на несколько типов в зависимости от того, как они действуют на работу зрительного нерва.

Трифокальные

Трифокальный тип – это искусственный хрусталик, который подойдет людям, не желающим после вмешательства носить очки. Благодаря уникальной конструкции такой имплант способен обеспечивать довольно плавный перевод фокуса, позволяя пациенту видеть объекты на близких, средних и дальних дистанциях. Интересно, что действие трифокальных линз часто дополняется асферическими свойствами. Это помогает в коррекции возникающих сферических искажений, добавляя пациенту контрастной чувствительности.

Аккомодирующие

Оптическая конструкция аккомодирующего типа считается на сегодняшний день одним из наиболее функциональных вариантов. Этот тип искусственных хрусталиков отлично имитирует работу настоящего органа, восстанавливая зрение пациента, независимо от дистанции, на которой от него расположен предмет.

Аккомодирующий тип конструкции, как считают офтальмологи, имеет наиболее приближенный к естественному вид. Благодаря этому даже после операции у мышечных и нервных структур глаза появляется возможность работать, как и прежде.

С помощью аккомодирующего типа линз пациента можно избавить не только от катаракты, но и от возрастной дальнозоркости, которую также называют пресбиопией. Подобные конструкции обеспечивают хорошее зрение независимо от возраста и расстояния.

Мультифокальные

Искусственный хрусталик для глаза мультифокального типа – это вариант, который часто выбирается пациентами с возрастными изменениями зрения. Его в основном устанавливают людям, чей возраст перешел за отметку в 50 лет.

С помощью мультифокальных линз удается добиться нормальной фокусировки зрения на нескольких расстояниях. Это позволяет после операции или ограничить ношение очков, или полностью избавиться от них. Как гласит статистика, около 80% пациентов с подобными имплантами отказались в итоге от применения очков.

Торические

Ранее одним из самых сложных заболеваний офтальмологического типа считалась катаракта в сочетании с астигматизмом. Пациентам, переносившим ранее оперативные вмешательства по поводу катаракты, приходилось носить специальные цилиндрические очки, позволяющие корректировать астигматизм. Сегодня, когда есть торические линзы, необходимость использовать очки отпадает даже при сочетанной патологии.

Конструкция и материал торических линз разработаны с тем расчетом, чтобы значительно повысить преломляющую силу и обеспечить за счет этого увеличение остроты зрения. Получается, оптическое приспособление не только заменяет собой нерабочий хрусталик, но и корректирует астигматизм.

Асферические

В практике глазного врача раньше часто встречалась такая проблема, как сферические аберрации. Под этой патологией понимали возникновение засветов, ореолов, отблесков, которые сильно снижали качество зрения даже после операции. Особенно выражены патологии были в темное время суток, а также в сумерках.

Сегодня появилась возможность корректировать сферические аберрации, используя асферические линзы. Эти приспособления обладают уникальной конструкцией, которая помогает собирать свет не в нескольких точках, а только в одной.

С желтым фильтром

Большинство линз нового поколения, независимо от их основной разновидности, снабжены специальным желтым фильтром. Его добавление обусловлено требованиями физиологии. Дело в том, что в норме сам хрусталик человека выполняет защитные функции, не позволяя роговице травмироваться при контакте с лучами различного происхождения. Помогает ему в этом желтый фильтр. А, удаляя хрусталик, хирург удаляет и фильтр, на смену которому вместе с имплантом приходит и искусственный фильтр.

Моноблок

Моноблок – еще одна современная конструкция, выполняемая с помощью специальных биологических материалов. Биоактивность материалов предотвращает негативные реакции со стороны среды глаза на имплант, снижая риск развития катаракты и других возможных осложнений. Также благодаря моноблоку появилась возможность сделать операционные разрезы еще меньше.

Интраокулярные линзы – непростые приспособления, выбор которых нельзя назвать простым делом. Пациентам рекомендуется соблюдение следующих правил:

  • желательно отдавать предпочтение оптике с фильтром, так как она защитит роговицу и сетчатку от негативного излучения;
  • нужно обращать внимание на материал изготовления ИОЛов, он должен быть максимально близок к натуральному;
  • стоит отдать предпочтение конструкциям с асферическими свойствами, чтобы заранее избежать нежелательных искажений;
  • на упаковке должна присутствовать надпись о том, что изделие обрабатывалось с расчетом получить идеальную гладкость – это говорит о том, что оно будет легко размещаться в глазу.

Производители

Интраокулярная линза – популярный на современном медицинском рынке продукт. Их производством занимается несколько фирм. Наиболее популярны:

  • Alcon. Компания производит изделия с минимальной толщиной. При этом используются гидрофобные материалы.
  • AcrySof ReSTOR. Их изделия также обладают очень маленькой толщиной, что позволяет выполнять наименее травматичные имплантационные операции.
  • AcrySof IQ. Эта фирма использует для изготовления своих моделей синие светофильтры, что служит отличной защитой для глаз.
  • Rumex International. Изделия этой фирмы легче всего растягивают капсульный мешок, благодаря чему их легко располагать в глазу.

Естественно, при выборе ИОЛ стоит опираться на рекомендации лечащего офтальмолога. Самостоятельное приобретение изделий подобного рода не рекомендуется.

Полезное видео про интраокулярные линзы

А. г., обусловленная различием в преломляющей способности центральных и периферических отделов роговицы и хрусталика.

  • - одна из геом. аберраций оптических систем, зависящая от положения точки пересечения луча с плоскостью входного зрачка. С. а. наблюдается даже для точки-объекта, находящейся на гл....

    Физическая энциклопедия

  • - одна из осн. аберраций оптических систем; проявляется в несовпадении гл. фокусов для лучей света, прошедших через осесимметрич. оптич...

    Физическая энциклопедия

  • - раздел астрономии, разрабатывающий математические методы решения задач, связанных с изучением видимого расположения и движения космических тел на небесной сфере, в частности разработка теоретических основ счета...

    Астрономический словарь

  • - искажение изображений на сетчатке вследствие несовершенства оптической системы глаза...

    Большой медицинский словарь

  • - А. г., обусловленная дифракцией, возникающей при прохождении световых лучей через суженный зрачок...

    Большой медицинский словарь

  • - А. г., обусловленная неодинаковым преломлением оптической системой глаза световых лучей с различной длиной волны...

    Большой медицинский словарь

  • - Л., обе поверхности которой являются частями поверхности шара; применяется, напр., для коррекции зрения при отсутствии астигматизма...

    Большой медицинский словарь

  • - одна из аберраций оптических систем, обусловленная несовпадением фокусов для лучей света, проходящих через осесимметричную оптич. систему на разных расстояниях от оптической осы этой системы...

    Большой энциклопедический политехнический словарь

  • - искажение изображения, являющееся следствием того, что лучи пучка монохроматического света, исходящего из точки, лежащей на оптической оси, пройдя через оптическую систему, не пересекаются в одной точке, а создают ряд...

    Краткий толковый словарь по полиграфии

  • - см. Оптические стекла...
  • - см. Астрономия...

    Энциклопедический словарь Брокгауза и Евфрона

  • - один из типов аберраций оптических систем...
  • - раздел астрометрии, разрабатывающий математические методы решения задач, связанных с изучением видимого расположения и движения светил на небесной сфере...

    Большая Советская энциклопедия

  • - искажение изображения в оптических системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптической оси, не собираются в одну точку с лучами, прошедшими через удаленные от оси части...

    Большой энциклопедический словарь

  • - От серого глаза, от карего глаза, от синего глаза, от черного глаза...
  • - См. ЛЮБОВЬ -...

    В.И. Даль. Пословицы русского народа

"аберрация глаза сферическая" в книгах

Душевная аберрация

Из книги Сколько стоит человек. Повесть о пережитом в 12 тетрадях и 6 томах. автора

Душевная аберрация

Из книги Сколько стоит человек. Тетрадь первая: В Бессарабии автора Керсновская Евфросиния Антоновна

Душевная аберрация Удивляться ли тому, что 28 июня 1940 года советские войска были встречены как освободители? Колокольный звон, священники с хлебом-солью…А как мама была растрогана тем, что солдат назвал ее «мамаша»! А я? Разве моя душа не рвалась навстречу им? Но зачем

Из книги Все лучшие методики воспитания детей в одной книге: русская, японская, французская, еврейская, Монтессори и другие автора Коллектив авторов

Смотреть в глаза «Смотри в глаза, когда с тобой разговаривают!» Это требование родителей не лишено здравого смысла. «Хорошо воспитанный» ребенок обязательно смотрит на своего собеседника. Зрачок, этот маленький кружок в середине глаза, пропускает свет к сетчатке глаза.

4.3. Звездная аберрация

Из книги Теория относительности - мистификация ХХ века автора Секерин Владимир Ильич

4.3. Звездная аберрация В 1727 г. астроном Д. Бредли открыл явление звездной аберрации, которое заключается в том, что все звезды в течение года описывают на небесной сфере эллипсы с большой полуосью, наблюдаемой с Земли под углом? = 20,5». Аберрация обусловлена движением Земли

Аберрация

БСЭ

Аберрация света

Из книги Большая Советская Энциклопедия (АБ) автора БСЭ

Аберрация

Из книги Энциклопедический словарь (А) автора Брокгауз Ф. А.

Аберрация Аберрация света состоит в том, что мы, наблюдая звезду, видим последнюю не в том месте, где она находится, вследствие движения земли вокруг солнца и времени, необходимого для распространения света. Если бы земля была недвижима, или если бы свет распространялсяХроматическая аберрация Из книги Большая Советская Энциклопедия (ХР) автора БСЭ

Общее рассуждение об основных состояниях глаза и его воспалении Анатомия глаза

Из книги Канон врачебной науки автора ибн Сина Абу Али

Общее рассуждение об основных состояниях глаза и его воспалении Анатомия глаза Мы говорим: зрительная сила и материя зрительной пневмы проникает в глаз по пути обоих полых нервов, с которыми ты уже ознакомился в анатомии. По мере того как нервы и оболочки, которые с ними

Аберрация,

Из книги Литературная Газета 6486 (№ 45 2014) автора Литературная Газета

Аберрация, "Дурдом" - сатирическая передача, выходящая на Втором канале немецкого общественного телевидения, высмеяла германские СМИ в отношении событий на юго-востоке Украины: почти все они сознательно и грубо искажают и толкуют факты в пользу Киева. В той же

Расстановка ударений: АБЕРРА`ЦИЯ ГЛА`ЗА

АБЕРРАЦИЯ ГЛАЗА - искажение изображений на сетчатой оболочке глаза в результате несовершенств его оптической системы.

А. г. может быть обусловлена различными причинами: неправильной формой поверхностей роговицы и хрусталика, несовершенством их центрировки, неоднородностью глазных сред (особенно хрусталика) и возникающими в глазу на пути прохождения луча света явлениями дифракции (огибание световыми волнами препятствий и др.).

Оптической системе глаза человека присущи в той или иной степени все виды аберрации оптических систем: сферическая, хроматическая, а также дифракционные аберрации и астигматизм (см. Аберрация, Астигматизм глаза ).

Сферическая аберрация глаза обусловлена неоднородным строением хрусталика. Она определяется как разность между степенью преломления оптической системой лучей, проходящих через периферические и центральные участки зрачка глаза, и измеряется в диоптриях. Одна диоптрия (1 дптр ) - преломляющая сила линзы с фокусным расстоянием 1 м . Сферическая А. т. считается положительной, если периферические лучи преломляются сильнее центральных и их фокус оказывается ближе к хрусталику, чем к сетчатой оболочке, и отрицательной, если фокус периферических лучей оказывается ближе к сетчатой оболочке, чем к хрусталику. Отсутствие единого фокуса для падающих на зрачок центральных п периферических лучей приводит к тому, что рассматриваемые светящиеся точки проецируются на сетчатой оболочке глаза в виде пятен (круги светорассеяния). В результате этого снижается острота зрения.

Сферическая А. г. в известной мере корригируется снижением кривизны поверхностей роговицы и хрусталика по мере перехода от их центральных зон к периферическим. Сферическая А. г. зависит от состояния аккомодации глаз (см.) и ширины зрачка. Обычно при дневном освещении (диаметр зрачка 3-4 мм ) аберрация глаз равняется 0,5-1 дптр .

Хроматическая аберрация глаза обусловлена неодинаковым преломлением оптической системой глаза световых лучей с различной длиной волн (см. Рефракция глаза ). У разных людей она не одинакова. Хроматическая аберрация численно характеризуется разницей между преломляющей силой глаза для желтого излучения с длиной волны γ = 587,6 нм (5876А) и преломляющей силой глаза для данной волны (γ) и выражается в диоптриях.

В результате хроматической аберрации изображения объектов на сетчатой оболочке глаза оказываются окруженными цветной каймой. Однако из-за избирательной чувствительности сетчатой оболочки глаза к излучениям различной длины волн человек не замечает окрашенности контуров объектов.

Хроматической А. г. объясняется неспособность глаза с нормальной рефракцией (см. Эмметропия ) видеть далекие синие или фиолетовые точечные объекты, а также и явления «выступающих» и «отступающих» цветов. Во многих случаях хроматической А. г. объясняются особенности приемов, используемых художниками в пейзажной и портретной живописи.

На использовании явлений хроматической А. г. основан ряд методов и приборов, применяемых в офтальмологии для измерения величины аметропии глаза.

Дифракционными аберрациями глаза называются искажения на сетчатой оболочке глаза в результате дифракции, возникающей при прохождении световых лучей через зрачок малого диаметра. При дифракционной А. г. точечные объекты изображаются на сетчатой оболочке не в виде точек, а в виде круглых пятен, окруженных рядом светлых и темных колец. Дифракционная А. г. проявляется тем резче, чем меньше диаметр зрачка. Наибольшая четкость изображений объектов на сетчатой оболочке глаза, а следовательно, и наивысшая острота зрения глаза имеет место при диаметрах зрачка глаза, равных 2-4 мм . Дальнейшее увеличение диаметра зрачка сопровождается снижением остроты зрения.

Библиогр .: Гуртовой Г. К . Сферическая аберрация и дифракция в глазе, Пробл. физиол. оптики, т. 9, с. 165, М.-Л., 1950; он же , Изображение светящейся точки в области сетчатки, там же, т. 8, с. 357, М.-Л., 1953; Кравков С. В . Глаз и его работа, М.-Л., 1950; Пинегин Н. И. Абсолютная чувствительность глаза в ультрафиолетовом и видимом спектре, Докл. АН СССР, т. 30, № 3, с. 206, 1941; Смирнов М. С . Измерение волновой аберрации человеческого глаза, Биофизика, т. 6, № 6, с. 687, 1961; он же , Оптика глаза, в кн.: Физиол. сенсорных систем, под ред. Г. В. Гершуни, ч. 1, с. 37, Л., 1971; Xартридж Г . Современные успехи физиологии зрения, пер. с англ., М., 1952; Ivanoff A . Les aberrations de l"oeil, leur role dans l"accomodation, P., 1953; он же , Au sujet de l"aberration sphérique de l"oeil, Optica Acta, t. 3, p. 47, 1956, bibliogr.; Коomеn М ., Тоusey R . a. Sсо1nik R . The spherical aberration of the eye, J. opt. Soc. Amer., v. 39, p. 370, 1949; Westheimеr G . Spherical aberration of the eye, Optica Acta, v. 2, p. 151, 1955, bibliogr.